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a b s t r a c t

In this paper, two context-based entropy coding schemes for AVS Part-2 video coding

standard are presented. One is Context-based 2D Variable Length Coding (C2DVLC) as a

low complexity entropy coding scheme for AVS Part-2 Jizhun profile. C2DVLC uses

multiple 2D-VLC tables to exploit the statistical features of DCT coefficients for higher

coding efficiency. Exponential–Golomb codes are applied in C2DVLC to code the pairs of

the run-length of zero coefficients and the non-zero coefficients for lower storage

requirement. The other is Context-based Binary Arithmetic Coding (CBAC) as an

enhanced entropy coding scheme for AVS Part-2 Jiaqiang profile. CBAC utilizes all

previously coded coefficient magnitudes in a DCT block for context modeling. This

enables adaptive arithmetic coding to exploit the redundancy of the high-order Markov

process in DCT domain with a few contexts. In addition, a context weighting technique is

used to further improve CBAC’s coding efficiency. Moreover, CBAC is designed to be

compatible to C2DVLC in coding elements which simplifies the implementations. The

experimental results demonstrate that both C2DVLC and CBAC can achieve comparable

or even slightly higher coding performance when compared to Context-Adaptive

Variable Length Coding (CAVLC) in H.264/AVC baseline profile and Context-Based

Adaptive Binary Arithmetic Coding (CABAC) in H.264/AVC main profile respectively.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

AVS video coding standard [4] adopts the motion-
compensated hybrid coding framework. In such a frame-
work, intra and inter predictions [19] are first used to
remove the spatial and temporal correlations, generating
prediction errors. Then the prediction errors are trans-
formed by DCT, quantized and finally entropy coded.
Entropy coding is used for data compression and stream
organization. In high-quality video coding, most of the bit
budget is spent on transformed prediction errors, called
DCT coefficients. Consequently, how efficiently DCT

coefficients are entropy coded will significantly impact
the coding efficiency of the whole video coding.

Context-based entropy coding uses context modeling
to exploit statistical behaviors of sequentially observed
symbols for higher coding efficiency. The context model-
ing is used to select a specific context from a given context
set for a symbol which will be coded. Generally speaking,
a specific context corresponds to a specific statistical
behavior. Since the estimated conditional entropy based
on the selected context for the conditional coding of a
symbol should maximally approach the actual one, coding
conditioned on contexts can adapt to symbols’ local
statistical variations and therefore can improve coding
efficiency. One of the most famous context modeling
methods is Rissanen’s [11] context modeling for universal
data coding. It can theoretically approach the bound of the
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minimal code length based on the concept of stochastic
complexity [15]. Besides, there are efficient context
modeling methods [15–17] for image coding.

In video coding, the statistical behaviors of DCT
coefficients are usually diverse. This diversity can be
observed on different coding conditions, e.g., different
video contents and different quantization step sizes. In
particular, DCT coefficients at different frequency sub-
bands also show different statistical behaviors. Context-
based entropy coding is to exploit such diverse statistical
behaviors to achieve higher coding efficiency.

Observed domain knowledge, which is an abstraction
of statistical behaviors, is usually used to guide context
modeling in context-based video entropy coding. The
entropy coding in MPEG-2 [6] is an example. MPEG-2 can
use two Variable Length Coding (VLC) tables for adap-
tively coding intra or non-intra DCT coefficients. Another
kind of well-known domain knowledge in DCT coefficients
is, along the zig-zag path of DCT blocks,1 non-zero
coefficients show a statistical decreasing tendency in
magnitude and the run-length of successive zero coeffi-
cients shows a statistical increasing tendency. This
domain knowledge has guided the context modeling in
Context-Adaptive Variable Length Coding (CAVLC) [2]
and Context-Based Adaptive Binary Arithmetic Coding
(CABAC) [8] in H.264/AVC [5]. For example, CAVLC uses
multiple contexts, each associated with a VLC table, to
adapt to such statistical tendencies, so that local statistical
variations of DCT coefficients even in one DCT block are
exploited which brings further coding efficiency.

This paper presents two context-based entropy coding
schemes for coding DCT coefficients in AVS Part-2 video
coding standard. One is Context-based 2D Variable Length
Coding (C2DVLC) [13] for AVS Part-2 Jizhun profile and the
other is Context-based Binary Arithmetic Coding (CBAC)
for AVS Part-2 Jiaqiang profile. C2DVLC and CBAC can be
used for different application purposes. For example,
C2DVLC has lower complexity than CBAC, which can be
used in computational resource constrained applications.
CBAC has higher coding efficiency than C2DVLC but with
extra computational costs, which can be used in applica-
tions requiring higher coding efficiency. Both C2DVLC and
CBAC adopt context modeling to achieve higher coding
efficiency. The context modeling is also inspired by the
above mentioned domain knowledge, but is designed to
fully exploit the statistical features of 8�8 DCT coeffi-
cients (AVS Part-2 video coding adopts 8�8 DCT [18]). In
particular, CBAC is designed to be compatible to C2DVLC
in coding elements. In terms of coding efficiency, C2DVLC
and CBAC achieve comparable or even slightly higher
coding performance compared to CAVLC and CABAC,
respectively.

The rest of this paper is organized as follows. In Section
2, the statistical features of DCT coefficients are analyzed
first, and then the coding elements of DCT coefficient and
the coding order used in C2DVLC and CBAC are intro-
duced. Section 3 overviews C2DVLC and describes the

used context modeling and Exponential–Golomb (E–G)
[12] codes. Section 4 presents CBAC in detail, including the
underlying ideas behind its design. The coding perfor-
mance of C2DVLC and CBAC is evaluated in Section 5.
Section 6 concludes this paper.

2. Statistical features of DCT coefficients, coding
elements, and coding order

2.1. Statistical features of DCT coefficients

In a typical DCT block, e.g., in progressive videos, non-
zero coefficients are always clustered around the top-left
corner and roughly symmetrically positioned in the
horizontal and vertical directions. This is because the
statistical distributions of DCT coefficients at low-fre-
quency DCT subbands have larger variances than those at
high-frequency ones (their expectations are all zero),
which is similar to the case in image coding as pointed
out in Ref. [7]. Therefore, the symmetrical scan pattern,
e.g., the zig-zag scan, is usually used to reorganize DCT
coefficients. After reorganization, the coefficients in a DCT
block are arranged into a one-dimensional list. Before
entropy coding, especially in VLC, the list is further
represented by two kinds of symbols: non-zero coeffi-
cient, denoted as Level, and the number of successive zero
coefficients before a Level, denoted as Run. In a statistical
view, DCT coefficients always exhibit the following
statistical features, expressed via Level and Run.

(1) The magnitude of Level shows a statistical decreasing
tendency while Run shows a statistical increasing
tendency along the zig-zag scan path.

(2) Level and Run are correlated, e.g., a Level with a smaller
magnitude is more likely to be preceded by a larger
Run. Fig. 1 shows the probability distributions of Run

under different absLevels, where absLevel means
absolute value of Level. Comparing Fig. 1(a) and (b),
we can see that the correlations between Level and
Run. For example, a smaller magnitude of Level is more
likely to be preceded by a larger Run. Fig. 1 is based on
the statistical data of 8�8 DCT blocks under AVS Part-
2 video platform, where the ‘City’ sequence in 720p
format is used.

(3) (Level, Run) pairs have varying statistical distributions
along the zig-zag scan path even in one DCT block.
Fig. 2 shows the probability distributions of (absLevel,
Run) pairs by the scanned positions. It can be seen that
the distribution shape of the first scanned (absLevel,
Run) pair along the zig-zag path is much sharper than
that of the fifth scanned pair. This demonstrates the
statistical non-stationary of (Level, Run) pairs.

The above statistical features are the observed domain
knowledge of DCT coefficients. They should be used to
guide the context modeling design, and meanwhile the
desired context modeling should fully exploit these
statistical features to achieve higher coding efficiency.

ARTICLE IN PRESS

1 A DCT block denotes a block of DCT coefficients, as the hybrid

coding framework is block-based.

L. Zhang et al. / Signal Processing: Image Communication 24 (2009) 263–276264



Author's personal copy

2.2. Coding elements

(Level, Run) is an efficient representation of DCT
coefficients, which has been widely used. The coding
elements used in C2DVLC and CBAC are also Level and Run.
In particular, a special symbol, EOB, is used to signal the
coding end of a DCT block. EOB is denoted as (0, 0) in this
paper. So with respect to coding elements, C2DVLC and
CBAC are compatible.

2.3. Coding order

As pointed out in Section 2.1, the magnitude of Level

exhibits a descending tendency along the zig-zag scan
path. Then the dependence among Levels can be utilized,
which will be greatly useful for context modeling. As will
be described in Sections 3 and 4, both C2DVLC and CBAC
rely on Level’s changing tendency to identify large
statistical variations and design contexts. It is easy to
understand that Level’s changing tendency in different

coding order exhibits different statistical behaviors. Thus,
before we begin to discuss the design of context modeling,
we need to explain why the coding order is the reverse
zig-zag scan order.

Fig. 3 shows the probability distributions of the first
scanned absLevel both in the zig-zag scan order and in the
reverse zig-zag scan order in form of histograms. Fig. 3 is
based on the statistical data of 8�8 DCT blocks under AVS
Part-2 video platform, where the ‘News’ sequence in CIF
format is used under QP ¼ 27. It can be easily observed
that in the zig-zag scan order, the magnitude of the first
Level has a more scattered distribution. On the contrary, in
the reverse scan order, the probability of the first Level’s
magnitude equal to 1 takes a significant large percentage
(roughly more than 96%). The similar results can also be
found in the other videos. This indicates that the first
scanned absLevel’s distribution in the zig-zag scan order
has a larger variance than that in the reverse zig-zag
scan order.

Then, if coding DCT coefficients along the zig-zag scan
order, we will meet the following problems. First, the

ARTICLE IN PRESS

Fig. 2. Probability distributions of (absLevel, Run) pairs in City 720p video. (a) The first scanned pair along the zig-zag scan path and (b) the fifth scanned

pair along the zig-zag scan path.
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Fig. 1. Probability distributions of Run under (a) absLevel ¼ 1 and (b) absLevel ¼ 4 in City 720p video.
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scattered distribution increases the uncertainty of the first
Level. Thus we cannot make a good estimation of the
probability of magnitude of the first Level and the bits
used for coding the first Level will be more than that in the
reverse zig-zag scan order. Second, when coding in the
zig-zag scan order, the larger variance of the first Level

leads to multiple choices of contexts, and there will not be
enough samples to accurately estimate the context
variables. Therefore, the probability estimations of the
subsequent Levels will be unreliable. Third, several non-
zero coefficients in the end of zig-zag scan order usually
constitute a subsequence of 71. This will increase the
difficulty of determining the coding end of a block and the
contexts based on previously coded symbols will be mixed
up without distinguishing the frequency positions of
different 71. On the contrary, coding in the reverse scan
order makes it easier to follow the tendency of Level

variation. When coding in the reverse scan order, the
degree of increasing tendency can be easily estimated
based on the maximal magnitude of previously coded
Levels. Due to the reasons listed above, C2DVLC and CBAC
use the reverse scan order as coding order.

In the sequel, for a given DCT block with at least one
non-zero coefficient, we use N to represent the number of
non-zero coefficients and suppose (LN�1, RN�1),y,(L1, R1),
(L0, R0) are the sequence of the (Level, Run) pairs formed
after the zig-zag scan, where they are indexed along the
reverse scan order. The coding is in the reverse scan order,
which means (L0, R0) is coded first and (LN�1, RN�1) is
coded last. Table 1 gives an example of reorganizing an

8�8 DCT block by scanning, produced (Level, Run) pairs as
well as the coding order for these pairs. The symbol (0, 0)
denotes EOB.

3. Context-based 2D variable length coding

In this section, C2DVLC for AVS Part-2 Jizhun profile is
presented. First, we outline the basic coding procedure of
C2DVLC. The algorithm block diagram of C2DVLC is
depicted in Fig. 4. Then, we describe how the context
modeling in C2DVLC is designed by exploiting the
statistical features presented in Section 2.1. Last, we
introduce the E–G codes used in C2DVLC.

3.1. Overview of C2DVLC

C2DVLC codes each (Li, Ri) (i ¼ 0, 1,y,N�1) one by one
with multiple off-line trained 2D-VLC tables until all pairs
are coded. At last, EOB is coded to indicate that there are
no more non-zero coefficients in the block.

Fig. 4 illustrates the block diagram of C2DVLC encoder
to highlight how a (Level, Run) pair represented by (Li, Ri)
is entropy coded. During the process of (Li, Ri) encoding,
three steps are performed in turn. First, the table index
should be calculated. Here, the adopted multiple VLC
tables are two-dimensional to utilize the correlation
between Level and Run. For high coding efficiency, these
VLC tables are designed for switch in order to adapt to
the varying statistical distributions of (Level, Run) pairs.

ARTICLE IN PRESS

Fig. 3. Histograms of the first absLevel (a) in the zig-zag scan order and (b) in the reverse zig-zag scan order in News CIF video.

Table 1
Example of coding order of a DCT Block.

Scanning position 1 2 3 4 5 6 7 8 9 y 64

Reorganized DCT coefficients 9 �2 3 0 �2 0 0 �1 0 0 0

(Level, Run) pairs in scan order (9, 0), (�2, 0), (3, 0), (�2, 1), (�1, 2), (0, 0)

Coding order (�1, 2), (�2, 1), (3, 0), (�2, 0), (9, 0), (0, 0)

L. Zhang et al. / Signal Processing: Image Communication 24 (2009) 263–276266
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Table switch is based on the maximal magnitude of prior
coded Levels before the current (Li, Ri) pair, denoted as
Lmax. Therefore, the table index selected for current (Li, Ri)
pair can be represented by C(L, R)(Li�1) (Li�1 denotes the
past symbols of Li). For the first pair (L0, R0) to be coded in
one block, the table index is fixed to be zero. Second, with
the table index selected in the first step, the mapping
between (Li, Ri) and one CodeNumber has to be done
through a table look-up operation. CodeNumbers in
different VLC tables reflect different estimated conditional
probabilities of the current (Li, Ri) pair. Finally, the
corresponding unique (E–G) codeword of CodeNumber is
output, and one pair coding is done. E–G codes are used in
C2DVLC for simplicity and efficiency. Note that if the
current (Li, Ri) pair is out of the VLC table, Level and
Run will be coded separately by escape coding. At the
same time, the update of Lmax should be performed. For

detail information about escape coding, please refer to
Ref. [3].

3.2. Context modeling in C2DVLC

This subsection provides detailed information for the
context modeling of (Li, Ri) pairs, i.e., how to adaptively
switch 2D-VLC tables in one DCT block.

Based on the analysis in Section 2.1, we can utilize the
statistical increasing in magnitude of Level from L0 to LN�1

for context modeling. Another effective description of
Level increase is the update of variable Lmax defined as that
in Section 3.1. For the first pair (L0, R0) to be coded in one
block, Lmax is initialized to be zero.

Here, we first denote the past symbols of Li by

Li�1
¼

Li�1; Li�2; . . . ; L0; if 1pioN

+; if i ¼ 0

(
. (1)

Then the context modeling for (Li, Ri) can be defined as

CðL;RÞðL
i�1
Þ ¼ j if ðTh½jþ 1�4LmaxXTh½j�ÞÞ (2)

with C(L, R)(L
�1) ¼ 0 and the threshold array is

Th½0 . . .7� ¼

h0; 1; 2; 3; 5; 8; 11; 1i intra_luma

h0; 1; 2; 3; 4; 7; 10; 1i inter_luma

h0; 1; 2; 3; 5; 1; 1; 1i chroma

8><
>: .

(3)

Here the values of C(L, R)( � ) are the indices of the
contexts, i.e., the 2D-VLC table indices. According to Eqs.
(2) and (3), the value set of C(L, R)( � ) is {0, 1,y,6} for
luminance component and {0, 1,y,4} for chrominance
component. Each of them corresponds to one different
context, which corresponds to an interval Ik derived from
Th[0y7]. The lower bound of Ik is equal to Th[k] while the
upper bound is Th[k+1]. For example, for the luminance
part of intra mode, I0 ¼ [0], I3 ¼ [3,5), and I6 ¼ [11,N).

The table switch process can be seen as a recursive
context transition process, which can be described as

Eq. (4) actually describes that an appearance of a Level

indicated by Li�1, if its magnitude is equal or larger than the
current used Ik’s upper bound or Ik+1’s lower bound, i.e.,
Th[k+1], triggers the context transition from one context
C(L, R)(L

i�2) to another C(L, R)(L
i�1). That is, the prior coded

abs(Li�1) is larger than the upper bound of C(L, R)(L
i�2)’s

corresponding interval. The new context is determined from
the maximum previously coded magnitude among (Li�1).
Such context transition can exploit the increasing trend in
magnitude from L0 to LN�1 as well as the sequential
dependency. Moreover, the use of the maximum values of
previously coded absLevels instead of the nearby coded Level

can effectively deal with those coefficients which are not in a
monotonously increasing direction. In this way, the draw-
back of the traditional VLC coding with one single VLC table
in one DCT block, which cannot adapt to locally statistical
variations leading to low efficiency, can be solved efficiently.

3.3. Exponential–glomob codes

For the final VLC coding, codewords are constructed
based on E–G codes. In C2DVLC, kth order E-G codes
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Fig. 4. C2DVLC encoder block diagram.

CðL;RÞðL
i�1
Þ ¼

j; if ðabsðLi�1ÞXTh½CðL;RÞðL
i�2
Þ þ 1� and ðTh½jþ 1�4absðLi�1ÞXTh½j�ÞÞ

CðL;RÞðL
i�2
Þ; if absðLi�1ÞoTh½CðL;RÞðL

i�2
Þ þ 1�

8<
: . (4)
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with k equal to 0, 1, 2, and 3 are used. The order
for each table is determined by the distribution
of (Level, Run) pairs under the corresponding context.
Table 2 lists part of E–G codes when k’s values are
0, 1, and 2. We can see E–G codes have a regular
construction, which consists of a prefix and a suffix. Given
a CodeNumber N and a specific order k, the prefix part
consists of l zeros followed by one and the suffix part is
the binarization representation of value N�2k(2l

�1). l is
given by

l ¼ maxf0; dlog2ððN þ 1Þ=2kþ1
þ 1=2Þeg. (5)

Due to the regular codeword structure, E–G codes
can be real-time constructed in coding process without
involving high computational complexity. Thus, the
entries stored in 2D-VLC tables could be mapping
relationships (CodeNumbers) from (Level, Run) pairs to
E–G codewords instead of real codes. This is a
valuable feature that resolves the problem of high
memory requirement resulted from multiple 2D-VLC
tables.

4. Context-based binary arithmetic coding

In C2DVLC, the VLC tables are pre-defined by off-line
training which cannot capture the local statistical varia-
tions in one context and a symbol with its probability
greater than 0.5 cannot be efficiently coded due to the
intrinsic limit of 1 bit/symbol of VLC codes. Arithmetic
coding can naturally avoid these problems for higher
coding efficiency. In this section, CBAC for AVS Part-2
Jiaqiang profile is presented. In Subsection 4.1, we
introduce the basic coding structure of CBAC coding. The
procedure of CBAC coding is depicted in Fig. 5. In the
subsequent subsections, the individual key techniques in
CBAC, including symbol binarization, context formation
and quantization, binary arithmetic coder, are discussed
in detail.

4.1. Overall coding structure of CBAC

In CBAC, coding a data symbol involves the following
steps: (a) binarization, (b) context model selection and (c)
arithmetic encoding. For a given non-binary valued syntax
element, it is uniquely mapped to a binary sequence, a so-
called bin string. Each of the given binary decision, which
referred to as a bin in the sequel, enters the context
modeling stage, where a context is selected and the
corresponding choice of contexts may depend on pre-
viously encoded syntax elements or binarized bins. Then,
after the assignment of a context, the bin value along with
its associated model is passed to the regular coding engine
or bypass coding, where the final stage of arithmetic
encoding together with a subsequent context updating
takes place.

Fig. 5 depicts the coding block diagram of (Level, Run)
pairs in one DCT block. As C2DVLC does, CBAC codes each
(Li, Ri) (i ¼ 0, 1,y,N�1) pair one by one along the reverse
scan order until all pairs are coded. A so-called EOB

ARTICLE IN PRESS

Fig. 5. Block diagram of CBAC encoder.

Table 2
Example of Exponential–Golomb codes of order 0, 1, and 2.

Code

number

(N ¼ 0–4)

Code words

k ¼ 0 k ¼ 1 k ¼ 2

Prefix Suffix Prefix Suffix Prefix Suffix

0 1 – 1 0 1 00

1 01 0 1 1 1 01

2 01 1 01 00 1 10

3 001 00 01 01 1 11

4 001 01 01 10 01 000

L. Zhang et al. / Signal Processing: Image Communication 24 (2009) 263–276268
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symbol is coded at last to signal the end of a DCT block.
For each (Li, Ri) pair, the Level precedes the associated Run.
Firstly, both Level and Run are unary binarized into several
bins. For the signed integer Level, it is presented by sign
and unary bits of its magnitude (absLevel). Secondly, for
each bin of absLevel and Run, a product context is applied,
which consists of a primary context CP(L, R)(Li�1) and a
secondary context indicated by CS(L)(j) for Level or CS(L)(j, L)
for Run. Primary context relies on the past coded Li�1, and
the corresponding context index is determined by the
variable Lmax which denotes the maximal prior coded
absLevel, as the same in C2DVLC. To keep the number of
contexts used for coefficient coding reasonably small, the
primary contexts are quantized into five categories. Under
each primary context, seven nested secondary contexts are
defined. They are classified according to the bin indices for
Level or both the value of currently coded absLevel and bin
indices for Run. In the following, the bin index of absLevel

or Run is denoted as variable j. The secondary context
index is first initialized with the value of zero at the
beginning of (Level, Run) pair coding. Besides, for the first
bin of absLevel, another so-called accompanying context
CA(L)(ReverseP) which utilizes the position of absLevel in
coded order is designed for context weighting. It is
quantized by the variable ReverseP. At last, the first bin
of absLevel is sent to regular binary arithmetic coder with
the technique of context weighting using secondary

context and accompanying context. All other bins of
absLevel and Run are regularly coded according to the
secondary context index. Besides, the sign of Level is coded
with bypass coding. After one (Level, Run) instance has
been coded, all these contexts are updated.

In summary, CBAC contains the following features:

� To be compatible with C2DVLC in coding syntax
elements: (Level, Run) pairs and EOB; coding order in
the reverse scan.
� Unary binarization scheme.
� Context quantization according to all previously coded

magnitudes of Levels.
� Context weighting technique.

4.2. Symbol binarization

The coding elements of CBAC is (Level, Run) pairs. It is
easy to understand that the symbol values of Level and
Run are integers in a large range in a DCT block. Coding
these values directly by an m-ary (for m42) arithmetic
code will have a high computational complexity. Besides,
the source with typically large alphabet size often suffers
from ‘‘context dilution’’ effect when the high-order
conditional probabilities have to be estimated on a
relatively small set of coding samples. Here, binary
arithmetic code is adopted in CBAC. Therefore, for the
non-binary valued symbols, e.g. Level and Run, they should
perform binarization before sending to arithmetic coder.
The binarization process is as follows:

� The signed integer Level is represented by sign (0/1:
+/�) and the unary bits of its magnitude (absLevel).

� The positive integer Run is simply represented by
unary bits.

Table 3 lists part of the mapping from unsigned
numbers to unary binary representation. We can see that
the binarized representation has a regular code structure,
which is a concatenation of a prefix code and a suffix code.
Given a nonnegative number N, the prefix part consists of
n�1 zeros and the suffix part is fixed to be a one.

4.3. Context formation and quantization

We model the symbol sequence as a high-order
Markov process, and compress it by context-based
arithmetic coding. A key issue in context modeling of an
input symbol sequence is how to balance the desire of
using a high-order context modeling technique against
the context model cost. As we know from the view of
information theory, the higher the conditional entropy,
the more an observer can predict the state of a variable,
knowing the state of the other variables. Therefore, if the
context order is not sufficiently high, it will not be able to
capture all the local statistical behaviors of the source
sequence. But on the other hand, if the order of the model
is too high, there will not be enough samples to accurately
estimate the context parameters, causing context dilution
problem. To solve this problem, CBAC adopts a novel
context quantization technique that generates only 34
context states out of a very large causal context, as
described below.

To reduce the context model cost, i.e. the number of
coding states, the coding context is formed as a product of
two classified contexts: one primary context and one
secondary context.

4.3.1. Primary contexts

DCT cannot completely remove the statistical redun-
dancy between coefficients in different subbands. It is
observed that the coefficient magnitudes after DCT trans-
form strongly correlate to the previously coded coeffi-
cients. To utilize this correlation, we can define a function
to characterize the relationship among Levels. This func-
tion can be determined in an off-line design process, and it
can be designed to be a linear or more sophisticated
function. As we mentioned in Section 2, coding in the
reverse scan order is easy to follow the increasing
tendency based on Level information. Meanwhile, Run is
correlated to Level. To utilize this domain knowledge, we
define the function as the primary context based on the
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Table 3
Unary binarization.

N Unary representation (Bin string)

0 1

1 0 1

2 0 0 1

y – – – –

5 0 0 0 0 0 1

y – – – – – – –

Bin index (j) 0 1 2 3 4 5 6 y
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maximum of all previously coded magnitudes of coeffi-
cients in current block for the consideration of computa-
tional complexity and algorithm efficiency. We denote the
maximum magnitude as Lmax, then the primary context for
current (Level, Run) pair can be defined as

CPðL;RÞðL
i�1
Þ ¼ Lmax. (6)

In essence, the variable Lmax acts as a context quantizer
that maps all histories of the current block up to the
current pair to an integer value. Lmax is initialized with the
value of zero at the beginning of a DCT block, and will be
updated on the fly during sequential coding of the (Level,
Run) pairs. By conditioning the maximum magnitudes of
all previously coded coefficients, the entropy coding using
the estimated conditional probability p((Li, Ri)/Lmax) im-
proves the coding efficiency over just using p((Li, Ri)). The
probability distribution of absLevel according to Lmax is
represented in Fig. 6, from which we can observe that the
probability distribution of absLevel is variable according to
Lmax. Note that the case of absLevel equal to zero
represents EOB, which indicates the end of the current
block coding. This is the same as in C2DVLC.

In image or video coding, the occurrences of large
amount of Lmax will result in a problem that the
dynamic range of context variable Lmax can still be too
large which will increase the time and space complexity.
To tackle this problem, we need a way of merging
different contexts in which p((Li, Ri)/Lmax) are
close to reduce the number of contexts for conditional
entropy coding. Thus, we quantize Lmax into M levels to
form primary contexts. In practice, M ¼ 5 is found
to be sufficient. Denote the Lmax quantizer by Q, i.e., Q:
Lmax-{0, 1, 2, 3, 4}. The quantization criterion is to
minimize the conditional entropy of the (Level, Run)
pairs. In an off-line design process, we get a set of
((absLevel, Run), Lmax) instances from a training set, and
use the standard dynamic programming technique to
choose 0 ¼ q0oq1oq2oq3oq4oq5 ¼N to partition Lmax

into M ranges so that the needed average code length

X
i

pðqipLmaxoqiþ1Þ
X
ðL;RÞ

pððL;RÞjqipLmaxoqiþ1Þ

(

� logðpððL;RÞjqipLmaxoqiþ1ÞÞg

¼ �
X

i

X
ðL;RÞ

pðL;RÞ log pððL;RÞjqipLmaxoqiþ1Þ (7)

for coding these pairs is minimized. This quantizer, whose
parameters are:

q1 ¼ 1; q2 ¼ 2; q3 ¼ 3; q4 ¼ 5, (8)

works almost as well as the optimal individual-image
dependent Lmax quantizer. The quantization function can
also be defined as follows:

wðLmaxÞ
¼

Lmax; Lmax 2 ½0; 2�

3; Lmax 2 ½3; 4�

4; otherwise

8><
>: . (9)

And the primary context index CP(L, R)(Li�1) equals to
w(Lmax). This 5-Level quantizer for the maximum magni-
tudes of previously coded coefficients actually can help
small images to generate enough samples for context
modeling to learn p((Li, Ri)/Lmax) quickly in adaptive
entropy coding. Meanwhile, it can also save a lot of
memory during entropy coding. In the previous example,
the values of Lmax and primary context index are listed
in Table 4.
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Fig. 6. Probability distributions of absLevel according to Lmax in Harbour 720p video.

Table 4
Updating of context variable Lmax of the example (Level, Run) sequence.

(Level, Run) (�1,2) (�2,1) (3,0) (�2,0) (9,0) (0,0)

Lmax 0 1 2 3 3 9

Primary context index 0 1 2 3 3 4
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4.3.2. Secondary context

Under each primary context, seven nested secondary
contexts are used to code the bin value corresponding to
binary decisions of Level and Run values. The seven
secondary contexts are defined as shown in Table 5. The
first three contexts in Table 5 are designed according to
the bin index for coding bin values for absLevel while the
following four contexts are based on both bin index and
current Level for Run values.

For the bins of absLevel, the secondary context index is
defined as

CSðLÞðjÞ ¼ ðjp1Þ? j : 2, (10)

where the variable j is the bin index of absLevel. Since the
binarized first bin value equals to 1 only when it is EOB,
That is to say, the first bin value of absLevel (the
corresponding bin index j is 0) carries the EOB information
of the current DCT block, therefore it is reasonable to
design one separated context for the first bin of absLevel.
Furthermore, as shown in Fig. 6, the absLevel always has
the largest possibility to equal to 1 at different frequency
subbands. Hence we should emphasize this case, which is
corresponding to the special context designed for the
second bin of absLevel. For space efficiency, we use only
one context to encode all remaining bins of absLevel. It
should be pointed out that for the first to be coded
absLevel which cannot be zero, the first binarized bin
need not to be coded. Therefore, when Lmax equals to be
zero, the secondary context index CS(L)(j) ¼ 0 can never
be used.

When coding a Run, in addition to Lmax and the bin
index information as that of absLevel does, the current

coded Level information of the current (Level, Run) pair is
also taken into consideration for secondary context
modeling. This is because Level is coded first followed by
the Run. The context index CS(R)(j, L) is determined by

CSðRÞðj; LÞ ¼
3þ ðj ¼¼ 0? 0 : 1Þ; if ðabsðLÞ ¼¼ 1Þ

5þ ðj ¼¼ 0? 0 : 1Þ; otherwise

(
. (11)

Fig. 7 depicts the probability distributions of Run values
according to diverse absLevel under different Primary

context index. In Fig. 7, the probability distributions of
Run values are variable even with the same Primary

context index. Hence, only use one condition of previously
coded non-zero coefficients, i.e. Lmax, cannot capture Run’s
behavior perfectly. As mentioned in Section 2.1, there
exists some correlation between the magnitudes of Level

and Run in one (Li, Ri) pair. The larger the magnitude of
Level is, the higher the probability of smaller Run value
will be. Therefore, for a given Run, the statistical distribu-
tion of bins needs to be determined by also considering
the corresponding current coded Level, which can lead to
better modeling and estimations of Run values. Besides,
one context for the first bin of Run is specially formed to
distinguish from other bins. Extensive experiments de-
monstrate that more contexts to distinguish different
bins of Level or Run will not improve the coding efficiency
too much.

For the sign of Level, the statistical analysis reveals that
the distribution of transformed coefficients is approxi-
mately symmetric with respect to zero, i.e., the sign bit
averagely consumes one bit. Thus, the sign of Level is
simply dumped (coded using probability 0.5 without any
context modeling) with bypass coding.

4.3.3. Context weighting

It is well known that adaptive entropy coding can
benefit from both the position and the magnitude of Level.
However, the contexts introduced so far are based on the
magnitude of Level. In order to further improve compres-
sion performance, another context variable ReverseP, the
position of the current Level in the reverse scanning order
is introduced in CBAC. The variable ReverseP is initialized
to zero in the transformed block. Based on ReverseP, a so-
called accompanying context CA(L)(ReverseP) is introduced.
This context relies on local information of the symbol
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Table 5
Updating of context variable Lmax of the example (Level, Run) sequence.

Bin of Level/Run Secondary

context index

First bin of absLevel (i.e., the EOB symbol). 0

Second bin of absLevel, if exist. 1

Remaining bins of absLevel, if exist. 2

First bin of Run if absLevel ¼ 1. 3

Remaining bins of Run when absLevel ¼ 1, if exist. 4

First bin of Run when absLevel41. 5

Remaining bins of Run when absLevel41, if exist 6
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Fig. 7. Probability distribution of different Run values. (a) Primary context index equal to 0 and (b) Primary context index equal to 2.
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which is the approximate frequency component. The
probability distributions of absLevel can vary in terms of
ReverseP. Fig. 8 represents the probability distribution of
the first bin of absLevel equal to one (EOB) according to the
local information. We can see that the probability of EOB

is changing with the variable ReverseP. For an 8�8 block
with at least one non-zero coefficients, the range of
ReverseP is [0, 63], and it is uniformly quantized into 32
accompanying contexts, [0, 31]. The context index incre-
ments are determined as follows:

CAðLÞ½ReverseP� ¼ 16� ðReversePb5Þ

þ ððReversePb1Þ&0x0f Þ. (12)

In the binary arithmetic coding of the Run and Level

values, each accompanying context created by ReverseP

will be combined with the same seven secondary contexts
as in the case of primary contexts created by Lmax.

Now when coding each binary decision, we have two
conditional probability estimates: one in the product
context derived from Lmax and the other from ReverseP.
Then an interesting question is if we can make use of both
position and Level without increasing the model cost, can
we get a shorter code length? The answer is yes. The two
kinds of contexts created above are defined as: C1 ¼ Lmax

and C2 ¼ ReverseP. Let p(x/c1) and p(x/c2) be the estimated
conditional probabilities and w be the weighting factor,
then the weighted probability of the current DCT
coefficient x is assigned as follows:

pðxjc1 [ c2Þ ¼ w� pðxjc1Þ þ ð1�wÞ � pðxjc2Þ. (13)

Since p(x|c1) and p(x|c2) are probability measures on x,
given c1 and c2, p(x|c1[c2), a weighted sum of p(x|c1) and
p(x|c2), is also a probability measure on x. Thus, a
weighted probability distribution of the two estimated
distributions is used to drive the arithmetic coder. In our
scheme, the equal weighting scheme is used (w ¼ 0.5),
which is found to produce better compression results.

The context weighting technique is effective when
being applied to code the EOB symbol. The coding gain on
other bins is usually less than 0.5%. So for low complexity

we only use the context weighting technique on the EOB

context, i.e., secondary context index equal to zero.

4.4. Binary arithmetic coding

In this section, we present the binary arithmetic coder
on logarithm domain adopted in CBAC. Actually, the CBAC
coding engine consists of two sub-engines, one for the
‘regular’ coding mode, which includes the utilization of
adaptive contexts, and the other so-called ‘bypass’ coding
engine for a fast encoding of symbols, for which an
approximately uniform probability (the probabilities of
symbol ‘0’ and ‘1’ are equal, i.e., 0.5) is assumed. The
following presentation includes the basic parts of binary
arithmetic coder: (1) interval subdivision, (2) renormali-
zation process to keep finite precision during the whole
coding process, (3) adaptively update probability estima-
tion. For the detail information about the binary arith-
metic coder, readers can refer to Ref. [14].

Binary arithmetic coding is based on the principle of
recursive interval subdivision that involves the following
elementary multiplication operation. Suppose that an
estimate of the probability pMPSA(0.5, 1) of the most probable

symbol (MPS) is given and the given interval is represented
by its lower bound denoted as L and its width (range)
represented by R. Based on these settings, the given interval
is subdivided into two subintervals: one interval of width

RMPS ¼ R� pMPS (14)

which is associated with the MPS, and the dual interval of
width RLPS ¼ R�RMPS, which is assigned to the least probable
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Fig. 8. Probabilities of the 1st bin of absLevel equal to one according to

ReverseP.

range

R1

R2

LPS

MPS

MPS

MPS

low_new

low

Fig. 9. One binary arithmetic coder cycle.
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symbol (LPS) having a probability estimation of 1�pMPS.
Fig. 9 depicts a complete cycle of coding process. The process
is an iterative one which consists of consecutive MPS

symbols and one LPS symbol. We keep 9 bit precision for
range during whole coding process. In the binary arithmetic
coder of CBAC, we substitute the multiplication in Eq. (14)
with addition by using logarithm domain instead of
original domain. When a MPS happens, the renewal of range
is given as

LG_Rnew ¼ LG_Rþ LG_pMPS, (15)

where LG_x indicates the logarithm value of variable x and
Rnew is the new range after encoding one MPS. For the case of
meeting one LPS, we denote the two MPS range before and
after encoding the LPS as R1 and R2 as shown in Fig. 9. Then,
the range after the whole coding cycle in original domain
should be

RLPS ¼ R1 � R2. (16)

And the new lower bound of current range equals to the
addition of low and R2. Since R1 and R2 are both calculated
on the logarithm domain, we have to get the value of R1 and
R2 from LG_R1 and LG_R2, then

R1 ¼ 2LG_R1 ¼ 2�s1þt1 � 2�s1 � ð1þ t1 �D1Þ, (17)

and

R2 ¼ 2LG_R2 ¼ 2�s2þt2 � 2�s2 � ð1þ t2 �D2Þ. (18)

From (16)–(18), we can get the following, ignoring the
approximation error D1 and D2:

RLPS ¼ 2�s2 � t3, (19)

and

t3 �
t1 � t2 if ðs2 ¼¼ s1Þ

ðt151Þ � t2 if ðs2 ¼ s1 � 1Þ

(
. (20)

After the value of RLPS is obtained, the renewed lower
bound is updated. Then the renormalization process is
carried out to guarantee that the most significant bit of the
updated range value is always ‘1’. Until now, one coding
cycle is finished. After one bin is encoded by arithmetic
coder, the estimated probability of the chosen context
should also be updated. Actually, in CBAC, the probability
of each context model is initialized to be 0.5 for both MPS

and LPS at the start of coding. With the coding of some bins,
the adaptive probability estimation of MPS on logarithm
domain is performed. The probability estimation is fulfilled
using only additions/subtractions and shifts as in the
following formulas:

LG_PMPS  LG_PMPS þ LG_f if ðLPS happensÞ

LG_PMPS  LG_PMPS � ðLG_PMPSbcwÞ if ðMPS happensÞ

(
,

(21)

where f is equal to (1�2�cw). Here, cw is the size of sliding
widow to control the speed of probability adaptation. The
smaller cw is, the faster the probability adaptation will be.

In summary, the arithmetic coder in CBAC replaces the
traditional multiplications for range update and prob-
ability estimation update with additions by combining
original domain and logarithmic domain. In order to keep
the cost of alternation between the two domains low, the
approximation is employed. Moreover, the renormaliza-
tion takes place only when one LPS happens so that much
time can be saved for renormalization process.

5. Experimental results

This section reports the coding performance of C2DVLC
and CBAC. In addition, the coding gain of context
weighting technique is also shown in Subsection 5.2.
The test sequences include two typical progressive HD
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Fig. 10. Rate-distortion curves of C2DVLC and CAVLC at (a) Kayak and (b) Husky videos.
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sequences, Harbour and Night, in 1280�720@60 Hz and
two interlaced HD sequences, Kayak and Fireworks, in
1920�1088@30 Hz. Besides, four interlaced SD se-
quences, Football in 704� 480, Husky in 704�576,
Basketball and Mobilecalendar in 720�576 all at 25 Hz.
Rm62c platform [9], which is developed by AVS working
group as AVS Part-2 reference software, is used. In all
simulations, rate-distortion optimization was switched
on. One hundred frames of each test sequences are
coded. The coding performance was evaluated using the
IBBPBBP frame structure. Here, the motion search was
conducted in a range of [�32y32]� [�32y32] samples
for two reference frames. All encoding mode decisions
including the motion search, the macroblock mode
decision, and for interlaced sequences picture-based
frame/field decision were performed with rate-distortion
optimization on. For all the simulations, bit-rates were
adjusted by using fixed values of QPs. The value of QP for B
pictures was set to be the same with those for I and P
pictures.

5.1. Coding performance of C2DVLC

C2DVLC is compared to CAVLC in H.264/AVC in the
testing. CAVLC is realized into Rm62c platform, and
encode the 8�8 DCT coefficients by splitting an 8�8
block into four 4� 4 blocks which is the same as that in
H.264/AVC high profile. In this simulation, Quantization
values are set as 24, 28, 32, and 36. For these QPs, the
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Table 6
Average Coding efficiency gain of C2D-VLC compared with CAVLC.

Sequences Kayak Mobile calendar Husky Basket ball Football Harbour Night Average

DPSNR (dB) 0.25 0.02 �0.08 �0.08 0.19 0.21 0.08 0.08

DRate (%) �3.2 �0.09 1.0 1.3 �3.8 �5.0 �2.3 �1.7
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Fig. 11. Rate-distortion curves of CBAC and CABAC at ‘Harbour’ and ‘Night’ sequences.

Table 7
Average coding gain of CBAC compared with CABAC.

Sequences Kayak Mobile calendar Husky Basketball Football Average

(a) At middle bit-rates

DPSNR (dB) �0.12 �0.05 0.01 0.06 0.12 0.005

DRate (%) 1.7 �0.05 0.0 �0.9 �2.5 �0.2

(b) At high bit-rates

DPSNR (dB) 0.22 0.16 0.20 0.20 0.17 0.19

DRate (%) �2.1 �2.4 �1.2 �1.8 �2.1 �1.7

Table 8
Bit savings provided by context weighting.

Sequences Without

weighting

(bpf)

Weighting

(bpf)

Bit savings

(%)

Bus 4996 4503 10.62

Foreman 2824 2589 9.5

Mobile 7536 6369 15.86
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PSNR is in a range of 30–40 dB. Fig. 10 depicts the rate-
distortion curves of the luminance component for ‘kayak’
and ‘Husky’ sequences. Furthermore, we employed
Bjontegarrd delta PSNR as described in Ref. [1] to calculate
the average coding gains. The coding gains of C2DVLC
relative to CAVLC are shown in Table 6. The average PSNR
gain is 0.08 dB. It can be observed that C2DVLC can
provide comparable rate-distortion performance for all
tested sequences with CAVLC. Especially, for ‘kayak’
sequence at 1920�1088@30 Hz, the average PSNR gain
is up to 0.25 dB.

5.2. Coding performance of CBAC

In this subsection, CBAC is compared to CABAC in
H.264/AVC to evaluate its coding performance. CABAC,
including its context modeling designed for 8�8
DCT coefficients and the adaptive binary arithmetic
coding, is transplanted from JM10.2 [10] to Rm62c.
JM10.2 is the reference software for H.264/AVC which is
released by JVT. In CABAC, the fixed context initialization
method is applied. While in CBAC, the initial probabilities
of 0 and 1 are set to be equal in each context, which
are 0.5.

Fig. 11 depicts the rate-distortion curves of CBAC and
CABAC at ‘Harbour’ and ‘Night’ sequences in 720p@60 Hz.
From this figure, we can see that CBAC achieves the
similar coding efficiency as CABAC. Table 7 (a) shows the
average coding gains of CBAC relative to CABAC under QP
24, 28, 32, and 36. For these QPs, the PSNR is in a range of
30–40 dB, corresponding to middle bit-rates. The results
listed in Table 7(b) are obtained under four smaller QPs,
10, 12, 14, and 16, which correspond to the PSNR values in
the range from 40 to 50 dB. From these two tables, it can
be easily observed that CBAC can achieve comparable
coding efficiency with CABAC. Overall, the average PSNR
gains of 0.005 and 0.19 dB can be obtained by CBAC at
middle to high bit-rates separately. With bit-rate in-
creased, the coding gain becomes larger.

To verify the efficiency of the context weighting
technique, three common testing sequences with CIF
format, Bus, Foreman, and Mobile, are used. Table 8 lists
the bit savings of the first bin of absLevel. In the testing, QP
is set to be 27 with rate-distortion optimization off. The
average bits used for coding the first bin of absLevel per
frame without the context weighting technique is shown
in the second column while the third column shows the
average bits per frame (bpf) using the context weighting
technique. In the last column, the average bit savings is
listed. It can be observed the context weighting technique
can save up to 15.86% coding bits.

5.3. CBAC compared to C2DVLC

This subsection demonstrates that CBAC can signifi-
cantly outperform C2DVLC in terms of coding efficiency.
Table 9 lists the coding gains (both in PSNR increase and
bit-rate savings) of CBAC compared with C2DVLC. It can be
observed that CBAC shows superior coding performance in
comparison to C2DVLC. For the tested sequences, average
PSNR gains from 0.25 to 0.59 dB, equally about 6.4–10.1%
bit-rate savings, are obtained.

6. Conclusions

This paper presents the two context-based entropy
coding schemes, C2DVLC and CBAC, adopted in AVS Part-2
Jizhun profile and Jiaqiang profile respectively. C2DVLC
jointly encodes Level and Run and utilizes multiple 2D-VLC
tables to exploit the statistical features of DCT coefficients
for higher coding efficiency. E–G codes are applied
in C2DVLC to code (Level, Run) pairs for low storage
requirement. CBAC improves the coding efficiency with
acceptable extra computational complexity. The further
coding efficiency comes from three aspects. Firstly, the
novel context quantization method allows characteriza-
tion of high-order Markov processes without suffering
from context dilution problem. Secondly, the context
weighting technique can merge multiple context models
into one. Thirdly, the binary arithmetic coder also plays an
important role for efficiency improvement. Moreover,
CBAC is designed to be compatible to C2DVLC in coding
elements which simplifies the implementations. The
experimental results demonstrate that both C2DVLC and
CBAC can achieve comparable or even slightly higher
coding performance when compared to CAVLC and CABAC
in H.264/AVC, respectively.
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