
 

Abstract—In this paper we propose an efficient hybrid zero 

block early detection method for high efficiency video coding 

(HEVC). Our method detects both genuine zero blocks (GZBs) 

and pseudo zero blocks (PZBs). For GZB detection, we use two 

sum of absolute difference bounds and one sum of absolute 

transformed difference threshold to decrease the GZB detection 

complexity. A fast rate-distortion estimation algorithm for HEVC 

is proposed to improve the PZB detection rate. Experimental 

results on HM platform show that the proposed method saves 

about 50% of the rate-distortion optimization time, with 

negligible Bjøntegaard delta bit rate loss. Our method is faster 

than other state-of-the-art ZB detection methods for HEVC by 

10%~30%. 

 
Index Terms—HEVC, RDO, zero block detection, genuine zero 

block, pseudo zero block, rate-distortion estimation 

 

I. INTRODUCTION 

IGH efficiency video coding (HEVC) is the most recent 

video compression standard issued jointly by the 

ISO/IEC Moving Picture Experts Group and the ITU-T Video 

Coding Experts Group [1]. HEVC doubles the coding 

efficiency of the previous standard, H.264/AVC, using new 

coding tools involving much higher computational complexity. 

Much work has been done on fast rate-distortion optimization 

(RDO) to accelerate the encoding process for HEVC. In this 

paper, we focus on the rapid detection of a special type of 

transform unit (TU) called zero block (ZB). 

A TU is defined as a ZB if all of its transform coefficients 

are zeros. If the ZBs are detected early, some operations, such 

as transform, quantization, inverse quantization, inverse 

transform and entropy coding, can be skipped, so the encoding 

complexity is decreased. Two types of ZBs were defined in 

[16], i.e., genuine zero block (GZB) and pseudo zero block 

(PZB). A GZB is a TU in which all transform coefficients are 
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quantized to zeros in the quantization process, while a PZB is 

a TU in which all transform coefficients are forced to zeros, to 

obtain better rate-distortion performance.  

Many works have been done on GZB detection for 

H.264/AVC. In [2]-[11], the thresholds of the sum of absolute 

differences (SAD) were derived using various methods for 

H.264/AVC. In [14] and in our previous work [15], the SAD 

thresholds were extended from H.264/AVC to HEVC to 

accommodate large TUs of 16×16 and 32×32. Although the 

computational complexity of these SAD-based methods is low, 

their ZB detection rates are limited since the SAD cannot fully 

express the information in transform coefficients. 

In [13], the Hadamard threshold was proposed for 

H.264/AVC using the relationship between the Hadamard 

transform and the integer discrete cosine transform (DCT). In 

[16], the SATD-based method was extended to HEVC for 

detecting both GZBs and PZBs, and the ZB detection rate was 

increased. However, as only 2×2, 4×4 and 8×8 Hadamard 

transforms were supported, multiple 8×8 Hadamard matrices 

were combined to simulate 16×16 and 32×32 Hadamard 

transforms. Therefore, the GZB detection for the 16×16 and 

32×32 TUs was not as effective as the small TUs. Furthermore, 

empirical conditions of PZB detection were applied only for 

16×16 and 32×32 TUs, the detection rates of 16x16 and 32x32 

PZBs are limited, and no 4x4 or 8x8 PZB can be detected. 

To further improve the ZB detection rate and decrease the 

encoding complexity, in this paper, we propose a new hybrid 

ZB detection method for HEVC. First, two bounds of SAD 

and one threshold of SATD are used to detect GZBs. Second, 

a fast rate-distortion cost estimation method for HEVC is 

proposed to detect PZBs. Experimental results on HM 

platform demonstrate that the proposed method can save about 

half of the RDO time with negligible Bjøntegaard delta bit rate 

(BD-BR) loss. Our method is faster than other state-of-the-art 

ZB detection methods for HEVC by 10%~30%.  

Our method improves the state-of-the-art scheme in [16] in 

two ways. For GZB detection, a low bound of SAD is added 

to further reduce the GZB detection complexity, while for 

PZB detection, a fast rate-distortion estimation scheme is 

proposed to replace the empirical SATD-based detection 

conditions in [16], thus improving the PZB detection rate.  

The remainder of this paper is organized as follows. Section 

II presents our proposed hybrid ZB detection method. Section 

III provides the experimental results to demonstrate the 

effectiveness of our method, and Section VI concludes the 

paper. 
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II. PROPOSED HYBRID ZB DETECTION METHOD 

Inspired by our previous works and the work of [16], we 

propose a new hybrid ZB method for HEVC. Fig. 1 shows the 

pseudo codes of our method. In the first step, if the SAD of a 

TU is smaller than the first SAD threshold (         , the TU 

is detected as a GZB; otherwise, if the SAD is larger than the 

second SAD threshold (         , the TU is predicted as a 

non-ZB. In the second step, for the rest TUs, Hadamard 

thresholds are used to detect GZBs. In the third step, if the 

above conditions are not met, a fast rate-distortion cost 

estimation method is proposed to predict          and 

           , and if          is smaller than             the 

TU is detected as a PZB; otherwise the TU is encoded as a 

non-ZB.  

A. GZB detection 

Although the GZB detection method in [16] effectively 

utilized the relationship between the Hadamard transform and 

the integer DCT, there are still some redundant computations. 

In our method, we propose adding an additional lower SAD 

threshold of         , to early terminate the GZB detection. 

If the SAD of a TU is smaller than         , it is directly 

detected as a GZB; otherwise, the GZB detection method in 

[16] is used as follows. If the SAD is larger than         , 

the TU is detected as a non-ZB; otherwise the Hadamard 

thresholds in [16] are used to detect GZBs. 

The quantization process of HEVC is defined as 
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where   and    denote the transform coefficient and 

quantized transform coefficient, respectively.     ,        
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where          and      denote the pixel bit-depth and 

the TU width respectively. 

In our previous work [15], we proposed the following SAD 

threshold for HEVC 
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where N is the TU depth. As          is derived from the 

nature of the HEVC integer DCT and quantization, almost all 

of the TUs with a SAD lower than          are true ZBs, so 

we adopt it as the first SAD threshold. 

To avoid redundant computations, an upper bound of SAD 

was proposed in [16] 
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where  [    ] was obtained experimentally and set as 580, 

148, 37 and 17 for TUs of 32×32, 16×16, 8×8 and 4×4, 

respectively. |    |  denotes the quantization error. The 

value of   [  ][    ] is set as 0.95*|    |.     is a 

constant value.  [    ] is a normalization factor and set as 

1024, 256, 64, and 16 for 32×32, 16×16, 8×8 and 4×4 TUs 

respectively. Detailed explanation was given in [16]. 

Considering the similar frequency property of the 

Hadamard transform and the integer DCT,    [  ][    ] 
was defined in [16] as the Hadamard threshold for a given QP 

and TU width, derived by 
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where m equals 8, 2, 1/2 and 1/8 for the TUs of 32×32, 16×16, 

8×8 and 4×4 respectively. The GZB detection condition is 
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where             denotes the number of non-zero 

Hadamard coefficients those are larger than    [  ][    ]. 
As only 2×2, 4×4 and 8×8 Hadamard transforms were 

supported, DC Hadamard transform was used to detect 16×16 

and 32×32 GZBs. 

B. PZB detection 

Even if a TU is not a GZB, it can still be encoded as a PZB 

to improve the rate-distortion performance. When the 

following condition is met the TU will be enforced as a PZB 

in RDO process. 
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if SAD<𝑆𝐴𝐷𝑙𝑜𝑤𝑒𝑟then 

GZB = 1; 

else if SAD>𝑆𝐴𝐷𝑢𝑝𝑝𝑒𝑟then 

Non-ZB = 1; 

else 

if 𝑁𝑈𝑀 𝑎𝑑𝑚𝑎𝑟𝑑    then 

GZB = 1; 

else 
Fast RD cost Estimation 

if 𝐶𝑜𝑠𝑡𝑧𝑒𝑟𝑜< 𝐶𝑜𝑠𝑡𝑛𝑜𝑛𝑧𝑒𝑟𝑜then 

PZB = 1; 

else 
        Non-ZB = 1; 

        Update 𝛼 

end if 

end if 

end if 
Fig. 1. The proposed hybrid ZB detection. 



where          and             denote the rate-distortion 

costs to code the TU as ZB and non-ZB respectively.  

The real value of             can only be calculated after 

transform, quantization, de-quantization, inverse transform 

and entropy coding. If PZB is detected earlier, some of the 

above operations can be skipped. The values of          and 

            for a TU are calculated by 
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where          and             denote distortions to 

encode the TU as ZB and non-ZB, respectively.          and 

            represent the number of bits generated by coding 

this TU as ZB and non-ZB respectively.   is a parameter to 

balance the distortion and bits in the rate-distortion cost, 

which can be derived using quantization parameter and coding 

structure [1]. 

To facilitate describing the derivation process of          

and            , a set of notations is defined in Table I. 

The distortion is calculated by 
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For         ,    is zero. A ZB can be roughly coded 

using just one flag bit. Therefore, 
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where  ̂        denotes the estimated value of         . 

  The value of             is derived by 
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where  [    ] has been given in (4).  

For each transform coefficient, a visual description of the 

quantizer in (1) is shown in Fig. 2. First, a transform 

coefficient denoted by the blue point is shifted to the red point 

by adding the        in (1). Then, by subtracting the 

        with a rounding operation, the red point falling into 

the quantization interval is moved to the black point (which 

denotes the reconstructed value). With (1), the distortion of a 

single coefficient can be approximated by 
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where  ̂     denotes the estimated distortion of the ith 

coefficient and „&‟ denotes bitwise AND. The             is 

estimated by 
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In our previous work [17], a rapid method for estimating 

            was proposed for H.264/AVC. As new TU sizes 

were adopted in HEVC and some quantization differences 

between H.264/AVC and HEVC, we extend the method in [17] 

to accommodate multiple TU sizes and different quantization 

parameters. We also propose a different parameter updating 

method. The following self-information of the TU is used to 

estimate the rate 
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where w is the TU width,    

  is the transform coefficient 

located at position (u, v) within one  ×  TU and     
  is the 

estimated bits.  ̂  
  is the quantized coefficient of    

  and 

 { ̂  
   ̂} denotes the probability of    

  being quantized 

to  ̂. 

We apply a zero-mean generalized Gaussian distribution to 

model the distribution of the transform coefficients. The 

rationale was given in our previous work [17]. As there are 

four different TU sizes in HEVC, we estimate the 

self-information by 
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where  ̂  
  denotes the estimated value of    

  and   (   is the 

gamma function. The other variables in (19) are calculated as 

TABLE I    NOTATIONS DEFINED IN THE DERIVATION OF RD COST 

Notation Meaning 

S original signals 

RS reconstructed signals 

P predicted signals 

R residual signals 

RR reconstructed residual signals 

D DCT coefficients 

RD reconstructed DCT coefficients 

𝑇 DCT transform matrix 

𝑇𝑇  DCT inverse transform matrix 
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where    denotes the transform coefficient. In our 

experiment,    
  and    

  are derived from the transform 

coefficients of the previous frame. 

To avoid redundant computation, considering that most of 

the quantized DCT coefficients are smaller than 200 when 

PZB detection is activated, we accelerate the calculation using 

a look-up table. The value of  ̂  
  for the quantized coefficient 

(smaller than 200) is pre-calculated and stored in the look-up 

table. The prediction accuracy is improved by updating    
  

and    
  dynamically during encoding. We update    

  and 

   
  after each frame is encoded and the    

  and    
  of the 

current frame are used to estimate the             for the 

next frame.  

As self-information is the minimum number of bits needed 

to code a value theoretically, there may be some differences 

between the self-information and the actual number of bits. 

The estimated value of             is assumed to be linearly 

correlated with the number of actual bits. We estimate 

            by 
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where  ̂          represents the estimated value of 

           ,   denotes TU width,     and    are used to 

adjust the estimation accuracy of            .  ̂           is 

1 when all of the transform coefficients are zeros and the 

intercept is a constant value. Therefore,    is initialized to 

-∑ ∑  ̂  
 

   when  ̂ in (16) is 0. We only update    during 

encoding to reduce the computational complexity, and    is 

initialized as 1. When a TU is detected as non-ZB, the encoder 

counts the actual             and    is updated accordingly. 

Considering that many TUs are non-ZBs, the    is updated 

often, so a low computational updating method is preferred. 

We propose the following updating method for    
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where   

  denotes the    updated with the (     th 

non-ZB and is used to estimate the  th            . 

           
    and  ̂          

    represent the actual value and 

the estimated value of             for the (    th non-ZB , 

respectively.         is a variable used to control the 

updating frequency. If the         is too large, the estimation 

value does not reflect the changes. If the         is too small, 

the estimation accuracy of             tends to be affected 

by outliers. To achieve a balance, we set         to 10 in our 

experiments. 

In our previous work [17], only 15 actual values of 

            were calculated by the entropy coder to estimate 

the subsequent 100 values of            . The estimation 

accuracy is limited. Our proposed method in this paper 

handles this issue well by updating    once after coding 

each non-ZB. In Table II, the average absolute differences 

between the estimated value and the actual value of 

           , using our proposed method and the method in 

[17], were compared. These results were obtained with 

different QPs (22, 27, 32 and 37) and two configurations 

(random access and low delay). The results showed that the 

accuracy of the bit-rate estimation is much improved with our 

proposed updating strategy over all of the test sequences. 

As the residue of intra prediction is relatively large and the 

ratio of ZBs is low for intra TUs, the time saving for ZB 

detection is limited for intra TUs. Thus, similar to other 

state-of-the-art works [15][16], we apply our method only on 

inter TUs. 

III. EXPERIMENTAL RESULTS 

We integrated our proposed hybrid ZB detection method 

into the HEVC reference software HM 12.0. Both random 

access and low delay configurations were used. The related 

methods in references [16] and [15] were also implemented 

and compared with our method. As there were very few true 

PZBs when the RDOQ was turned on, in our experiments, we 

 
Fig. 2. Quantization process of a single transform coefficient in HEVC. 

TABLE II 

THE AVERAGE ABSOLUTE DIFFERENCE BETWEEN THE ESTIMATED VALUE AND 

THE ACTUAL VALUE OF 𝐵𝑖𝑡𝑠𝑛𝑜𝑛𝑧𝑒𝑟𝑜 

Resolution Sequence 
Paper [17] Proposed 

4×4 8×8 16×16 32×32 4×4 8×8 16×16 32×32 

1080P 

BasketballDrive 2.17 4.99 24.48 38.04 1.73 3.78 11.48 21.37 

BQTerrace 3.96 14.73 69.70 43.70 3.12 7.67 31.61 23.00 

Cactus 3.26 30.68 98.67 152.57 2.71 15.63 38.21 72.27 

ParkScene 3.62 8.60 51.64 53.34 2.81 5.69 21.04 46.57 

480P 

BasketballDrill 2.19 6.66 19.87 16.16 1.50 3.71 9.77 10.05 

BQMall 3.76 16.09 55.89 47.90 2.86 9.72 33.50 35.74 

PartyScene 3.05 10.83 37.81 48.45 2.39 6.29 18.83 38.78 

RaceHorses 3.07 9.34 44.75 33.35 2.56 5.98 23.55 21.60 

Average Difference 3.14 12.74 50.35 54.19 2.46 7.31 23.50 33.67 

 



 
first turned off RDOQ to show the effectiveness of the PZB 

detection. HM 12.0 was set as the anchor and the BD-BR 

performance was obtained with QPs of 22, 27, 32 and 37. In   

Table III we define the notations used in evaluating the ZB 

detection performance. 

As the value of     in formulation (4) was not given in 

[16], we tested different values of     from 0 to 1, and the 

results are given in Fig. 3. Four curves representing four 

different TU sizes of 4×4, 8×8, 16×16 and 32×32 were given. 

Considering that           was only used as a rough 

estimation, we paid more attention to the true positive rate 

(TPR) than the false positive rate (FPR), as non-ZBs 

misclassified as ZBs using condition (4) can be further 

corrected with the conditions in (6). Therefore, we choose 

    which obtains a TPR greater than 0.95. In Fig. 3, the 

horizontal axis and vertical axis represent     and the TPR, 

respectively. According to the experimental results shown in 

Fig.3, setting     as 0.5 is reasonable. The value of

 
  [  ][    ] is used in both our method and the method in 

[16] for fair comparison. 

Table IV compares the proposed method with our previous 

work of [15]. The „TS‟ column denotes the time saving of the 

RDO process. The „BD‟ column denotes the BD-BR 

performance. „LD‟ and „RA‟ in „CFG‟ denote low delay and 

random access configurations, respectively. All of the results 

were obtained with QPs of 22, 27, 32 and 37. Our method 

reduced the RDO time by 30% compared with the method in 

[15], under a similar BD-BR performance. 

Table V shows the BD-BR and time savings for our method 

and the method in [16], with the RDOQ off. The test 

sequences recommended by JCT-VC were all tested. The 

„GZB‟ and “All ZB” columns in Table VI list the results with 

only GZB detection and both GZB and PZB detections. The 

data were obtained by averaging the results with the QPs of 22, 

27, 32 and 37. Compared with the method in [16], for GZB 

detection, the proposed method achieved a similar 

 

TABLE III   NOTATION USED IN EVALUATING THE ERROR RATE 

Notation Full name Definition 

TP True Positive ZBs which are predicted as ZBs 

TN True Negative Non-ZBs which are predicted as non-ZBs 

FP False Positive Non-ZBs which are predicted as ZBs 

FN False Negative ZBs which are predicted as non-ZBs 

TPR True Positive Rate TP / ( TP + FN ) 

FNR False Negative Rate FN / ( TP + FN ) 

FPR False Positive Rate FP / ( FP + TN ) 

 

    
(a)      (b) 

Fig.3. The TPR of different  𝑈𝐵 for different resolutions (a) 480P (b) 1080P. 

TABLE V   THE AVERAGE RD PERFORMANCE AND TIME SAVING OF THE PROPOSED ALGORITHM AND THAT IN [16] FOR THE REST SEQUENCES 

Resolution Sequence 

Random Access Low Delay 

Paper [16] Proposed Paper [16] Proposed 

GZB All ZB GZB All ZB GZB All ZB GZB All ZB 

TS BD TS BD TS BD TS BD TS BD TS BD TS BD TS BD 

Class A 
People On Street 23.20% 0.47% 22.88% 0.57% 25.00% 0.54% 30.46% 0.53% 21.99% 0.32% 22.21% 0.60% 23.86% 0.40% 25.40% 0.61% 

Traffic 44.48% 0.33% 45.10% 0.63% 48.01% 0.42% 55.25% 0.77% 40.41% 0.10% 41.26% 0.57% 43.77% 0.16% 50.33% 0.94% 

Class B 

Kimono 11.07% 0.00% 11.27% 0.00% 11.17% 0.00% 9.11% -0.01% 10.21% -0.02% 10.80% -0.02% 10.60% -0.02% 10.44% 0.02% 

Basketball Drive 27.99% 0.28% 32.56% 0.43% 33.87% 0.45% 43.22% 0.61% 28.50% 0.32% 31.78% 0.47% 34.41% 0.62% 37.94% 0.76% 

BQ Terrace 41.74% 0.49% 47.94% 0.51% 47.60% 0.47% 61.45% 0.61% 40.56% 0.46% 42.68% 0.44% 45.69% 0.45% 53.87% 0.70% 

Cactus 34.30% 0.33% 39.92% 0.39% 40.20% 0.38% 54.06% 0.66% 31.67% 0.43% 33.93% 0.31% 36.60% 0.47% 44.19% 0.90% 

Park Scene 40.13% 0.47% 44.49% 0.52% 47.61% 0.51% 56.74% 0.68% 38.19% 0.51% 40.38% 0.55% 43.25% 0.57% 46.40% 0.89% 

Class C 

Basketball Drill 31.14% 0.16% 34.69% 0.35% 37.26% 0.25% 50.12% 0.42% 30.69% 0.14% 34.08% 0.24% 35.80% 0.10% 48.29% 0.62% 

BQ Mall 37.24% 0.47% 40.14% 0.54% 43.12% 0.41% 54.78% 0.59% 36.03% 0.58% 37.06% 0.75% 40.42% 0.54% 53.06% 1.00% 

Party Scene 30.57% 0.69% 32.97% 0.66% 34.58% 0.79% 46.10% 0.62% 27.56% 0.61% 34.09% 0.83% 29.60% 0.70% 41.13% 0.80% 

Racehorses 20.49% 0.51% 20.02% 0.52% 25.10% 0.50% 37.97% 0.38% 18.99% 0.55% 20.42% 0.62% 22.72% 0.56% 33.58% 0.43% 

Class D 

Basketball Pass 37.69% 0.22% 38.76% 0.51% 40.27% 0.28% 49.35% 0.68% 34.51% 0.50% 36.05% 0.86% 37.53% 0.79% 44.93% 0.80% 

Blowing Bubbles 31.49% 0.35% 33.30% 0.54% 33.76% 0.41% 47.98% 0.71% 25.73% 0.18% 28.74% 0.68% 28.92% 0.26% 37.85% 0.79% 

BQ Square 41.55% 0.41% 42.19% 0.72% 44.63% 0.29% 58.02% 0.58% 36.35% 0.46% 38.05% 0.80% 39.49% 0.43% 49.97% 0.48% 

Racehorses 18.21% 0.70% 19.72% 0.30% 19.65% 0.72% 28.18% 0.30% 15.78% 0.40% 17.82% 0.41% 18.10% 0.45% 20.33% 0.34% 

Class E 

Four People 53.61% 0.03% 56.27% 0.24% 58.85% 0.08% 67.81% 0.20% 49.66% 0.01% 52.86% 0.30% 54.90% 0.08% 64.09% 0.36% 

Johnny 54.93% -0.03% 57.03% 0.37% 60.77% 0.20% 70.36% 0.42% 50.29% 0.22% 53.22% 0.57% 56.35% 0.25% 64.76% 0.46% 

Kristen and Sara 51.59% 0.18% 54.68% 0.37% 58.30% 0.32% 66.11% 0.39% 46.79% 0.04% 47.69% 0.26% 52.48% 0.11% 58.39% 0.33% 

Class F 

China Speed 21.78% 0.75% 20.65% 0.66% 25.42% 0.74% 31.37% 0.47% 22.35% 0.37% 22.87% 0.46% 26.10% 0.42% 30.34% 0.46% 

Slide Editing 54.98% 0.04% 56.43% 0.08% 61.26% 0.06% 67.34% 0.06% 54.94% 0.19% 56.98% 0.41% 61.29% 0.23% 69.11% 0.20% 

Slideshow 22.77% -0.75% 22.37% -0.28% 26.22% -0.21% 25.31% -0.65% 20.72% 0.10% 21.24% 0.42% 22.90% 0.16% 18.75% 1.01% 

Average 34.81% 0.29% 36.83% 0.41% 39.17% 0.36% 48.15% 0.43% 32.47% 0.31% 34.49% 0.50% 36.42% 0.37% 43.01% 0.61% 

All Average 33.64% 0.30% 35.66% 0.46% 37.80% 0.37% 45.58% 0.52% 

 



 
BD-BR performance and saved 4.16% of the RDO time. For 

all of the ZB detection (both GZB and PZB), the proposed 

method obtained similar BD-BR performance and saved 9.92% 

of the RDO time. Table VI compares the FNR (false negative 

rate) and FPR (false positive rate) of ZB detection of these two 

methods. The FNR and FPR are the average values over all 

sequences and QP values. The „Distance‟ column provides the 

Euler distance between (FNR, FPR) and (0, 0), to measure the 

overall detection performance. The smaller the „Distance‟ is, 

the better detection performance that can be obtained. The 

FNR of our method is much lower than that of [16] for all TU 

sizes, especially for 16×16 and 32×32, which means that more 

PZBs are detected by our method. Although the FPR of our 

method is a little larger than the method in [16], the BD-BR 

performances of the two methods are still similar. Since for 

most of the non-ZBs being incorrectly detected as ZBs, the 

         and             of them are very similar and these 

blocks caused very little BD-BR performance loss. As shown 

in Table VI, the „Distance‟ of our method is much smaller 

than the method in [16]. 

IV. CONCLUSIONS 

There are two main technical contributions in our method. 

First, we introduce an additional lower bound of SAD to 

further decrease the computational complexity of GZB 

detection. Second, we propose a fast RD cost estimation for 

HEVC to detect PZBs, which considerably improves the PZB 

detection performance. Experimental results show that our 

proposed method is faster than other state-of-the-art methods 

with similar BD-BR performance from 10% to 30%.  
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