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Abstract— Compact descriptors for visual search (CDVS) is a
recently completed standard from the ISO/IEC moving pictures
experts group (MPEG). The primary goal of this standard is
to provide a standardized bitstream syntax to enable interoper-
ability in the context of image retrieval applications. Over the
course of the standardization process, remarkable improvements
were achieved in reducing the size of image feature data and in
reducing the computation and memory footprint in the feature
extraction process. This paper provides an overview of the
technical features of the MPEG-CDVS standard and summarizes
its evolution.

Index Terms— Compact descriptors, feature compression,
MPEG-CDVS, visual search.

I. INTRODUCTION

OVER THE past decade, mobile phones and tablets have
become devices that are suitably equipped for visual

search applications. With high-resolution cameras, powerful
CPUs and pervasive wireless connections, mobile devices can
use images as search queries for objects observed by the
user. Emerging applications include scene retrieval, landmark
recognition, and product identification, among others. Exam-
ples of early commercial mobile visual-search systems include
Google Goggles [1], Amazon Flow [2] and Layar [3].

The requirements for mobile visual search, such as faster
searches, higher accuracy and better user experience, pose a
unique set of challenges. Normally, a mobile visual search
system transmits JPEG-encoded query images from the mobile
end to the remote server, where a visual search is performed
over a reference image database. However, image transmission
could take anywhere from a few seconds to a minute or more
over a slow wireless link, and wireless upload might even time-
out in the case of an unstable connection. On the other hand,
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on-device image analysis, either for mobile image matching
or for the transmission of a compact signature to the cloud,
might be computationally demanding and hence slow.

In Figure 1, we present four typical client-server
architectures, as follows:

• In Figure 1(a), a JPEG-encoded query image is trans-
mitted to the server. Visual descriptor extraction and
matching/retrieval are performed entirely on the server;

• In Figure 1(b), visual descriptors are extracted and
compressed on the mobile client. Matching/retrieval is
performed on the server using the transmitted feature data
as the query;

• In Figure 1(c), a cache of the database is maintained
on the mobile device, and image matching is performed
locally. Only if a match is not found does the mobile
device send the query to the server for a remote retrieval;

• In Figure 1(d), the mobile device performs all the image
matching locally, which is feasible if the database is small
and can be stored on the mobile device.

In each case, the retrieval framework must adapt to stringent
mobile system requirements. First, the processing on the
mobile device must be fast, lightweight and have low power
consumption. Second, the size of the data transmitted over the
network must be as small as possible to reduce the network
latency. Finally, the algorithms used for retrieval and matching
must be scalable to potentially very large databases and robust
to allow reliable recognition of objects captured under a wide
range of conditions, such as partial occlusions, changes in
vantage point, camera parameters, and lighting.

Initial research on the topic [4]–[9], [21] demonstrated that
one could reduce transmission data by at least an order of
magnitude by extracting compact visual features efficiently
on the mobile device and sending descriptors at low bitrates
to a remote server for performing the search. A significant
reduction in latency could also be achieved when performing
all processing on the mobile device itself.

Following initial research on the topic, an exploratory
activity in the Moving Picture Experts Group (MPEG) (formal
title “ISO/IEC JTC1 SC29 WG11”) was initiated at the
91st meeting (Kyoto, Jan. 2010). As MPEG exploratory work
progressed, it was recognized that the suite of existing MPEG
technologies, such as MPEG-7 Visual, did not include tools
for robust image retrieval and that a new standard would
therefore be needed [10]. It was further recognized that,
among several component technologies for image retrieval,
such a standard should focus primarily on defining the format
of descriptors and those parts of their extraction needed to
ensure interoperability. Such descriptors need to be compact,
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Fig. 1. In (a), the mobile device transmits a JPEG-compressed query image to the server, where all matching is performed against a database of images.
In (b), the mobile device analyzes the query image, extracts features, and transmits compressed feature data. The retrieval algorithms run on the server.
In (c), the mobile device maintains a cache of the database and performs image matching locally. Only if a match is not found does the mobile device send
a compressed feature query request to the server. In (d), all processing is performed locally.

image format independent, and sufficient for robust image
matching. Hence, the title Compact Descriptors for Visual
Search (CDVS) was coined as the name for this activity.
Requirements and evaluation framework documents were sub-
sequently produced to formulate precise criteria and evaluation
methodologies to be used in the selection of technology for
the standard [11], [12]. The envisioned MPEG-CDVS standard
would have to

• ensure interoperability of visual search applications and
databases,

• reduce load on wireless networks carrying visual
search-related information,

• provide a basis for hardware-supported descriptor
extraction and matching in mobile devices,

• enable a high level performance of implementations
conformant to the standard, and

• simplify the design of descriptor extraction and matching
for visual search applications.

It is envisioned that the standard might also be used in con-
junction with other existing MPEG and JPEG standards, such
as MPEG Query Format, HTTP, XML, JPEG, and JPSearch.

The CDVS standard (formally known as MPEG-7, Part 13)
was published by ISO on August 25th, 2015 [14], and this
standard evolved based on the development framework estab-
lished for all MPEG standards: requirements for technology
are first specified [13], technology is requested through an
official “Call for Proposals” [12], and the technology proposed
to MPEG is thoroughly evaluated by MPEG experts based on
a previously agreed-upon methodology [11].

Over the course of the standardization process, a total of
366 input documents were received, of which there were
99 contributions to core experiments (CE). The standard
witnessed active participation from a number of compa-
nies, universities and research institutes: key participants
included Stanford University, Peking University, Surrey
University, Telecom Italia, Qualcomm, STMicroelectronics,
Huawei, Nokia, NEC, Samsung, ETRI, Visual Atoms,

and others. After 14 iterations, the final software reference
model, TM 14.0, was released after the 112th meeting
(Warsaw, Jun. 2015) [14].

By thoroughly testing state-of-the-art visual search technol-
ogy proposals and performing competitive and collaborative
experiments within a rigorous evaluation framework [12], the
CDVS working group has observed remarkable improvements
in image retrieval performance with very compact feature data.
High performance is achieved while also satisfying stringent
memory and computational complexity requirements at each
step of the feature extraction pipeline, making the standard
ideally suited for both hardware and software implementations.
This paper presents an overview of the CDVS standard,
including its development and key technical contributions, and
reports the most important performance results. In Section II,
we present the building blocks of the standard. In Section III,
we provide details of each normative block. In Section IV, we
briefly discuss non-normative parts of the standard, which
are also part of the reference software. In Section V, we
discuss the evaluation framework, evolution of the standard,
and detailed results.

II. HIGHLIGHTS

The MPEG-CDVS standard defines the bitstream
(i.e., binary representation syntax) of descriptors and
the descriptor extraction process [14]. The key building
blocks are shown in Figure 2. To be compliant, the syntax of
the descriptors needs to conform to the CDVS standard.

CDVS supports interoperability in two ways. First,
it standardizes the bitstream syntax of descriptors. Second,
it provides the framework for matching descriptors encoded
at different bit rates. The latter feature allows for a compact
database with compressed features and bit-rate scalability of
the query.

The algorithms for retrieval and matching are not part of
the standard. Video compression experts will note that the
approach is the dual of what is performed for video coding
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Fig. 2. Normative blocks of the CDVS standard. Compressed global and local features are extracted from the query image and combined to form the final
bitstream.

standards in which the bitstream syntax and the decoder are
standardized. For CDVS, the bitstream syntax and the encoder
are standardized. The modules in Figure 2 are the minimum
building blocks required to maintain interoperability.

A. Data Sets and Evaluation

The CDVS evaluation data set is an order of magnitude
larger than other popular data sets, such as INRIA Holidays
and Oxford Buildings. The data set has considerably more
variety in the type of objects, scale, rotation, occlusion and
lighting conditions than the INRIA Holidays and Oxford data
sets, as discussed in [15]. Both pairwise matching and retrieval
experiments are included in the evaluation framework, and
performance is evaluated as a function of bitrate. For pairwise
matching, the ground-truth data of 10,155 matching image
pairs and 112,175 non-matching image pairs are provided.
For retrieval experiments, 8314 query images, 18840 refer-
ence images, and a distractor set of 1 million images from
Flickr [16] are used.

B. Interest Point Detection and Local Feature Description

The CDVS standard adopts a low-degree polynomial (ALP)
detector followed by the popular SIFT descriptor. To find inter-
est points, ALP approximates the result of the LoG filtering
using polynomials, which are used to find extrema in the scale
space and to refine the spatial position of the detected points.
Although not mandated by the standard, a block-based fre-
quency domain Laplacian of Gaussian (BFLoG) approach [17]
can be integrated with the ALP detector to accomplish a block-
based scale-space interest point detector ALP_BFLoG [24].
ALP_BFLoG divides the original scale space into overlapping
blocks, and interest point detection is performed on each block
independently, thereby reducing the memory cost required by
filters and scale-space buffers by an order of magnitude. The
block-based interest point detection makes the entire pipeline
amenable to hardware implementation with low memory cost.

C. Local Feature Selection

A subset of feature descriptors is selected to satisfy rate
constraints at each descriptor length. A relevance measure is
calculated for each local feature, which indicates the probabil-
ity of a query feature matching a database feature [18]. The
relevance measure is statistically learned, and it is based on
the scale, peak response of the LoG, and the distance from the
image center of each local feature, as well as other measures
that will be discussed in the following. Features are ranked

based on the relevance measure, and a fixed number of features
are selected based on the total feature data budget and the
number of bits per feature.

D. Local Feature Descriptor Compression

A low-complexity transform coding scheme is adopted in
the CDVS standard [19]. The descriptor transform is followed
by ternary scalar quantization and instantaneous variable-
length coding. Rather than applying a transform to the entire
descriptor, small linear transforms are applied to the 8 values
of each individual spatial bin of the SIFT descriptor. Only a
subset of transformed descriptor elements is included in the
bitstream. This subset is selected according to a standardized
priority table that has been optimized for the best retrieval
performance. The number of transformed descriptor elements
included ranges from 20 of 128 for the smallest image
descriptor length (512 and 1024 bytes) to 128 of 128 for the
largest image descriptor length (16384 bytes).

E. Local Feature Location Compression

The location coding scheme in the CDVS standard is based
on the key insight that the original ordering of the features can
be discarded and that one can save up to additional log(n!) bits
for n features beyond the entropy-coded bitstream [20], [39].
A histogram coding scheme is adopted, which reorders feature
data based on x, y location and achieves the log(n!) ordering
gain. Location data are represented as a spatial histogram
consisting of a binary map and a set of histogram counts.
The histogram map and counts are encoded using a binary
context-based arithmetic coding scheme.

F. Local Feature Descriptor Aggregation

A scalable compressed Fisher Vector (SCFV) representation
is adopted in the CDVS standard [21]. For compressing high-
dimensional Fisher vectors, a subset of Gaussian components
from the Gaussian Mixture Model (GMM) are selected based
on the total feature data budget, and only the information in
selected components is retained. A different set of components
is selected for each image based on where the energy is
concentrated in the Fisher vector. A small set of header bits
indicate which components are selected for each aggregated
global feature. SCFV provides high matching accuracy with
negligible memory requirements compared to the conventional
Fisher vector compression approaches based on PCA or vector
quantization.
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III. NORMATIVE BLOCKS

A. Interest Point Detection and Local Feature Description

Local feature extraction involves detecting interest points
and characterizing interest points with feature descriptors:
high-dimensional representations that describe scale and rota-
tion invariant patches [22]. The CDVS standard includes a
Laplacian of Gaussian (LoG) interest point detector, followed
by the popular SIFT descriptor [22]. The image scale space
is represented as an image pyramid in which an image is
successively filtered by a family of smoothing kernels at
increasing scale factors. Normalized derivatives at each scale
in the image pyramid are computed, and interest points are
computed by searching for local extrema in scale space [22].

The important novelty of the standard is a Laplacian of
Gaussian (LoG) interest point detector based on polynomial
approximations. The adopted low-degree polynomial (ALP)
approach approximates the result of the LoG filtering [23].
Subsequently, scale-space extrema are found and refined to
compute the precise spatial positions of the detected points.
Specifically, to approximate the LoG scale space, ALP uses a
polynomial function with regard to the scale parameter σ for
each pixel (x, y) in the image:

p(x, y, σ ) =
∑K−1

k=0
ak Lk(x, y)σ 3 +

∑K−1

k=0
bk Lk(x, y)σ 2

+
∑K−1

k=0
ck Lk(x, y)σ +

∑K−1

k=0
dk Lk(x, y)

(1)

where ak, bk, ck , and dk are the coefficients (stored in a nor-
mative table) corresponding to the K = 4 predefined scales σk

and {Lk(., .)|k = 0, . . . , 3} are K octave images produced by
scale-normalized Laplacian filtering of the Gaussian-filtered
images. To detect the scale-space extrema, ALP first locates
the local extrema in the σ direction by setting its first derivative
to zero, and then it compares the point to its 8 neighbors in
the X-Y plane with respect to coordinates x and y.

Comparisons With Other Schemes: ALP’s interest point
detection is more efficient than conventional scale-space
extrema detectors that compare response values at each point
to 3 × 3 × 3 − 1 = 26 neighbors in scale space, as ALP is
built upon 4 LoG-filtered images to approximate the LoG scale
space rather than 5 (or more) LoG-filtered images in the LoG
detector or 6 (or more) Gaussian-filtered images in a typical
Difference of Gaussians (DoG) detector [22].

B. Local Feature Selection

Based on the image content, interest point detection can
result in several hundred to several thousand features, even
for VGA-resolution images. For small feature data sizes
(512 bytes to 4 KB), it is not feasible to include all features,
even if the number of bits per descriptor is small [18].
Consequently, selecting a subset of feature descriptors
becomes critical. There are also other advantages of feature
selection. Local feature descriptors are aggregated to form
the global feature descriptor. Incorporating noisy local fea-
tures can degrade the discriminative power of the global
descriptor. Finally, feature selection can also save considerable
computation time in the feature extraction block: the most

time-consuming module in the CDVS encoding process. Note
that the feature selection problem here differs from that in
supervised learning tasks, where a subset of individual dimen-
sions of a feature are selected for improving classification
performance [27].

In the CDVS standard, a relevance measure is computed for
each local feature. The relevance measure indicates the a priori
probability of a query feature matching a database feature.
For example, query features that are closer to the center of
the image are more likely to match. Similarly, features from
more textured regions are more distinctive and discriminative
and hence more likely to match database features. The rel-
evance measure has been statistically learned based on five
characteristics of interest points: the scale σ of the interest
point, the peak response value p of the LoG, the distance d
from the interest point to the image center, the ratio ρ of
the squared trace to the determinant of the Hessian, and the
second derivative pσσ of the scale-space function with respect
to scale.

By assuming that different interest point characteristics are
conditionally independent given a feature match, conditional
distributions of feature matching are learned for each charac-
teristic using an independent data set [18], [28] during the stan-
dardization. Note that these parameters of learned conditional
distributions are quantized within the intervals in the norma-
tive tables, and each quantization interval has an associated
scalar value in the normative tables. To learn the conditional
distributions, pairwise feature matching with SIFT features,
ratio test, and a geometric consistency check [22], [29]
were performed on a large data set of matching image pairs
to obtain a set of matching and non-matching feature pairs.
Note that the matching is performed with ALP as the detector
and SIFT (uncompressed) as the descriptor. In the geometric
verification step, the minimum number of inliers for matching
image pairs was set to a stringent threshold of 30 to ensure few
outliers and high-quality matching feature pairs. The statistics
of the matching feature pairs were then used to estimate the
conditional distributions.

The relevance score r for a feature is obtained by multiply-
ing the conditional probabilities of each characteristic:

r(σ, p, d, ρ, pσσ ) = f1(σ ) f2(p) f3(d) f4(ρ) f5(pσσ ), (2)

where the factors f1 ∼ f5 are taken from the normative
tables of the learned conditional distributions according to the
interest point characteristics. Finally, features are ranked based
on the relevance measure, and a fixed number of features
are selected based on the total feature data budget and the
number of bits per feature. Figure 3 shows an example of
feature selection: the interest points of the image are plotted
with circles whose diameters are proportional to the relevance
measures.

Comparisons With Other Schemes: A naive approach for
feature selection is to rank features based on the peak response
from the interest point detector. The adopted approach,
which takes several interest point characteristics into account,
achieves considerably better performance, particularly at low
rates [18]. A significant improvement in performance is also
obtained when features are selectively aggregated based on
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Fig. 3. The interest points of the image are plotted with circles whose
diameters are proportional to the relevance measures.

Fig. 4. Cell histogram consisting of 8 angular bins.

the relevance measures in the global descriptor [30]. The
initial draft of the standard also included a sixth factor in
Equation 2, which made feature selection dependent on the
feature orientation. However, the observed gains were small,
and orientation dependence was dropped when CDVS was
finalized.

C. Local Feature Descriptor Compression

The uncompressed SIFT descriptor is conventionally stored
as 1024 bits per descriptor (128 dimensions and 1 byte per
dimension). Even a small number of uncompressed SIFT
descriptors results in tens of KBs of data; hence, local feature
descriptor compression is critical for reducing the feature data
size. Using novel compression schemes, the number of bits per
descriptor is significantly reduced by an order of magnitude
with little loss in matching performance. Several compression
schemes based on Product Quantization (PQ) [31], Product
Tree Structured Vector Quantization (PTSVQ) [32], [33],
Multi-stage Vector Quantizer (MSVQ) [34], lattice coding [5]
and transform coding [35], [36] were proposed over the course
of the standardization. Eventually, a low complexity transform
coding scheme was adopted after thorough evaluation.

The transform coding scheme adopted in the standard is
described in [14], [35], [36]. For a local feature descriptor,
each of the cell histograms H0, . . . , H15, as shown in Figure 5,
each with angular bins h0, . . . , h7, as shown in Figure 4, are
independently transformed.

There are two main steps: the descriptor transform, based
on simple additions and subtractions of SIFT components,

Fig. 5. Two sets of transforms (A, B) as defined in Equations 3 and 4 are
applied in an alternating manner to the values in each spatial bin of the SIFT
descriptor.

followed by ternary scalar quantization and entropy coding
of the transformed elements. Rather than applying an order-
128 transform to the entire descriptor (which can degrade
performance [37]), small order-8 linear transforms are applied
to individual spatial bins of the SIFT descriptor. Two sets of
linear transforms are defined in Equation set 3 and Equation
set 4 (also referred to as (A) and (B), respectively):

v0 = (h2 − h6)/2

v1 = (h3 − h7)/2

v2 = (h0 − h1)/2

v3 = (h2 − h3)/2

v4 = (h4 − h5)/2

v5 = (h6 − h7)/2

v6 = ((h0 + h4) − (h2 + h6))/4

v7 = ((h0 + h2 + h4 + h6) − (h1 + h3 + h5 + h7))/8 (3)

v0 = (h0 − h4)/2

v1 = (h1 − h5)/2

v2 = (h7 − h0)/2

v3 = (h1 − h2)/2

v4 = (h3 − h4)/2

v5 = (h5 − h6)/2

v6 = ((h1 + h5) − (h3 + h7))/4

v7 = ((h0 + h1 + h2 + h3) − (h4 + h5 + h6 + h7))/8 (4)

where h0 ∼ h7 denote the bins of each cell histogram for a
local feature descriptor, as shown in Figure 4.

The transforms are applied in an alternating manner, as
shown in Figure 5. Adjacent spatial bins of the SIFT descriptor
have similar values; hence, applying different transforms to
adjacent bins improves performance, particularly at extremely
low rates such as 32 bits per descriptor [38]. The subset of
transform elements, the number of bits per descriptor and
the number of descriptors are empirically optimized for each
descriptor length, resulting in 32, 32, 65, 103, 129, and 205 bits
on average at descriptor lengths of 512 bytes, 1 KB, 2 KB,
4 KB, 8 KB, and 16 KB, respectively. The alternating grid
pattern shown in Figure 5 also emerges from the greedy rate
allocation scheme proposed in [38].
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Given two quantized local feature descriptors Vq = {vq
i |i =

0, 1, . . . 127} and Vr = {vr
i |i = 0, 1, . . . 127}, their similarity

distance Dis(.) is computed in the transform domain using
the L1 norm:

Dis(Vq , Vr ) =
∑127

i=0
sq

i sr
i

∥∥v
q
i − vr

i

∥∥
L1

, (5)

where sq
i and sr

i denote whether the ith transform element
of Vq or Vr is selected. Note that Equation 5 permits the
comparison of descriptors encoded at different bitrates by only
considering the transformed descriptor elements that both have
in common. The fixed prioritization scheme of the standard
ensures that each element of a descriptor at a lower bitrate is
also present in a descriptor at a higher bitrate.

Comparisons With Other Schemes: The transform coding
scheme was selected over several other VQ and lattice coding
schemes because of its simplicity, low memory and compu-
tational complexity, and excellent performance at very low
rates. The memory cost of the transform coding scheme is
negligible compared to the hundreds of KBs [32] or hun-
dreds of MBs [33] required for product vector quantization
schemes. The primary memory required is 128 (elements of
the transform) × 2 (ternary SQ thresholds) = 256 bytes [35].
Furthermore, the scheme has lower computational complexity
than VQ schemes that require nearest neighbor search over
codebooks. At low rates, the transform coding scheme per-
forms comparably or better than several VQ-based approaches,
lattice coding, and binary hashing schemes, as observed from
the detailed patch-level evaluation in [38]. This approach
comes close to the performance of entropy constrained vector
quantization and greedy rate allocation, a scheme that is
close to the performance bound that can be achieved by any
compression scheme [38].

In addition to the transform coding scheme, an
MSVQ scheme is also available in an intermediate
Test Model (4.0) [34]. The MSVQ scheme substantially
reduces codebook memory requirements (38 KB [34]
versus 60∼150 MB for storing a large codebook containing
0.1∼1 million words [32], [33]) while maintaining comparable
matching performance. The MSVQ scheme uses 2-stage vector
quantization: a tree structured quantizer in the first stage
followed by product quantization for the residuals. Compared
to the MSVQ scheme, the CDVS standard adopted transform
coding scheme is superior in terms of complexity.

D. Local Feature Location Compression

A problem related to descriptor compression is the compres-
sion of the x, y location data of each feature. Each descriptor
has an x, y location associated with it, which is used in the
Geometric Consistency Check (GCC) step. If x, y location
data are represented as floating point numbers, then the size
of the location data is often comparable to the size of the
compressed descriptors themselves [39].

The location histogram coding scheme adopted in the CDVS
standard is described in [39], [40], and [20]. The location
coding scheme is based on the insight that if the original
ordering of n features can be discarded, then one can achieve
an additional log(n!) bits in savings over and above the original

Fig. 6. Additional bitrate savings of log(n!) can be achieved if the original
order of location data is discarded for n features. The ordering gain increases
as the number of features increases.

Fig. 7. Pipeline for encoding feature location data. Feature location data are
quantized with a uniform grid. The histogram map and counts are subsequently
encoded: the resulting scheme achieves an ordering gain of log(n!)
for n features.

entropy-coded bitstream. The original order in which features
are extracted is discarded in both steps of a visual search
pipeline: matching with bag-of-words or global descriptors
and the GCC step. The location histogram coding scheme
is a practical scheme for achieving the log(n!) rate savings.
The ordering gain normalized by the number of features is
shown in Figure 6: the ordering gain increases as the number
of features increases. For a few hundred features, the ordering
gain is 6-8 bits per feature, which is significant considering
that each feature is typically encoded with only 32 to 100 bits.

The location histogram coding scheme is presented
in Figure 7. Each image is subdivided into non-overlapping
blocks of size 3×3, and the location (x, y) data of each
feature are quantized to the grid. The location data are then
represented as a histogram consisting of (a) a histogram map
and (b) histogram counts. The histogram map indicates which
bins of the histogram are non-empty, whereas the histogram
count indicates the number of features in each non-empty
block. The descriptors are re-ordered based on the order of
locations in the histogram map.

The histogram count is encoded using a 64 symbol, single
model, static arithmetic coding scheme. The histogram map
is encoded using a binary context-based static arithmetic
coding scheme. As illustrated in Figure 8, the sum of features
in neighboring blocks is used as context for encoding the
histogram count of a given block. The sum-based context
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Fig. 8. The sum of features (3 in this case) in the scan neighborhood (dark
gray block) is used as context for encoding the bin count of the current block
(yellow). As shown, a clockwise circular scanning of the histogram map is
applied, beginning with elements located at the center of the image toward
elements located at a periphery of the image.

exploits the clustering of feature locations, which is typically
found in images [39]. Rather than a raster-scan, a clockwise
circular scanning of the histogram map is applied due to the
higher density of features at the image center. Furthermore,
∼6 bits per feature are used for location coding compared
to ∼12 bits per feature for lossless location coding with the
default block size of 1×1, which applies arithmetic coding to
raw location coordinates (note that log2(640×640) = 18.6 bits
per feature are required to store the raw coordinates). The
gain results from quantizing location data to a 3×3 grid
and the ordering gain discussed above. The lossy location
histogram coding scheme results in a negligible decrease in
matching performance for both pairwise matching and retrieval
experiments [40].

Comparisons With Other Schemes: Several schemes have
been proposed to achieve the log(n!) ordering gain. An alter-
native approach to reordering location data for achieving the
ordering gain is to impose an ordering on the descriptor
data. A scheme based on coarsely quantizing features with
a vocabulary tree is proposed in [7]. Run-length encoding
of the non-zero bins in the histogram results in the ordering
gain. This approach is not feasible in the CDVS framework
because it requires a large dictionary in the encoding step:
the memory limit for the entire pipeline is set to 1 MB.
Another approach is based on reordering data with binary
search trees [42]–[44]. The Digital Search Tree (DST) coding
scheme in [42] and [43] can be applied to data with arbitrary
long symbols, whereas the location histogram coding scheme
is only applicable in situations where the histogram bins and
counts can be explicitly enumerated. The location histogram
coding scheme is simpler and slightly outperforms the DST
coding scheme [43]. The improvement over the DST scheme
is due to the context-based arithmetic coding, which exploits
the statistical dependency of neighboring histogram counts.

E. Local Feature Descriptor Aggregation

State-of-the-art image retrieval systems are based on global
descriptors such as Vector of Locally Aggregated Descrip-
tors (VLAD) [45] and Fisher Vectors (FV) [48]. The Bag-of-
Words (BoW) model also remains a popular choice [4], [50].
In the BoW framework, images are represented by histograms
obtained by quantizing descriptors with a large vocabulary tree
(e.g., 1 million visual words), and an inverted index is used for
fast matching. In the global descriptor framework, images are

Fig. 9. The global descriptor pipeline in the CDVS standard.

represented by dense high-dimensional vectors (dimensions
of ∼ 10K-100K). Finding a compact global descriptor that
achieves high performance and requires little memory has been
one of the main challenges of the CDVS standardization. The
CDVS requirement of low memory (a maximum of 1 MB
for the entire encoding process) makes BoW approaches
unsuitable for this task [7].

The CDVS standard adopted the Scalable Compressed
Fisher Vector (SCFV) [21], [51]–[54] after extensive experi-
mentation. The SCFV pipeline, illustrated in Figure 9, is built
upon the baseline FV model of [30] and [46]–[49]. It uses
a Gaussian Mixture Model (GMM) with 512 components to
capture the distribution of up to 250 local feature descriptors.
The gradient of the log-likelihood for an observed set of local
feature descriptors with respect to the mean and for higher
bitrates, the variances of the GMM are concatenated to form
the FV representation [48], [56]. Each descriptor is assigned
to multiple Gaussians (visual words) in a soft assignment
step. The FV representation requires a considerably smaller
vocabulary compared to the BoW model, thus satisfying the
specified memory requirements.

Uncompressed FV, stored as floating point numbers, require
thousands of bytes, which can be larger than the size of
compressed local feature descriptors. To compress the FV,
SCFV uses one-bit scalar quantizers, which allows for fast
matching with the Hamming distance. At each descriptor
length, the bit budget needs to be shared between the com-
pressed global descriptor and a set of compressed local fea-
ture descriptors. For this purpose, SCFV uses rate-scalable
representations (with an average size of 304, 384, 404, 1117,
1117, and 1117 bytes for the six specified bitrates) by selecting
a subset of Gaussian components in the GMM based on
the standard deviation of certain components (representing
the gradient with respect to component mean) of the fully
populated Fisher vector and retaining only the information
associated with the selected components [54]. Extensive exper-
iments showed that the adopted standard deviation-based
approach, which excels in removing non- or less discriminative
components to form a more robust FV representation, and
selecting informative components to undergo less negative
performance impact from sign quantization [54], has outper-
formed the quantization error-based selection method [21].
Specifically, for each Gaussian component i , the standard
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Fig. 10. The image-wise scale space in (a) is approximated by the block-wise scale space in (b) by decomposing each octave image Qq into square R-pixel
overlapped blocks; Wq and Hq are the width and height of Qq , respectively, and N is the block size.

deviation δ(i) of the 32-dimensional accumulated gradient
vector g = [g0, g1, . . . , g31] with respect to the mean of that
Gaussian component is calculated as:

δ(i) =
√

1

32

∑31

j=0
(g j − 1

32

∑31

k=0
gk)

2

(6)

Then, the Gaussian components are ranked in descending order
according to δ(i). For the three lower descriptor lengths of
512 bytes, 1 KB and 2 KB, the predefined top k Gaussian com-
ponents are selected; for the three higher descriptor lengths
of 4 KB, 8 KB and 16 KB, the ith Gaussian component is
selected if δ(i) > τδ, where τδ denotes the selection threshold.
The remaining budget is filled with compressed local feature
descriptors at each descriptor length. Note that a different set
of GMM components are selected for each image based on
which components appear to be the most informative. A small
set of header bits indicate which components are selected.
SCFV includes the log-likelihood gradient with respect to the
GMM variance parameters for higher image descriptor lengths
(4 KB, 8 KB, and 16 KB). For lower image descriptor lengths,
only the gradient with respect to the mean is used.

Given two images X and Y , we can calculate the Hamming
distance-based similarity score S(.) of SCFV:

S(X, Y ) =
∑511

i=0 bX
i bY

i wHa(u X
i ,uY

i )(32 − 2H a(u X
i , uY

i ))

32
√∑511

i=0 bX
i

√∑511
i=0 bY

i

(7)

where u X
i denotes the ith binarized Gaussian component

(gradient with respect to mean or gradient with respect to
variance) in GMM. bX

i = 1 if the ith component is selected;
otherwise, bX

i = 0. H a(u X
i , uY

i ) represents the Hamming
distance of the ith Gaussian component between X and Y ,
ranging from 0 to 32. wHa(u X

i ,uY
i ) denotes the correlation

weights [58] for the ith Gaussian component.
Comparisons With Other Schemes: A watershed moment

in the development of the CDVS standard was the adoption
of the 512 byte Residual Enhanced Visual Vector (REVV)
global descriptor into the test model TM2.0 [57]. Combining
global and local feature descriptors improved the performance
at each descriptor length over prior approaches based solely

on local feature descriptors [57]. REVV is similar to the
VLAD descriptor [45], but it incorporates several improve-
ments to close the performance gap between VLAD and
BoW representations [58], [59]. Key enhancements include
more effective residual aggregation, dimensionality reduction
of residuals using LDA projection matrices, and weighted
distance measures for matching. An enhancement titled Robust
Visual Descriptor (RVD) [60] was introduced to incorporate
soft assignment to quantized words in REVV. Finally, SCFV
was adopted by the CDVS standard because it outperformed
other global descriptor approaches. SCFV incorporates several
new ideas that REVV had introduced, such as learning corre-
lation weights used in signature comparison. SCFV requires
significantly less memory than REVV: the main memory
requirement is in the descriptor PCA projection matrix (4 KB)
and GMM parameters (38 KB), ∼ 42 KB in total. Alternate
global descriptor compression approaches that require PCA
projection matrices for the entire FV or large product quanti-
zation tables are prohibitive given the 1 MB memory limit of
the CDVS requirements. [45], [61].

IV. NON-NORMATIVE BLOCKS

The CDVS standard includes several useful non-normative
blocks in the reference software: a block-based scale-space
interest point detector called ALP_BFLoG [24], Multi-Block
Index Table (MBIT) indexing structure [65], [68] for fast
matching of binary global descriptors and a fast GCC algo-
rithm called DISTRAT [64].

ALP_BFLoG employs a block-based scale-space repre-
sentation [17], [24]–[26]. As illustrated in Figure 10, the
original scale space is sub-divided into overlapping blocks,
and interest point detection is performed on each block
independently, thereby significantly reducing the memory cost
required by filters and scale-space buffers. The block-wise
scale-space implementation BFLoG allows for fast frequency
domain filtering, thus reducing computational cost. In the
original spatial domain (such as the spatial ALP default
implementation [23] and the well-known DoG detector [22]),
convolution requires that each pixel in the input image is
linearly combined with its neighbors, and the neighborhood
size increases with scale. The equivalent multiplication in
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TABLE I

RUNTIME MEMORY, TIME COST, AND PERFORMANCE COMPARISON
BETWEEN ALP_BFLoG, ALP AND DoG OVER MPEG CDVS
BENCHMARK DATASETS. (TESTED ON A WINDOWS PC WITH

AN INTEL CORE CPU i5 3470@3.2 GHz). NOTE THAT THE

RUNTIME MEMORY COST IS GREATER THAN THE
THEORETICAL MEMORY USE IN TERMS OF

FILTERS AND BUFFERS AS

REPORTED ABOVE

the Discrete Fourier Transform (DFT) domain is independent
of scale. Because each block has a fixed size, convolution
filters are pre-computed in the DFT domain at different
scales.

There is a trade-off in the block size, overlap step size,
computational complexity and performance of the detector.
The parameters are selected based on minimizing scale-space
distortion constraints, which are subject to computational
complexity constraints [17]. The optimal block size is
128×128 pixels, with an overlap of 16 pixels selected empir-
ically to maximize BFLoG performance [24]. The BFLoG
and ALP approaches were integrated to achieve the block-
based scale-space interest point detector ALP_BFLoG to sig-
nificantly reduce the complexity of the spatial ALP default
implementation, where the block-wise processing incorporates
LoG filtering, extrema detection, and orientation assignment
of keypoints.

ALP_BFLoG provides two major advantages. First,
ALP_BFLoG significantly reduces the footprint of filters and
buffers to 850 KB, an order of magnitude smaller than the full
scale-space representation of the default ALP implementation
and the well-known DoG detector, which require 5.98 MB and
12.9 MB [22], respectively. Second, frequency domain filtering
is used to reduce the computational complexity by ∼18%
compared with the spatial ALP implementation. As listed in
Table I, ALP_BFLoG has yielded comparable or slightly better
performance in pairwise matching experiments, at significantly
reduced runtime memory and time cost (excluding the time
cost of computing local feature descriptions).

MBIT is an indexing structure for significantly improving
search efficiency over large-scale image databases. For the
long binary global descriptor, even though the Hamming
distance can be computed very rapidly, the accumulated com-
putational cost from exhaustive linear searches between query
and database images increases linearly with the descriptor
length and the scale of the image database.

MBIT reduces the exhaustive distance computing between
global signatures to the problem of aligned component-to-
component independent matching and constructs multiple hash
tables for these components. Given a global query descriptor,
its candidate neighbors can be retrieved using the query
binary sub-vectors (i.e., components) as indices into their

corresponding hash tables, thereby significantly reducing the
required number of candidate images for subsequent linear
searches. MBIT achieves a 10∼25-fold speedup over the
exhaustive linear search while maintaining comparable search
accuracy [68], [69].

DISTRAT is built upon a probabilistic model of wrongly
matched interest points, aiming to rapidly determine whether
two images contain views of the same object. DISTRAT uses
the log distance ratio statistics to model outliers and inliers
by assuming that the log distance ratio statistics of incorrect
matches are distinct from that of correct matches. A goodness-
of-fit test is performed efficiently. DISTRAT is employed to
achieve very fast GCC (approximately 200∼400 times faster
than RANSAC) [64].

V. EVOLUTION OF THE STANDARD

A Call for Proposals (CfP) [11], [12] was issued at the
97th MPEG meeting (Torino, July, 2011). From the 99th meet-
ing (San Jose, Feb. 2012), the CDVS standardization entered
the collaborative development phase through the definition of a
software Test Model (TM) available to all participants. A series
of Core Experiments (CE) were defined to improve different
software modules in the TM. The CDVS standardization
entered the Committee Draft (CD) stage at the 106th meeting
(Geneva, Oct. 2013), the Draft of International Standard (DIS)
at the 108th meeting (Valencia, Apr. 2014), and the Final
Draft of International Standard (FDIS) at the 110th meeting
(Strasbourg, Oct. 2014).

A. Evaluation Framework

The MPEG-7 CDVS benchmark data set consists of
5 classes: graphics, paintings, video frames, landmarks, and
common objects. Example images are shown in Figure 11.
Both pairwise matching and large-scale image retrieval exper-
iments are conducted in the evaluation framework, and par-
ticipants are required to report performance at 6 pre-defined
descriptor lengths: 512 bytes, 1K, 2K, 4K, 8K and 16K.
In particular, to evaluate the interoperability, experiments of
matching with different descriptor lengths (1K vs. 4K and 2K
vs. 4K) are also included in the pairwise matching experiment.

The True Positive Rate (TPR) at less than 1% False Positive
Rate (FPR) (a specific point on the ROC curve) is used to eval-
uate the pairwise matching performance. Ground-truth data of
10,155 matching image pairs and 112,175 non-matching image
pairs are provided for the pairwise matching experiment. The
mean Average Precision and the success rate of top match
(precision at 1), are used to evaluate the retrieval performance.
A total of 8314 query images, 18840 reference images and a
distractor set of 1 million images from Flickr [16] are provided
for the retrieval experiment. Details of the data set are provided
in Table II. The common objects data set has the same set of
images as the popular UKBench data set [50]. The data set
is an order of magnitude larger than popular data sets such
INRIA Holidays and Oxford Buildings. Additionally, the data
set has considerably more variety in scale, rotation, occlusion
and lighting conditions than the INRIA Holidays and Oxford
data sets, as discussed in [15]. In addition, the query images
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Fig. 11. Example images from the CDVS datasets (from top to bottom: graphics, paintings, video frames, buildings and objects). The data set consists of
images for many different categories captured with a variety of camera phones and under widely varying lighting conditions. Database and query images
alternate in each category.

TABLE II

KEY STATISTICS OF THE 5 DATA SETS USED IN THE CDVS EVALUATION FRAMEWORK

of graphics data set are divided into 3 subsets called 1a, 1b
and 1c. The 1a subset consists of original query images; the
1b subset consists of the down-sampled images of 1a, such
that the largest of the vertical and horizontal image dimensions
is equal to 640 pixels; and the 1c subset consists of images
obtained by applying a JPEG compression factor 20 to the
1b images. These 3 subsets are used to study the effects of
image resolution and compression quality on performance.
In addition, average values of localization accuracy parameters
are produced for all pairs detected as matching from the set of
annotated matching pairs for each pairwise matching experi-
ment 1a, 1b, and 1c. The localization accuracy is measured
using the ratio of area of both quadrilaterals that overlap vs.
the total area filled by both quadrilaterals. Readers are referred
to [?] for more details of the CDVS evaluation framework. The
data set is available for download at [62] and [63].

B. Timeline

Table IV shows the progression of the CDVS standardiza-
tion over the course of 18 MPEG meetings. Table III lists
the TM milestones with the adoption of core techniques,

and Table V provides the key performance improvements
of TM. Remarkable performance improvements have been
made over the course of the standardization. Table V shows
the average mAP, TPR and success rate of Top Match of
TM1(TMuC)∼TM11. Comparing TMuC and TM 11.0, CDVS
has witnessed significant performance improvements, namely,
in terms of the average performance over all datasets and all
descriptor lengths. The mAP increased from 71.5% to 84.9%
(+13.4%), the success rate of top match increased from 81.3%
to 90.9% (+9.6%), and TPR increased from 90.4% to 93.4%
(+2.9%). Figures 12, 13, 14 and 15 show the major (inter-
mediate) results in the evolution of the standard from start to
finish. Referring to Table III, key performance improvements
result from the incorporation of a global descriptor (REVV
followed by SCFV) and from the selective aggregation of
features, in which statistically optimized feature selection has
a large impact on performance throughout.

As illustrated in Figures 12, 13 and 14, the
substantial performance improvements were achieved by
the adoption of global descriptors REVV (TM2), SCFV
(128 Gaussians, TM4), enhanced SCFV (with the gradient
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TABLE III

TEST MODEL (TM) MILESTONES AND ADOPTED TECHNIQUES

Fig. 12. Results of the Mean Average Precision (mAP) of TMuc, TM2, TM3, TM4, TM5 and TM11 over the CDVS evaluation framework.

vector with respect to the variance, TM5), and improved
SCFV (512 Gaussians, TM10). The detailed performance
gains are listed in Table V. In particular, feature selection
consistently played an important role in both BoW aggregation
in TM1 and SCFV aggregation since TM4. Compared to

the aggregation of randomly sampled local features, the
selective aggregation led to a remarkable mAP increase of
more than 25% [30].

Geometric verification is crucial for eliminating false feature
matches and improving recognition performance. For example,
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Fig. 13. Results of the success rate of top match of TMuc, TM2, TM3, TM4, TM5 and TM11 over the CDVS evaluation framework.

Fig. 14. Results of the True Positive Rate (TPR) of TMuc, TM2, TM3, TM4, TM5 and TM11 over the CDVS evaluation framework. Image descriptor
length 1K, 4K and 2K, 4K means matching with different image descriptor lengths: 1K vs. 4K and 2K vs. 4K.

in TM 11.0, geometric re-ranking yields mAP improvements
of +3.76%, +4.62%, +1.73%, +3.78%, +4.73% at 4 KB for
the graphics, paintings, video frames, landmark, and common
objects data sets, respectively. GCC includes a ratio test
followed by a fast geometric model estimation algorithm [64].

C. Computational and Memory Complexity
To enable efficient hardware implementation, substan-

tial efforts were focused on reducing memory for all
modules. Overall memory usage significantly decreased
from over 400 MB in TM 1.0 to ∼1 MB in the final
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Fig. 15. The performance of TM11 at image descriptor lengths of 512 B, 1K, 2K, 4K, 8K and 16K.

TABLE IV

THE PROGRESSION OF MPEG CDVS STANDARDIZATION

TABLE V

THE AVERAGE mAP, TPR AND SUCCESS OF TOP MATCH
OF TMuC∼TM14 OVER CDVS DATASETS

reference software. This reduction was a result of several
technical breakthroughs in local feature descriptor compres-
sion, local feature descriptor aggregation, and block-based
interest point detection. For local feature descriptor compres-
sion, memory cost was reduced from ∼380 MB of product tree
structured vector quantization tables to the negligible ∼1 KB
required for the transform coding scheme [35], [36]. For inter-
est point detection, the memory cost significantly decreased
from ∼20 MB in the original implementation, which required
storing the entire scale-space stack of images, to 957 KB in
the block-based approach [17], [24], [26]. For local feature
descriptor aggregation, the memory cost is only ∼42 KB com-
pared to hundreds of MBs of VQ tables required for previous
approaches [45], [61].

The computational complexity of encoding also decreased
drastically over the course of the standardization:

from ∼500 ms to ∼150 ms (tested on a Windows PC
with an Intel Core CPU i5 3470 3.2 GHz). The speed up
primarily results from the block-based key point detection and
the accelerated feature description step [17], [24], [26], [67],
the reduction of the number of descriptors to be computed
due to the feature selection stage prior to the time consuming
feature description stage (even incurring up to ∼66% of the
total time cost of interest point detection and local feature
description) [55], and the adoption of the local descriptor
scalar compression scheme rather than the tree-structured
VQ [35], [36]. Efficient pairwise matching and retrieval
algorithms are also made available as part of the reference
software. Pairwise matching requires ∼0.5 ms per image pair.
Retrieval takes ∼2.02 sec per query for highest performance
and ∼0.2 sec per query with a negligible mAP drop of 1%
for the 1 million image retrieval experiment.

VI. CONCLUSION

We have reviewed the scope and development of the MPEG
CDVS standard. The CDVS standard provides a standard-
ized bitstream of descriptors and the descriptor extraction
process, which ensures the interoperability between mobile
and server toward mobile image-based retrieval applications.
By thoroughly testing state-of-the-art visual search technology
proposals and performing competitive and collaborative exper-
iments within a rigorous evaluation framework, the CDVS
working group has made remarkable improvements in achiev-
ing high image retrieval performance with extremely compact
feature data (a few KBs per image). High performance is
achieved while also satisfying stringent memory and compu-
tational complexity requirements at each step of the feature
extraction pipeline, thus making the standard ideally suited
for both hardware and software implementations.
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