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Abstract Visual saliency is a useful cue to locate the
conspicuous image content. To estimate saliency, many
approaches have been proposed to detect the unique

or rare visual stimuli. However, such bottom-up solu-
tions are often insufficient since the prior knowledge,
which often indicates a biased selectivity on the in-

put stimuli, is not taken into account. To solve this
problem, this paper presents a novel approach to esti-
mate image saliency by learning the prior knowledge.

In our approach, the influences of the visual stimuli
and the prior knowledge are jointly incorporated into
a Bayesian framework. In this framework, the bottom-

up saliency is calculated to pop-out the visual subsets
that are probably salient, while the prior knowledge is
used to recover the wrongly suppressed targets and in-

hibit the improperly popped-out distractors. Compared
with existing approaches, the prior knowledge used in
our approach, including the foreground prior and the

correlation prior, is statistically learned from 9.6 mil-
lion images in an unsupervised manner. Experimental
results on two public benchmarks show that such sta-

tistical priors are effective to modulate the bottom-up
saliency to achieve impressive improvements when com-
pared with 10 state-of-the-art methods.
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1 Introduction

Visual saliency estimation, which aims to detect the
important content in images and videos, has become a

popular research topic in recent years. In most cases,
the salient stimuli have the capability to easily cap-
ture human visual attention and thus become interest-

ing (Elazary and Itti 2008). By focusing on the salient
content in images and videos, applications such as video
retargeting, content-based advertising and image/video

retrieval can generate results that can better meet hu-
man perception.

In existing studies on visual saliency estimation, rar-
ity is a frequently-used criterion to quantify saliency.

Usually, the unique or rare visual subsets are supposed
to be salient. For example, Itti et al (1998) proposed a
classical framework to estimate visual saliency by cal-

culating the center-surround contrasts. Visual signals
might become salient only if they could differ from their
neighbors in multiple scales. Harel et al (2006) rep-

resented an image as a graph and adopted a random
walker to detect the salient signals that were related to
the less visited nodes. In (Riche et al 2012), saliency was

estimated by detecting locally contrasted and globally
rare features. Generally, these approaches can generate
promising results but may have a severe problem since

saliency is not equivalent to rarity. Although it is of-
ten safe to assume that salient signals are rare, the op-
posite assumption will not always hold since some back-

ground distractors may also become rare, either locally
or globally (as shown in Fig. 1(a)-(b), some distractors
are also rare and will be popped-out in the competi-

tion). Moreover, existing computing methodologies on
rarity still have some drawbacks (e.g., computing local
contrasts in improper scales) and some salient targets

may be wrongly suppressed (as shown in Fig. 1(c)-(d),
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only the borders of the large salient targets can pop-out

while their inner smooth parts are wrongly suppressed).
Therefore, one of the most important problem in vi-
sual saliency estimation is to recover the wrongly

suppressed targets and inhibit the improperly
popped-out distractors.

To solve this problem, incorporating the prior knowl-
edge could probably be a feasible solution. Actually,
the prior knowledge can bias the competition between

the input visual signals by favoring a specific category
of visual stimuli (Frith 2005). In this process, such bi-
ased selectivity can help to pop-out the real targets
and suppress the real distractors. For example, Cerf

et al (2008) assigned high saliency values to human
faces, while Meur et al (2006) proposed that visual
stimuli around image centers should be emphasized.

Beyond these predefined priors, some supervised ap-
proaches such as (Li et al 2010; Zhao and Koch 2012)
tried to learn the feature prior, while (Torralba et al

2006; Chikkerur et al 2010) proposed to learn the task-
dependent prior that can be integrated into the Bayesian
framework to pop-out the objects corresponding to spe-

cific search or recognition tasks. However, the priors
learned from a limited number of images usually have
the over-fitting risk, while the task related priors pre-

vent their further usage in generic scenarios. To sum
up, effective and robust prior knowledge is inevitable
for visual saliency estimation.

Following this idea, we propose a novel Bayesian
approach for image saliency estimation by jointly cap-

turing the influences of the input visual stimuli and
the prior knowledge unsupervisedly learned from mil-
lions of images. In particular, we focus on estimating

saliency under free-viewing conditions and the learned
prior knowledge is task-independent. As shown in Fig. 2,
our approach first calculates the bottom-up saliency by

only considering the unbiased competitions between vi-
sual signals. After that, the bottom-up saliency is mod-
ulated by the prior knowledge statistically learned from

millions of images. In particular, the foreground prior is
learned by inferring the spatial distributions of all kinds
of image patches, and can be used to identify whether

an image patch belongs to foreground. The correlation
prior is learned by mining the patch co-occurrence char-
acteristics, which can be used to model the mutual in-

fluence between different image patches. These two pri-
ors are then used to bias the competition between visual
signals by recovering the wrongly suppressed targets

and inhibiting the improperly popped-out distractors.
Finally, the estimated saliency maps can be improved
by simultaneously using the cues from the visual signal

and the prior knowledge.

Fig. 1 Examples of wrongly suppressed targets and improp-
erly popped-out distractors. Images in the first row are se-
lected from the benchmark proposed by Li et al (2013). The
second row presents the fixation density maps from 21 sub-
jects and the third row illustrates the saliency maps calcu-
lated using the classical model proposed by Itti et al (1998).
(a)-(b) background distractors may be also rare and will be
popped-out in the unbiased competition; (c)-(d) only the bor-
ders of the large salient targets can pop-out while their inner
smooth parts are wrongly suppressed.

In the experiments, we compare our approach with
10 state-of-the-art approaches, including (Itti et al 1998;
Bruce and Tsotsos 2006; Harel et al 2006; Hou and

Zhang 2007, 2008; Zhang et al 2008; Achanta et al 2009;
Wang et al 2010; Goferman et al 2010; Riche et al 2012).
Experimental results on two public image benchmarks

show that the learned statistical priors can effectively
modulate the bottom-up saliency to better predict hu-
man fixations. Consequently, our approach achieves im-

pressive improvements and demonstrates several advan-
tages in utilizing the prior knowledge. Our main con-
tributions are summarized as follows:

1. Two kinds of prior knowledge, including the fore-
ground prior and the correlation prior, are presented
for estimating saliency in the free-viewing scenario.

By modeling both the spatial distributions and cor-
relations of various visual stimuli, such priors can
well adapt to various scenes in recovering the wrongly

suppressed targets and inhibiting the improperly
popped-out distractors.

2. We propose an effective learning algorithm to learn

the prior knowledge from millions of images in an
unsupervised manner. Such prior knowledge, which
is learned from huge amounts of images, is statisti-

cally significant and avoids the over-fitting risk.
3. A Bayesian framework is proposed to jointly cap-

ture the influences of the visual stimuli and the

prior knowledge for visual saliency estimation. Ex-
perimental results show that this framework is effec-
tive to modulate any kinds of bottom-up saliency to

better predict human fixations.
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Fig. 2 The system framework of our approach. In this framework, the bottom-up saliency is first calculated using any existing
stimulus-driven saliency model. After that, the top-down component will modulate the bottom-up saliency with the priors that
are statistically learned from massive unlabeled images. In this process, the foreground prior is learned to evaluate whether a
patch belongs to foreground, and background patches will be suppressed. Meanwhile, the correlation prior is learned to reveal
the correlations between patches. Using the correlation prior, patches which have strong latent correlations with bottom-up
salient patches are selectively enhanced, while irrelevant patches will be ignored. Finally, the saliency maps obtained from
foreground and correlation priors are combined to generate the final saliency map.

The rest of this paper is organized as follows: Sec-
tion 2 reviews the related work and Section 3 states
the problems that should be solved. In Section 4, we

describe the details of our approach in visual saliency
estimation. Experimental results are presented in Sec-
tion 5 and the paper is concluded in Section 6.

2 Related Work

In the past decades, many approaches have been pro-
posed to estimate image/video saliency, segment salient
objects, explore the neurobiological evidences, etc. In

this survey, we will mainly focus on the computational
approaches on image saliency estimation.

2.1 The Bottom-up Approaches

In the bottom-up approaches, visual signals will com-
pete fairly to pop-out. Inspired by this idea, existing

bottom-up approaches often aim to detect the unique
or rare visual subsets which are supposed to be the win-
ner in the unbiased competition. Therefore, the main

difference between these approaches lies in the way to
quantify such visual rarity.

The most popular way to quantify rarity is to calcu-
late the difference between various visual subsets. For

example, Itti et al (1998) proposed a classical frame-
work in which high saliency values were assigned to
the visual subsets with high center-surround contrasts.

Riche et al (2012) assumed that locally contrasted and

globally rare features were salient and adopted a se-
quential framework to extract various features and es-
timate visual saliency. In (Achanta et al 2009), im-

age saliency was determined by the difference between
Gaussian blurred features and mean image features,
while Vikram et al (2012) estimated image saliency by

integrating the local differences over random rectan-
gular regions. Generally, the difference-based approach
can pop-out most of the rare targets (i.e., the recall can

be relatively high). However, the simple difference cal-
culation often fails to recognize the distractors which
may be also rare (i.e., the precision may be low).

Instead of calculating the difference between various

visual stimuli, some approaches adopted intuitive defi-
nitions on rarity. For instance, Lu et al (2011) proposed
that regions on the convex side of curved boundaries

were probably salient and detected salient targets by
using such concavity contexts. In (Harel et al 2006), an
image was first represented by a weighted graph and a

random walker was then adopted to pop-out the visual
subsets corresponding to the less visited nodes. Hou and
Zhang (2007) proposed an approach to estimate visual

saliency by calculating the spectral residuals using the
Fourier transform. Visual irregularities were first de-
tected in the transform domain, which were then trans-

formed back to the spatial domain to locate the salient
targets.

Generally speaking, the bottom-up approaches can

work well in many cases. As mentioned above, how-
ever, visual rarity is not equivalent to visual saliency.
Some background distractors may be wrongly popped-

out and some foreground targets may be wrongly sup-
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pressed when using improper features, scales and com-

puting methods to quantify visual rarity. If the input
visual signals are fairly treated without any bias, these
fake targets (i.e., the wrongly popped-out distractors)

and false distractors (i.e., the wrongly suppressed tar-
gets) will be inevitable in the estimated saliency maps.

2.2 The Knowledge-based Approaches

To solve the problems in existing bottom-up approaches,

incorporating the prior knowledge into visual saliency
estimation could probably be a feasible solution. Actu-
ally, the prior knowledge can often bias the competition

between visual signals by favoring a specific category of
visual stimuli (Frith 2005). According to the ways that
the prior knowledge is obtained, existing knowledge-

based approaches can be divided into three groups: ad-
hoc group, learning-based group and statistical group.

The approaches in the ad-hoc group aim to bias

the competition between various visual signals by us-
ing the predefined prior knowledge. For instance, Cerf
et al (2008) and Goferman et al (2010) assumed that

faces were inherently salient. In their approaches, hu-
man faces were detected with the face detection algo-
rithms and high saliency values were directly assigned

to the related visual signals. By observing that subjects
often stared at the center of the scene to start the eye-
tracking experiments, Meur et al (2006) adopted such

center-bias as the predefined prior to enhance patches
near to image centers with an anisotropic Gaussian.
Some approaches such as (Cheng et al 2011; Aziz and

Mertsching 2008; Liu et al 2007a) proposed that saliency
values should be assigned to objects, instead of spatial
locations. The latent assumption was that the input vi-

sual signals were inherently correlated and such signals
should be treated as a whole in the competition. Conse-
quently, the manually fine-tuned parameters were used

as the prior knowledge to group different visual signals
into objects (or super-pixels). Often, these approaches
can work well on simple images. However, they may

have difficulties to process images with rich contents
since it is usually difficult to obtain the required cues
from the complex scenes (e.g., segment all the objects

with one set of predefined parameters, detecting the
side faces, etc.).

Instead of using the predefined priors, the approaches

in the learning-based group aim to learn the prior knowl-
edge in a supervised manner. They often try to learn the
optimal “stimuli-saliency” mapping models, which can

emphasize the effective feature channels (e.g., with high
weights) and inhibit the useless feature channels (e.g.,
with low weights). For instance, Kienzle et al (2007)

adopted a Support Vector Machine (SVM) to model

the correlations between high-dimensional features and

visual saliency values, while Judd et al (2009) also uti-
lized the SVM with linear kernels to optimize the map-
ping from low-level, mid-level and high-level features to

visual saliency. Similarly, Zhao and Koch (2011) and Li
et al (2010) proposed to model such “stimuli-saliency”
mapping by using linear functions which were optimized

by least square algorithm or quadratic programming. In
(Liu et al 2007b), several novel features were proposed
and the Conditional Random Field (CRF) was adopted

to combine these features for salient object detection.
In (Navalpakkam and Itti 2007), the weights of various
visual feature channels were optimized by maximizing

the signal-noise-ratio. Instead of optimizing the weights
for various feature channels, Peters and Itti (2007) tried
to learn a direct mapping from the global feature ma-

trix to the fixation density map. Zhao and Koch (2012)
first established a feature pool with 88 features and
the AdaBoost algorithm was then adopted to train a
set of weak classifiers by iteratively training weak clas-

sifier, estimating classifier weight and updating sam-
ple weights. These weak classifiers were then combined
to build the saliency model. Beyond the models that

mainly focus on estimating saliency in free-viewing con-
ditions, Torralba et al (2006) proposed a Bayesian ap-
proach to estimate task-dependent saliency. In their ap-

proach, the global scene context served as a cue to re-
veal the probable locations to search specific targets
(e.g., searching painting, mug and people). By learn-

ing the relationship between global features and tar-
get locations, the bottom-up saliency can be modulated
to adapt to various search tasks. Similarly, Chikkerur

et al (2010) learned both the feature and location priors
about specific object categories. These priors were then
integrated with the bottom-up factors using a Bayesian

inference framework to pop-out the objects correspond-
ing to specific search or recognition tasks.

Generally speaking, these learning-based approaches
can demonstrate promising performance on small bench-
marks. The parameters trained and fine-tuned on part

of the benchmark can usually achieve high performance
on the rest of the benchmark. However, the most se-
vere drawback of these approaches is that they require

the supervised learning process. In this process, all the
training data should be labeled with eye tracking de-
vices or manual labeling activities, which is really time-

consuming. Consequently, existing benchmarks are usu-
ally very small (with only hundreds or thousands of
images), which is far from sufficient to cover all possi-

ble cases. Therefore, the trained models often have the
over-fitting risk. For instance, the model trained on a
limited number of images can bias to specific feature

channels and locations to generate promising results on
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similar testing scenes, but such model may fail when

encountering unknown scenes. That also hampers the
further usage of these learning-based models in actual
applications.

To avoid the over-fitting risk, the approaches in the

statistical group try to learn the prior knowledge from
massive images in an unsupervised manner. For these
approaches, a common process is to train a set of vi-

sual words (or namely the independent components,
basis functions, sparse codes, dictionaries, etc.) from
massive image statistics (Bruce and Tsotsos 2006; Hou

and Zhang 2008; Zhang et al 2008; Wang et al 2010;
Borji and Itti 2012; Yang and Yang 2012; Sun et al
2012). Image patches are then projected to these vi-
sual words to get more compact visual representations.

By representing image patches with the projection co-
efficients, Bruce and Tsotsos (2006) estimated visual
saliency by maximizing the information sampled from

a scene, while Hou and Zhang (2008) proposed the In-
cremental Coding Length (ICL), which was used as the
criterion to redistribute the limited energy (saliency)

amongst features. Borji and Itti (2012) proposed an ap-
proach to estimate visual saliency by using the projec-
tion coefficients to quantify the local center-surround

difference and the global rarity. In (Wang et al 2010), a
set of sub-band feature maps were first extracted using
the learned sparse codes. These feature maps were then

represented as fully-connected graphs, on which ran-
dom walkers were used and visual saliency was defined
by the average information transmitted during the ran-

dom walk. Different from these approaches, Yang and
Yang (2012) proposed a novel algorithm for learning
the visual words. In their approach, the visual words

were treated as the latent variables of CRF. By jointly
learning the CRF and the dictionary, the overall perfor-
mance was greatly improved and the estimated saliency

maps were much clear.

To sum up, the latent assumption in these statis-
tical approaches is that foreground targets and back-
ground distractors are more distinguishable in the new

subspace formed by the learned visual words. These vi-
sual words, which are often learned unsupervisedly from
thousands of images, can be viewed as some kinds of

prior knowledge. However, these approaches still have
the same problem as the bottom-up approaches since
the visual subsets are also equally treated in the new

subspace and no bias is applied. By projecting the im-
age patches onto the new subspace, the problem of
wrongly suppressing targets and improperly popping-

out distractors can be mitigated but remains unsolved.
Moreover, these statistical approaches also failed to con-
sider the influence of the latent correlations between

various visual stimuli. Actually, inherently correlated

stimuli can usually excite each other to become salient,

while irrelevant stimuli may compete to inhibit each
other. Without modeling the prior knowledge on such
latent correlations, it is often difficult to perfectly pro-

cess the scenes with massive objects. Therefore, it is
necessary to unsupervisedly learn the biased prior knowl-
edge such as the foreground prior and the correlation

prior to adaptively process different visual stimuli when
considering their mutual correlations.

3 Problem Statement

To estimate visual saliency, one of the most important
problem is to simultaneously model the influences of

the visual stimuli and the prior knowledge. In human
vision system, various visual stimuli will compete to
become salient, while the prior knowledge may bias the

competition in two ways: recovering the foreground tar-
gets that are wrongly suppressed and inhibiting the
background distractors that are improperly popped-

out. Following this idea, we propose a Bayesian frame-
work to jointly capture the influences of the visual stim-
uli and the prior knowledge. In this framework, we fo-

cus on modulating the visual saliency acquired through
bottom-up competition with various top-down priors.
Let sn be the event that an image patch Bn (e.g., 8×8

macro blocks) pops-out after the bottom-up competi-
tion and rn be the event that Bn becomes salient after
the top-down modulation, we can assume that:

P (rn) =
M∑

m=1

P (sm)P (rn|sm)

= P (sn)P (rn|sn) +
M∑

m̸=n

P (sm)P (rn|sm).

(1)

where M is the total number of patches in the same
image. From (1), we can see that the problem of esti-
mating P (rn) can be divided into three sub-problems:

1. Estimating P (sn), which is the probability that Bn

pops-out in the bottom-up competition between the

input visual stimuli;
2. Estimating P (rn|sn), which is the probability that

Bn becomes salient after the top-down modulation

if it already pops-out in the bottom-up competition
(as shown in Fig. 3(a)); and

3. Estimating P (rn|sm), which is the probability that

Bn becomes salient after the top-down modulation if
another patch Bm pops-out in the bottom-up com-
petition (as shown in Fig. 3(b)).

Among all these three sub-problems, the first one
has been well studied in the past decades and there al-

ready exist many feasible solutions to this sub-problem
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Fig. 3 Problem statement. Note that sn is the event that
Bn pops-out after the bottom-up competition and rn is the
event that Bn becomes salient after the top-down modulation.
Here we incorporate the top-down priors to solve two prob-
lems: (a) whether Bn can become salient after the top-down
modulation when only considering its bottom-up saliency;
(b) whether Bn can become salient after the top-down mod-
ulation when only considering the bottom-up saliency of Bm.

(e.g., Itti et al (1998); Bruce and Tsotsos (2006); Harel

et al (2006); Hou and Zhang (2007); Parikh et al (2008)).
Here we denote the estimated bottom-up saliency as
Sb(n) for a patch Bn and thus can assume:

P (sn) ∝ Sb(n). (2)

In the following study, we will mainly focus on the
last two sub-problems and the main difficulty is to mod-
ulate bottom-up saliency using various kinds of prior

knowledge. In this process, only the appearances and
locations of the patches are available. Therefore, the
prior knowledge related to visual attributes and

positional information could probably be an effec-
tive key to solve the proposed two sub-problems.

4 Saliency with Statistical Priors

In this section, we will address the proposed two sub-
problems and modulate the bottom-up saliency with
the learned top-down priors. First, we investigate what

kinds of prior knowledge should be learned. After that,
we describe the details on how to learn the required
prior knowledge through massive image statistics. Fi-

nally, we present how to estimate visual saliency using
the learned priors.

4.1 What to Learn?

Generally speaking, there are numerous kinds of prior
knowledge and it is impossible to learn all of them. Ac-
cording to the problems stated in Fig. 3, we have to

learn the prior knowledge that demonstrates a biased
selectivity on the visual attributes and positional in-
formation, which are the only cues in conducting the

top-down modulation. Therefore, we will mainly focus

on two kinds of prior knowledge, including the fore-

ground prior and the correlation prior. The fore-
ground prior aims to identify whether an image patch
belongs to foreground using its visual attributes and po-

sitional information. This prior knowledge can be help-
ful to estimate P (rn|sn). The correlation prior aims to
model the mutual correlations between image patches.

This prior knowledge can be helpful to estimate P (rn|sm)
by taking the correlation between image patches into
account. With these two kinds of prior knowledge, bottom-

up saliency can be modulated to recover the wrongly
suppressed targets and inhibit the improperly popped-
out distractors.

In order to learn such prior knowledge and ensure

the learned priors are statistically significant, we col-
lect 9.6 million images that are randomly crawled from
Flicker. Each image is resized to have a max side length

of no more than 320 pixels while keeping the width-to-
height ratio. Each image is then divided into a set of
non-overlapping 8×8 patches, and each patch is charac-

terized by its preattentive features (Wolfe 2005). That
is, we represent a pixel υ in an image patch Bn by its
intensity Iυ, red-green opponency RGυ, blue-yellow op-

ponency BYυ and four orientation features {Oθ
υ}, θ ∈

{0◦, 45◦, 90◦, 135◦}. The intensity and color opponen-
cies can be calculated as:

Iυ =
rυ + gυ + bυ

3
,

RGυ =
rυ − gυ

max(rυ, gυ, bυ)
,

BYυ =
bυ −min(rυ, gυ)

max(rυ, gυ, bυ)
,

(3)

where rυ, gυ, bυ are the red, green and blue components

for pixel υ, respectively. Here the red-green and blue-
yellow opponencies are calculated as in (Walther and
Koch 2006), which will be set to zero if max(rυ, gυ, bυ) <

0.1 to avoid large fluctuations at low luminance.

The orientation featureOθ
υ can be calculated by con-

volving Iυ with Gabor filters:

Oθ
υ =∥ Iυ ∗G0(θ) ∥ + ∥ Iυ ∗Gπ/2(θ) ∥ , (4)

where G0(θ) and Gπ/2(θ) are two Gabor filters oriented

at θ with phase 0 and π/2, respectively. After calculat-
ing these features for all pixels in Bn, we further quan-
tize each feature into 4 bins to acquire 7 histograms

from an image patch Bn. Finally, each patch is charac-
terized by a feature vector with 7×4=28 components
with the same dynamic range of [0,1].

From 9.6 million images, we can obtain billions of
image patches (i.e., billions of 28d feature vectors). To
efficiently learn prior knowledge from such a huge num-

ber of image patches, we have to further reduce the
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feature dimension to obtain a more compact patch rep-

resentation. Toward this end, a feasible solution could
be generating a set of visual words by performing k-
means clustering on all the image patches and represent

each patch with the nearest visual word. However, it is
very difficult to directly perform the k-means cluster-
ing on billions of image patches due to the limitation

of computational resource. Therefore, we use the affin-
ity propagation algorithm proposed in (Frey and Dueck
2007) to select a set of representative patches (i.e., ex-

emplars) from each image. In this process, the number
of exemplars is automatically determined according to
the complexity of image content. Since such exemplars

are much fewer than the original patches, we can per-
form k-means clustering on their feature vectors to form
a vocabulary of Nw visual words, denoted as {wi}Nw

i=1

(in the experiments, we will show the influence of Nw).
With these visual words, each patch can be quantized
to the nearest visual word using the Euclidian distance
measure. Finally, we can represent a patch Bn with only

one integer label ln ∈ {1, ..., Nw}.

4.2 Learning the Foreground Prior

To calculate the foreground prior, we simply count the

times that a visual word wi appears at any probable
locations. After that, we can get Nw distribution maps
{Di}Nw

i=1, which are then normalized to let the location

with the highest frequency corresponds to 1. Some rep-
resentative visual words and their distribution maps are
shown in Fig. 4.

From Fig. 4, we can see that many visual words
demonstrate center-biased distributions, while several
visual words distribute around image edges. Since peo-

ple often snap photos by intentionally placing the tar-
gets near to image centers (i.e., the photographer bias
in Tseng et al (2009)), foreground targets often appear

around image centers while background distractors usu-
ally appear near to image edges (as shown in Fig. 5).
Therefore, we can safely assume that visual words

have higher probabilities to appear in the fore-
ground than in the background if they distribute
around image centers.

Following this assumption, we can use the distri-
bution maps as the foreground criterion. As shown in
Fig. 6(a), we divide a distribution map Di into two re-

gions with equivalent area and use Ωi to quantify its
center-bias property as the percentage of energy in the
“center” region. From Fig. 6(b), we can see that the

quantified center-bias properties are high on many dis-
tribution maps, while some maps are obviously edge-
biased. Thus the corresponding patches can be treated

as distractors and should be suppressed.

Fig. 4 Some representative visual words and their distri-
bution maps learned from millions of images. Many maps
demonstrate the strong center-bias property, while several
maps are obviously edge-biased. These maps may contain
cues to evaluate whether a patch belongs to foreground and
thus can be used as the prior knowledge in visual saliency
estimation.

Fig. 5 The distribution maps of typical background patches.
Salient targets are often intentionally placed near to image
centers by photographers while background patches often dis-
tribute around the edges. These three visual words and dis-
tribution maps correspond to the last three samples from the
first row in Fig. 4.

Given the quantified center-bias property of each vi-
sual word, we can infer the probability that an image
patch belongs to foreground using its visual attributes

and positional information. Suppose that Bn is classi-
fied to the visual word wln and let fn be the event that
Bn is a foreground patch, we can estimate P (fn) as:

P (fn) ∝ [Ωln ≥ 0.5]I · Dln(n), (5)

where [Ωln ≥ 0.5]I equals to 1 if Ωln ≥ 0.5 and 0 oth-

erwise. Dln(n) indicates the frequency that the visual
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Fig. 6 Quantified Center-biased Property. (a) a distribution
map is divided into two regions with equivalent area and the
center-bias property Ωi is quantified as the percentage of en-
ergy in the “center” area. (b) the histogram of the quanti-

fied center-bias properties {Ωi}Nw

i=1 of the distribution maps.
Without loss of generality, we use 32 and 1024 visual words.

word wln appears at the location of Bn. From (5), we
can see that the probability that Bn belongs to fore-
ground could become high if: 1) wln distributes around

image centers (i.e., Ωln ≥ 0.5) and thus has a higher
probability to appear in the foreground than in the
background; and 2) Bn appears at recurring locations

that a probable foreground visual word wln can be fre-
quently observed in millions of images.

4.3 Learning the Correlation Prior

The objective of learning the correlation prior is to

model the mutual influence between any two patches.
Generally speaking, there exist two kinds of typical mu-
tual influences: 1) if two image patches Bm and Bn are

correlated, they will probably excite each other. Once
we observe one patch, we may expect the other one;
2) on the contrary, irrelevant image patches will com-

pete to inhibit each other. Here we use Υmn to quantify
the correlation strength between two visual words wm

and wn. In calculating Υmn, two visual words that fre-

quently co-occur in the same images may be tightly cor-
related. That is, if we can observe one visual word, we
can expect another one with a high probability. More-

over, the probability of expecting wn when wm is ob-
served should be different from that of expecting wm

when wn is observed. For example, many images may

contain a common visual wordwn. When some other vi-
sual words in these images are observed, wn can be ex-
pected with high probabilities. However, we can hardly

expect other specific visual words when wn is observed.

Following this idea, we can estimate Υmn using mas-

sive image statistics. First, we count the frequency Fn

which indicates the total times that the visual word
wn appears in all the training images. Meanwhile, we

also count the frequency Fmn which represents the to-

Fig. 7 The histogram of quantified correlations {Υmn} be-
tween Nw=1024 visual words. We can see that most vi-
sual words demonstrate weak correlations, while some visual
words can demonstrate strong co-occurrence properties even
on millions of images.

tal times that two visual words wm and wn appear in
the same images (note that Fnn=Fn). After that, we

can calculate Υmn as:

Υmn =
Fmn

Fn
. (6)

From (6), we can see that Υmn is unequal to Υnm and

a higher co-occurrence frequency will lead to a stronger
correlation. Fig. 7 shows the histogram of such quan-
tified correlation strength between 1024 visual words.

We can see that most visual words have weak correla-
tions, while some visual words demonstrate strong co-
occurrence properties even in millions of images.

Given the quantified correlation strength between
visual words, we can infer the probability that one im-
age patch is tightly correlated with another patch using

their visual attributes and positional information. Sup-
pose that Bm and Bn are classified to visual words wlm

and wln and let omn be the event that Bn is correlated

to Bm, we can estimate P (omn) as:

P (omn) ∝ Υlmln · N (dmn; 0, σc), (7)

where N is the Gaussian distribution and σc is empiri-
cally set to 0.3 in this study. dmn is the distance between
Bm and Bn, which is normalized by the distance from

image corner to image center. The Gaussian term is
important to ensure that only the correlations between
the patches in a local area are considered to increase

the computational efficiency. From (7), we can see that
the probability that Bn is correlated to Bm will be high
if: 1) wlm and wln frequently co-occur in millions of

images; and 2) Bm and Bn are near to each other.

4.4 Visual Saliency with Statistical Priors

Given the learned foreground prior and correlation prior,
we can now turn to the two sub-problems proposed

above: how to estimate P (rn|sn) and P (rn|sm)?
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To estimate P (rn|sn), we have to first infer the fore-

ground prior P (fn) using (5) to see whether Bn is a
foreground patch. With the foreground prior, we can
rewrite P (rn|sn) as:

P (rn|sn) = P (fn)P (rn|sn, fn) + P (fn)P (rn|sn, fn). (8)

From (8), we can see that there are two probable
combinations of events sn and fn, including:

– sn and fn: Bn is a target that is correctly popped-
out by the bottom-up model.

– sn and fn: Bn is probably a distractor that is im-

properly popped-out by the bottom-up model.

When modulating the bottom-up saliency with the

foreground prior, we can maintain the correctly popped-
out targets and suppress the improperly popped-out
distractors by setting:

P (rn|sn, fn) ≈ 1, P (rn|sn, fn) = e−αb . (9)

where αb≥0 is a predefined constant to fuse the conflict
predictions made by the bottom-up saliency model and
the foreground prior. Smaller e−αb indicates the fore-

ground prior is more reliable (we will show the influence
of αb in the experiment). By incorporating (9) into (8),
we can estimate P (rn|sn) as:

P (rn|sn) = e−αb + (1− e−αb)P (fn), (10)

where the foreground prior P (fn) can be estimated us-
ing (5). From (10), we can see that the bottom-up
saliency can be selectively modulated by the foreground

prior. In this process, the real targets, which are pre-
dicted as salient by both the bottom-up saliency model
and foreground prior, will become salient. On the con-

trary, the distractors, which pop-out in the bottom-up
competition, will be suppressed if the foreground prior
classifies them as distractors.

To estimate P (rn|sm), we have to first infer the cor-
relation prior P (omn) to find whether Bn is tightly cor-

related with Bm. Inspired by this idea, we have:

P (rn|sm) =P (omn)P (rn|sm,omn)

+P (omn)P (rn|sm,omn).
(11)

From (11), we can also find two probable combina-
tions of events sn and omn, including:

– sm and omn: Bn is tightly correlated with a patch
that pops-out in the bottom-up competition. In this

case, Bn will be excited by Bm.
– sm and omn: Bn is irrelevant with a patch that pops-

out in the bottom-up competition. In this case, Bn

will be inhibited by Bm.

When modulating the bottom-up saliency with the

correlation prior, two tightly correlated patches will ex-
cite each other while irrelevant patches will inhibit each
other by setting:

P (rn|sm,omn) ≈ 1, P (rn|sm,omn) ≈ 0. (12)

By incorporating (12) into (11), we can thus esti-

mate P (rn|sm) as:

P (rn|sm) = P (omn), (13)

where the correlation prior P (omn) can be estimated

using (7). From (13), we can see that the wrongly sup-
pressed targets may become salient after the top-down
modulation if it is tightly correlated with the targets

that pop-out in the bottom-up competition. As shown
in Fig. 8, a patch that pops-out in the bottom-up com-
petition (e.g., the head and tail of the cow) can then

selectively enhance nearby patches with strong correla-
tions (e.g., the body of the cow) in the following top-
down modulation. In this manner, we can pop-out the

salient target as a whole, especially for those objects
with large smooth regions.

After estimating P (rn|sn) and P (rn|sm), the saliency
value of Bn after the top-down modulation, denoted as
Sr(n) ∝ P (rn), can thus be calculated by incorporating

(2), (10) and (13) into (1):

Sr(n) ∝ Sb(n) · (e−αb + (1− e−αb)P (fn))

+

M∑
m̸=n

Sb(m) · P (omn),
(14)

where P (fn) and P (omn) are foreground and correla-
tion priors that can be derived using (5) and (7), re-

spectively. To facilitate the computation of Sr(n), we
first obtain two saliency maps using the first and the
second terms in (14), respectively. These two saliency

maps are then normalized into the same range of [0,1]
and fused with equal weights.

Given a testing image, its saliency map can be easily
estimated through four major steps (as shown in Fig. 2):

1. Resize the image to have a max side length of no

more than 320 pixels and divided the image into
non-overlapping 8×8 patches;

2. Use any existing bottom-up model to estimate a

bottom-up saliency value for each patch;
3. Estimate the foreground and correlation priors us-

ing (5) and (7) and then use them to generate the

modulated saliency map using (14); and
4. Convolve the saliency map with a disk filter (with

the radius of 3) to fill in the “holes” generated by

applying inconsistent foreground priors on adjacent
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Fig. 8 The correlation prior can help to recover the wrongly suppressed targets and to pop-out large salient target as a whole.
Given an image (a), its bottom-up saliency map sometimes only pops-out the borders of the large salient target, while the inner
smooth parts are ignored. For example, the saliency map in (b) is calculated using the model in (Itti et al 1998), which mainly
pops-out the head and tail of the cow. To recover the wrongly suppressed targets (e.g., the inner smooth parts of the cow),
we first estimate the correlation strength between visual words. The map in (c) shows the correlation strength Υmn between
the patch marked in red and all the other patches. To increase the computational efficiency, we only consider the correlations
between nearby patches (e.g., patches in the red circle controlled by a Gaussian term). Finally, the border patch marked with
red, which successfully pops-out in the bottom-up competition, will help to recover the wrongly suppressed targets (i.e., large
P (sm) and P (rn|sm) will lead to large P (rn)).

patches in smooth regions. Then conduct an ex-

ponential operation S∗
r (n)=Sr(n)

3 to remove the
fuzzy background generated by using the additive
Bayesian formulation.

From these processes, we can see that our proposed

approach is biologically plausible since neurobiologi-
cal evidences show that the bottom-up factors in hu-
man vision system act faster than the top-down factors

(Wolfe et al 2000; Henderson 2003). Visual signals will
first compete fairly to generate the bottom-up saliency,
while a slower recall or recognition process is conducted

to load the related prior knowledge into the working
memory to bias the competition. In this process, the
bottom-up saliency maps are modulated by various top-

down priors to pop-out the real targets and suppress the
real distractors. Moreover, we can also see that our ap-
proach exhibits good generalization abilities and can be

easily extended. On one hand, we can plug any state-
of-the-art bottom-up saliency model into the proposed
framework, no matter how it detects saliency. On the

other hand, if we can learn more kinds of prior knowl-
edge (e.g., the task-dependent priors), we can easily in-
corporate them into our framework by calculating more

kinds of top-down saliency maps, leading to a more ac-
curate estimation of visual saliency.

5 Experiments

In this section, several experiments are conducted to
prove the effectiveness of our approach. The main ob-
jectives are two folds: 1) to evaluate whether the prior

knowledge is useful in estimating visual saliency and
2) to explore how the prior knowledge works in the
estimation processes. Toward this end, we adopt two

datasets in the experiments, including:

– Toronto-120. This popular dataset was first pro-

posed in (Bruce and Tsotsos 2006) and has been
used in many recent studies on visual saliency. It
contains 120 color images. On each image, the fixa-

tions from 20 different subjects were recorded under
the free-viewing conditions to reveal the locations of
the salient targets.

– MIT-1003. This dataset was provided by Judd et al
(2009). It consists of 1,003 images in total, most of
which are color images. The eye tracing data were

recorded from 15 subjects who free viewed these im-
ages. Compared with Toronto-120, this dataset is
more challenging since images in this dataset are

usually more complex and most of them contain a
lot of targets and distractors.

On these two datasets, we adopt 10 approaches for
comparison. All the source codes or executables can be
found on the Internet. These approaches can be roughly

categorized into two groups, including:

– BU Group. This group contains six bottom-up ap-
proaches, including CS1 (Itti et al 1998), GB (Harel
et al 2006), SR (Hou and Zhang 2007), FT (Achanta

et al 2009), CA2(Goferman et al 2010) and RA (Riche
et al 2012). These bottom-up approaches only uti-
lize the input visual signals to generate the bottom-

up saliency maps. By comparing our approach with
them, we wish to prove that incorporating the learned
statistical priors can improve the performance of vi-

sual saliency estimation by modulating bottom-up
saliency.

– STAT Group. This group contains four statisti-

cal approaches, including AIM (Bruce and Tsotsos

1 The “winner-take-all” competition is not used in CS.
2 The face detection component is not activated and here

we can treat CA as a bottom-up approach.
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2006), ICL (Hou and Zhang 2008), SUN (Zhang et al

2008) and SER (Wang et al 2010). These approaches
also utilize the statistical image priors. By com-
paring our approach with them, we wish to prove

that our framework is more effective in utilizing the
learned prior knowledge.

In the comparison, we use the Area Under the ROC

Curve (AUC) for performance evaluation. Since differ-
ent saliency models often generate saliency maps with
different resolutions, we resize all these saliency maps

to the original resolutions of the input images for fair
comparison. Suppose that the estimated saliency value
for each pixel is in [0,1], a saliency model can be treated

as a binary classifier by using all probable saliency val-
ues as the thresholds. On each threshold, a pixel can be
classified as “fixated” or “non-fixated” using its saliency

value. The classification results are then validated by
the eye fixations to obtain the numbers of true pos-
itives, true negatives, false positives and false nega-

tives. Consequently, we can calculate the True Positive
Rate (TPR) and the False Positive Rate (FPR) on each
threshold. Finally, the ROC curve can be built by plot-

ting all the (TPR, FPR) points and the Area Under the
ROC Curve can be used to quantify the performance
of the saliency model. A perfect saliency model corre-

sponds to an AUC of 1.0, while a random model will
have an AUC of 0.5.

When computing AUC, the central fixation and

salience bias is an important issue. That is, human
fixations are often biased to image centers while non-
fixated pixels usually distribute around image edges.

However, the different distributions of fixated and non-
fixated pixels often lead to unfair comparisons by fa-
voring the saliency models that mainly emphasize the

targets around image centers (e.g., using center-bias re-
weighting) or ignore distractors near to image borders
(e.g., using border cut). Inspired by the approach used

in (Tatler et al 2005), we randomly re-sample the non-
fixated pixels according to the distribution of fixations
on all the images in the same benchmark. In the re-

sampling process, we mainly refer to the fixation density
maps that are usually generated by summing up a set
of 2D Gaussians centered at each fixation point. For the

sake of simplicity, we assume that each pixel in the fix-
ation density map is assigned a score between [0, 1]. As
shown in Fig. 9, we only re-sample the non-fixated pix-

els from those with scores lower than 0.05. In this man-
ner, we can avoid possible ambiguities such as simul-
taneously selecting fixated and non-fixated pixels from

the same object. For these candidate pixels, we gener-
ate a reference map by summing up all the fixation den-
sity maps from all the images in the same benchmark

to guide the re-sampling process. Note that different

benchmarks may have different reference maps due to

different experimental settings (e.g., viewing distance,
angle and image/screen resolution). A non-fixated pixel
will be selected with high probability if the correspond-

ing pixel in the reference map has a high score. Finally,
only the selected non-fixated pixels, which are also bi-
ased to image centers, will be used for performance eval-

uation.
Actually, the proposed re-sampling strategy is quite

reasonable, making the comparisons much fairer than

using unbiased re-sampling. For instance, Judd et al
(2009) randomly selected 10 fixated and 10 non-fixated
pixels from the top 20% and the bottom 70% salient

pixels on 100 images of MIT-1003. They further di-
vided each image into center region and peripheral re-
gion, while the center region lies in a circle around

image center whose radius equals to 42% of the dis-
tance from image center to image corner. After the divi-
sion, the center region contains 78.8% fixated pixels and

24.5% non-fixated pixels, while the numbers change to
21.2% and 75.5% in the peripheral region, respectively.
In this case, a model that simply emphasizes the center
region will pop-out most of the fixated pixels and sup-

press most of the non-fixated pixels, leading to unfair
comparisons. To address this problem, we re-sample the
non-fixated pixels according to fixation density maps.

After the re-sampling, the center region contains 71.0%
fixated pixels and 64.1% non-fixated pixels, while the
numbers change to 29.0% and 35.9% in the peripheral

region, respectively. When the ratios of fixated and non-
fixated pixels are comparable in each region, emphasiz-
ing only the center region will no-longer obtain much

gain, making the comparisons much fairer.
Moreover, there are usually two ways to evaluate the

overall performance on multiple images: 1) calculate the

AUC score on each image first and then compute the
mean and standard deviation of all the AUC scores;
and 2) summing up the numbers of true positives, true

negatives, false positives and false negatives on all im-
ages and generate a unique ROC curve, leading to a
unique AUC score. Both ways can make sense and we

will adopt the first way in the following experiments.

5.1 Whether It Works

In the first experiment, the main objective is to see

whether our approach can really work. Toward this end,
we adopt 6 bottom-up models to see whether the prior
knowledge learned by our approach is effective to mod-

ulate the bottom-up saliency. In this process, we use 32
visual words and set e−αb≈ 0 (the influences of these
parameters will be discussed in other experiments). We

also compare the modulated saliency maps with those
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Fig. 9 Non-fixated pixels are re-sampled for fair comparison. In the re-sampling process, only the non-fixated pixels that
are away from the fixated ones will be used as candidates to avoid possible ambiguities (i.e., pixels in the fixation density
maps should have scores less than 0.05). Moreover, these non-fixated pixels are re-sampled with respect to a reference map
generated by summing up all fixation density maps in the same benchmark. In this manner, most non-fixated pixels around
image borders are ignored to avoid favoring saliency models that emphasize targets near image centers (e.g., using center-bias
re-weighting) or ignore distractors around image borders (e.g., using border cut).

Table 1 Performance of various approaches on the two image
benchmarks. The OUR Group illustrates the AUC scores
of our approach when modulating the bottom-up saliency
maps generated by different models.

Approaches Toronto-120 MIT-1003
CS 0.731 ± 0.123 0.678 ± 0.134
GB 0.762 ± 0.134 0.700 ± 0.152

BU SR 0.763 ± 0.122 0.693 ± 0.142
Group FT 0.575 ± 0.126 0.554 ± 0.130

CA 0.797 ± 0.100 0.713 ± 0.140
RA 0.821 ± 0.090 0.722 ± 0.135
AIM 0.758 ± 0.109 0.700 ± 0.123

STAT ICL 0.787 ± 0.112 0.708 ± 0.153
Group SUN 0.705 ± 0.129 0.667 ± 0.136

SER 0.786 ± 0.113 0.704 ± 0.152
Our+CS 0.794 ± 0.118 0.714 ± 0.143
Our+GB 0.804 ± 0.122 0.710 ± 0.153

OUR Our+SR 0.797 ± 0.112 0.706 ± 0.148
Group Our+FT 0.710 ± 0.148 0.637 ± 0.168

Our+CA 0.816 ± 0.102 0.725 ± 0.140
Our+RA 0.834 ± 0.086 0.738 ± 0.13

maps generated by 4 approaches in the statistical group
to see whether our framework can utilize the learned

prior knowledge in a more effective manner. The AUC
scores are shown in Table. 1. Some representative ex-
amples are illustrated in Fig. 10. Note that the fixation

density maps are generated by filtering the pixel-wise
fixation maps using a Gaussian kernel to account for
inaccurate tracking results and the decreasing visual

accuracy with increasing eccentricity from the fovea.

From Table. 1, we can see that the priors learned
by our approach can improve the saliency maps gen-
erated by all the 6 bottom-up approaches. No mat-

ter how the bottom-up competitions are conducted in

these approaches, our learned prior knowledge can ef-

fectively recover the wrongly suppressed targets and in-
hibit the improperly popped-out distractors. As shown
in Fig. 10, a salient patch will selectively excite the

tightly correlated patches using the correlation prior,
while the distractors, especially the common background
patches, can be effectively suppressed by using the fore-

ground prior. In traditional bottom-up models, high
saliency values are usually assigned to unique or rare vi-
sual subsets. However, the assumption that visual rarity

corresponds to high saliency may not always hold since
the background patches can sometimes become unique
or rare (e.g., the building in Fig. 10(b) and Fig. 10(d)).

These patches, which are already very familiar to the
subjects, will be easily ignored. However, the bottom-
up approaches will equally treat all the input signals

since they have no prior knowledge on what the patch
is. In our approach, we find that such common distrac-
tors often distribute around image edges. Therefore, we

learn the distribution maps and quantify their center-
bias properties to determine whether a patch is a com-
mon background patch or not. Then these patches will

be effectively recognized and suppressed.

From Table 1, we can also see that the modulated
saliency maps from CS, GB, SR, CA and RA can bet-

ter predict human fixations than those saliency maps
generated by another four approaches in the statistical
group. This is mainly due to two reasons. First, most

of the parameters used in our approach (e.g., the visual
words, foreground and correlation priors) are learned
from millions of images. Therefore, our approach can

well handle the outliers. Second, we have adopted an
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Fig. 10 Some representative saliency maps generated by various saliency models. The first row shows the input images and
the second row illustrates the corresponding fixation density maps. The third row contains bottom-up saliency maps calculated
by (a)-(b) CS; (c)-(d) GB; (e)-(f) SR; (g)-(h) FT; (i)-(j) CA; (k)-(l) RA. The 4th row demonstrates our results acquired by
modulating the bottom-up saliency maps with the learned priors. The last four rows are results from AIM, ICL, SUN and
SER, respectively.

opposite way to use the learned priors. In our approach,

each patch is quantified to the nearest visual word and
represented only by an integer label. In this process,
many details are discarded but the integer label can

work well since its main role is to retrieve the related
prior knowledge. On the contrary, the other approaches
will map the patch into a subspace with much higher

dimensions and then estimate visual saliency in that
subspace. Since the subspace may be not optimal, there
may generate rich redundancies in the mapping. As il-

lustrated in Fig. 10, these redundancies may generate
many “noise” in the estimated saliency maps since it
can be very difficult to distinguish targets from distrac-

tors when projecting all the signals onto specific basis.
Therefore, these approaches achieve lower AUC scores.

Generally speaking, the main difference between our
approach and all the other approaches discussed above

lies in that we treat the input signals with bias. That is,
each kind of prior knowledge will demonstrate a specific
kind of biased selectivity in visual saliency estimation.

For instance, the foreground prior will selectively sup-
press the patches that are judged as distractors, while
the correlation prior will selectively enhance the patches

around existing salient patches. Actually, such selectiv-

ity is well supported by biological evidences, which have

proved that the top-down factors can bias the competi-
tion between the neurons linked with visual stimuli by
favoring a specific category of stimuli.

In particular, the priors used in our approach are

statistically learned from massive images in an unsu-
pervised manner. Compared with (Torralba et al 2006)
and (Chikkerur et al 2010) that mainly focused on in-

corporating the task-dependent priors, our approach
can be used in much more scenarios to predict human
fixations under free-viewing conditions since we have

no assumption on the probable target-of-interests. An-
other advantage of learning the prior knowledge from
millions of images is that the over-fitting risk can be

largely avoided. Compared with the models trained on
hundreds of images, our model often demonstrates im-
pressive generalization ability. For instance, Judd et al

(2009) selected 903 images from MIT-1003 and ex-
tracted a set of low-, mid- and high-level features as
well as the center prior to train a linear SVM model as

the saliency model. Even with such a large feature pool,
the AUC only reached 0.725 on the rest 100 images.
Actually, if we adopt the same center-surround contrast

features used in CS to train the linear SVM model, the
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AUC will decrease to 0.684. This is natural since simple

linear weights often lack the ability to model complex
priors. Actually, people may attend to the salient tar-
gets in limited training images by only focusing on some

specific features (e.g., human face as a special case).
However, these features, which can be mined through
supervised learning algorithms, may not always work

well on the testing images (i.e., over-fitting). Therefore,
it is necessary to learn the prior knowledge from massive
unlabeled training images, probably by using unsuper-

vised learning algorithms.

5.2 How It Works

To further investigate how the learned priors work in

the top-down modulation, we conduct several experi-
ments on the Toronto-120 dataset to see the influence
of various parameters and top-down priors. In these ex-

periments, we adopt the bottom-up saliency maps gen-
erated by CS, which is treated as a baseline approach
with AUC=0.731.

First, we conduct an experiment to see the influence
of the number of visual words. In the experiment, we

test 4, 8, 16, 32, 48, 64, 128, 256, 512 and 1024 visual
words, and the AUC scores are shown in Fig. 11(a).
From Fig. 11(a), we can see that our approach per-

forms the best when using 32 visual words. When us-
ing more visual words, the performance gradually de-
creases. Although more visual words can better describe

the details of the input images, they will also become
more sensitive to noise and small fluctuations. For in-
stance, two image patches with similar contents may be

mistakenly quantized to different visual words. Due to
the probable increase of such classification errors when
using more visual words, the learned prior knowledge

will become less reliable. Moreover, when using visual
words less than 32, the influence of foreground prior
will greatly decrease. For instance, when using 4 visual

words, each visual word appears at each specific loca-
tion with almost the same frequency. In this case, it
is difficult to identify whether a patch belongs to fore-

ground or not.

Second, we conduct an experiment to see the influ-
ence of αb (i.e., e−αb= P (rn|sn, fn)), which indicates
whether to trust the foreground prior when it makes

conflict prediction with the bottom-up saliency model.
When αb is large (i.e., e−αb is small), we choose to
trust the foreground prior, and vice versa. In the ex-

periment, we vary αb from +∞ to 0. Equivalently, e−αb

changes from 1 to 0 and the AUC scores are shown
in Fig. 11(b). From Fig. 11(b), we can see that set-

ting e−αb≈ 0 can guarantee the best performance for

Fig. 11 The AUC scores of our approach on the Toronto-
120 dataset when using different parameters such as (a) dif-
ferent number of visual words and (b) different αb. Note that
here the error bar corresponds to σ√

N
, where σ is the stan-

dard derivation of AUC and N is the total number of images
in Toronto-120.

Our+CS, which proves the effectiveness on the learned
foreground prior.

Third, we conduct an experiment to show the influ-

ences of foreground and correlation priors. By setting
P (rn|sm)=0 in (1), we find that the AUC can reach
0.771 when only using the foreground prior. In contrast,

the AUC can reach 0.746 when using only the correla-
tion prior by setting P (rn|sn)=1 in (1). By combining
these two kinds of prior knowledge, the overall AUC

can reach 0.794. In particular, we find that the post-
smoothing also contributes to the overall performance,
while the exponential operation, which can often pro-

vide a “cleaner” viewing effect, has almost no influence
on the AUC scores since it will not change the order of
patch saliency values. When the post-smoothing opera-

tions are not used, the AUC can only reach 0.782. The
reason is that there may exist some “holes” when mod-
ulating the bottom-up saliency using the foreground

prior since adjacent patches in smooth regions some-
times are wrongly classified to different visual words.
The overall AUC will probably decrease without fill-

ing such “holes” using the post-smoothing operation.

To sum up, the proposed approach can work well in
visual saliency estimation and demonstrate several ad-

vantages in utilizing the prior knowledge. Actually, the
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whole framework can be uniquely characterized by two

main phases, one fast bottom-up phase and one slow
top-down phase. The bottom-up phase is mainly driven
by data and transfers signals in a feed-forward man-

ner. In the transmission, certain attributes of the data
will be gradually extracted to active the related prior
knowledge to generate feed-backward control signals.

Compared with the models that contain pure bottom-
up or top-down phase or parallel bottom-up/top-down
phases, such framework has been proved to be consis-

tent with the neurobiological mechanisms demonstrated
in human perception experiments and takes advantage
of optimizing each phase separately (Han and Zhu 2009;

Wu and Zhu 2011).
Moreover, the framework in our approach can be

easily extended. Once we learn some new kinds of prior

knowledge, we can easily add them into our framework
like the foreground and correlation priors. With this
additive framework, we believe that the performance of

visual saliency estimation can be gradually improved
and a “perfect” model is expectable. Furthermore, our
approach can be easily distributed on multiple com-
puting units. This is very important since the learned

knowledge database could become extremely large in
the future (e.g., thousand kinds of prior knowledge). In
our framework, different kinds of prior knowledge can

be deployed on different computers, each of which can
bias the competition of the input stimuli to generate a
specific top-down saliency map and numerous top-down

saliency maps can be fused to better predict human fix-
ations.

6 Conclusion

This paper presents a novel approach for visual saliency
estimation by using the statistical prior knowledge. We
find that the bottom-up saliency estimated by existing

stimulus-driven models can be further improved in top-
down modulation. Thus we adopt a Bayesian frame-
work to incorporate the influence of the prior knowl-

edge, while such prior can be learned unsupervisedly
from massive image statistics. From the experimental
results, we can see that such statistical priors are very

effective in recovering the wrongly suppressed targets
and removing the improperly popped-out distractors.

In the future work, we will extend our approach by

incorporating several new kinds of prior knowledge. We
will also try to bring in some other top-down factors
such as the task prior and global context prior. Since

the proposed framework can be easily extended, we be-
lieve that its performance can be gradually improved
by modulating the bottom-up saliency with more and

more top-down factors.
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