
Flexible CTU-level Parallel Motion Estimation 

by CPU and GPU Pipeline for HEVC 
 

Juncheng Ma
1
, Falei Luo

2
, Shanshe Wang

1
, Siwei Ma

1
 

1
Institute of Digital Media, Peking University, Beijing 100871, China 

 {1jcma, 1swma}@pku.edu.cn 

{
1
sswang@jdl.ac.cn} 

2
University of Chinese Academy of Sciences, Beijing, China 

{
2
falei.luo@vipl.ict.ac.cn} 

 
Abstract—In the high efficiency video coding (HEVC) 

encoder, motion estimation (ME) takes up more than 50% 

encoding time. To reduce the complexity of the ME module in 

HEVC, this paper proposes a flexible coding tree unit (CTU)-

level parallel ME method through CPU and GPU pipeline 

collaboration. Firstly a highly scalable CTU-level parallel motion 

search scheme on GPU is provided, in which, the parallel CTU 

group can be configured to be any size to adapt to the variable 

sequence resolution and hardware configurations. Then, the 

motion search range can be adaptively adjusted based on the 

motion intensity. Therefore, the unnecessary GPU time wasting 

can be further avoided for slow-moving scenes, while high 

performance kept for fast-moving scenes. Moreover, the ME 

information returned from GPU can be used by CPU for fast 

mode decision. Experimental results show that the proposed 

method achieves up to 73% complexity reduction than HM10.0 

anchor using CPU only with acceptable coding performance loss, 

providing higher performance than the state-of-the-art scheme. 

 

Index Terms—HEVC, Motion Estimation, GPU, CUDA, 

Search Range 

I. INTRODUCTION 

The new published HEVC standard has achieved 

significant higher coding efficiency compared to the 

preceding standards, e.g. H.264/AVC [1][2]. However, the 

encoder complexity increases greatly mainly due to the 

motion estimation (ME) process for more variable coding 

block size. Specifically, the ME module takes up more than 

50% encoding time of the HEVC encoder (Fig. 1). 

ME is a block matching algorithm (BMA) performed at the 

encoder to find a matched prediction block in the reference 

frame. Generally, there are two kinds of search methods to get 

such a predicted block. The first one is full motion search by 

searching all points in a search window, which is simple but 

time-consuming. The second one is fast motion search by 

searching several points in several iterations, so it’s faster than 

the first way and is more common used in software encoder. 

However, for hardware platform or some heterogeneous 

computing (e.g. CPU plus GPU computing), the first way is 

more suitable due to its regularity. 

 

 

 

 
Fig. 1  Encoding time distribution of the HM encoder (LDP) 

 

Recently, due to the rapid development of GPU processing 

capability, there has been a strong demand of using GPU as a 

co-processor to assist CPU to deal with data-intensive 

application [3]. Fortunately, NVIDIA has announced a 

programming friendly GPU architecture called “Compute 

Unified Device Architecture” (CUDA) [4] to make massive 

data parallel processing easier. Therefore, ME paralleling on 

CPU plus GPU platform has been widely studied. Chen et al. 

presented a block-level parallel scheme for the variable block 

size ME in H.264/AVC on CUDA platform [5], achieving 12 

times faster than the CPU only scheme. Another ME 

acceleration method based on diamond search adaption on 

GPU for H.264/AVC was proposed by Schwalb et al. and got 

a significant reduction of computation time [6]. Wang et al. 

designed a parallel variable block size ME algorithm [7], but 

it can only process pixel-level ME line by line, and may bring 

in significant coding performance loss. 

In this paper, we propose a flexible CTU-level parallel ME 

algorithm for HEVC by CPU and GPU cooperation. In the 

proposed scheme, variable-block-size prediction units (PUs) 

in a CTU are processed in only one CUDA thread block (Fig. 

2), which is scheduled by GPU system, so the number of 

simultaneously processed CTUs can be configured to be any 

size. Then, the motion search range is adaptively adjusted 

each time when the GPU computing is launched, according to 

the motion intensity of the previous coded blocks. This 

strategy can further reduce ME complexity for the slow-

moving scenes. Lastly, the motion vectors (MVs) and 

corresponding cost – sum of absolute difference (SAD), are 

returned by GPU and employed on CPU side to help mode 

decision. 
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Fig. 2  Example of CUDA thread structure 

 

The rest of the paper is organized as follows. Section 2 

describes the ME of HEVC. Section 3 details the proposed 

ME paralleling method by CPU and GPU pipeline 

collaboration. Experimental result and analysis are presented 

in Section 4. Finally Section 5 concludes the paper. 

II. OVERVIEW OF MOTION ESTIMATION IN HEVC 

In the HEVC encoder, an inter-coded CU can be partitioned 

into multiple inter PUs, as illustrated in Fig. 3, and each PU 

has its own reference frame and corresponding motion vectors 

(MVs). The motion parameters of every PU are achieved by 

inheriting from spatial neighbour or temporal co-located PUs 

for “SKIP” or “MERGE” mode, or by invoking motion 

estimation on reference frames for other inter modes. Then, 

the mode with minimum rate-distortion (RD) cost is selected 

as the final coding mode for the CU. The RD cost is modelled 

as: 

mode mode
J SSD R                              (1) 

where SSD indicates sum of square difference between the 

original block and the prediction block, and R indicates the 

bits number used for coding the prediction residual and 

motion parameters. And λmode is the Lagrange multiplier that 

determines the trade-off between rate and distortion. 

To get the best motion parameters for a specific inter mode, 

firstly the motion vector predictor (MVP) is derived from a set 

of MV candidates. Then for inter modes except for “SKIP” 

and “MERGE”, motion search algorithm is performed at 

encoder. In HM encoder, integer-pel accuracy search is 

performed at first starting from the MVP, to select a best 

position based on SAD criterion (2). And as a second step, 

fractional-pel refinement is performed to generate the final 

quarter-pel accuracy MV based on sum of absolute 

transformed difference (SATD) criterion (3), as shown below:  

, ,pred sad pred sad pred
J SAD R                          (2) 

, ,pred satd pred satd pred
J SATD R                      (3) 

where λpred,sad and λpred,satd is the Lagrange multiplier for SAD 

and SATD cost respectively, and Rpred is the approximate bit 

rate of MV. In addition, to generate fractional-pel samples, 

interpolation filtering is performed for the reference picture 

samples. 
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Fig. 3  Inter PU mode for CUs in variable depth 

 

III. PROPOSED PARALLEL MOTION ESTIMATION SCHEME 

The general idea of ME paralleling on GPU is dividing ME 

computing by MVs and PU sizes and allocating it to every 

running stream processing units, while CPU handling other 

encoder tasks synchronously. Hence this CPU and GPU 

pipeline framework can hide the ME coding time, directly 

causing encoding time saving. However, the highest 

parallelism degree depends on the hardware configuration, e.g. 

on-chip memory or cores number, and the previous ME 

paralleling methods [5-7] cannot expediently increase or 

decrease the parallel data size for targeted hardware due to the 

fixed data structure. Moreover, these methods may waste 

unnecessary GPU time for searching the best MV for slow-

moving sequences due to the fixed search range. In our design, 

these problems can be solved by setting variable-size parallel 

CTU group (called CTU window below) and adaptive search 

range. 

A. Variable Parallel CTU Window 

Our method is implemented in CUDA programming 

architecture, in which threads are arranged in a block and 

blocks are arranged in a grid, as shown in Fig. 2. All threads 

in a block share the same “shared memory”, and no matter 

how many blocks launched in a grid, they are automatically 

scheduled by GPU system. Based on this feature, we 

implement ME of one CTU in exactly one block, so the CTU 

window can be set to any length by launching corresponding 

number of blocks in a grid, as illustrated in Fig. 4. 

 

          a) CTU window length = 5        b) CTU window length = one CTU row 
Fig. 4  Examples of CTU window configure 
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Fig. 5  CTU window pipeline between CPU and GPU 

 

When the CTU window length is determined, every frame 

in the sequence is coded as a CTU window pipeline, as shown 

in Fig. 5, where N is the number of CTU window in a frame. 

At first the original picture is transmitted from CPU to GPU, 

then the parallel ME process of the first CTU window is 

launched. Next, CPU and GPU are synchronized for the MVs 

and SADs information of all PUs in CTU window i. After that, 

CPU executes mode decision and other encoder tasks, while 

GPU deal with CTU window i+1 simultaneously. Finally, 

when the last CTU window is finished by CPU, the whole 

reconstructed picture is transmitted to GPU for interpolation 

and saved as a new reference picture. 

B. MVP Derivation and Motion Search 

Before motion search on the GPU side, the MVP is derived 

at CTU-level from four 16x16 PUs in the temporal CTU by (4) 

and (5), as shown in Fig. 6: 
3

0

1
4 i
i

ColMV MV


                             (4) 

/MVP ColMV CurDPoc ColDPoc                (5) 

where ColMV indicates the average MVs of four 16x16 PUs 

in the referenced CTU. CurDPoc/ColDPoc is the picture order 

count (POC) difference between the current/co-located picture 

and the reference picture, respectively. In addition, if the co-

located picture does not exist, the above CTU is used instead. 
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a) MVs of four 16x16 PUs in a CTU               b) temporal MV  

Fig. 6  CTU-level MVP derivation 
 

For integer-pel MV search, the variable-block-size SAD 

generation and comparison starting from 4x4 block is 

extended to more sizes from the method detailed in [5] for 

H.264/AVC. After that, fractional-pel MV refinement is 

performed around the best integer-pel MV position, just like 

the HM but concurrently by PU sizes. 

C. Adaptive Motion Search Range 

Full search scheme is adopted on GPU due to its regularity, 

and three targeted optimized search ranges (in integer-pel unit) 

are used: 8, 16 and 32. The smaller the search range, the lower 

complexity for parallel ME, but lower prediction performance 

either. The opposite result is got with the search range set 

larger. However, for slow-moving area such as background in 

a picture, small search range is enough. 

Base on temporal relativity, the co-located blocks is used 

to prejudge an appropriate search range for the next CTU 

window to be processed. Each CTU in the CTU window is 

traversed, and for a certain CTU, define MVC as the MV of 

the PU containing luma pixel location (15, 15) relative to the 

top-left luma sample of the co-located CTU, and judge as 

below: 

 Defaultly assign search range 8 for the current CTU 

window. 

 If the partition depth of the co-located CTU is bigger 

than 0 and |MVC| is bigger than 16, then assign search 

range 16 for the current CTU window. 

 If |MVC| is bigger than 32, then assign search range 32 

for the current CTU window and exit the traversal. 

D. GPU Returned Information-Assisted Mode Decision 

The variable-block-size MVs and SADs information 

returned by GPU can not only provide motion parameters for 

ME, but also assist fast mode decision for inter-coded CUs. 

Here is the modification for the original HM mode decision. 

1)  Check MERGE/SKIP and PART_2Nx2N mode with 

early skip detection as before. 

2)  Define sad2Nx2N as the SAD of the 2Nx2N PU, 

sad2NxN/sadNx2N as the sum SAD of two 2NxN/Nx2N PUs 

of the current CU, respectively. If sad2NxN > t0 * sad2Nx2N 

or sad2NxN > t1 * sadNx2N, then skip PART_2NxN mode. 

The same goes for PART_Nx2N mode. The threshold t0 and t1 

are empirically both assigned as 1.1. 

3)  For INTRA_2Nx2N mode, firstly calculate the SAD of 

the best-SATD intra mode selected from original rough mode 

decision (RMD) and most probable mode (MPM) procedure, 

named sadIntra2Nx2N. Then if sadIntra2Nx2N > t2 * 

sad2Nx2N, skip Intra_2Nx2N mode. The threshold t2 is 

empirically assigned as 0.5. 

4)  Select the best mode for the current CU based on rate-

distortion cost as before. 

IV. EXPERIMENTAL RESULTS 

To verify the acceleration and compression performance of 

the proposed ME paralleling method, it has been implemented 

into HEVC reference software HM10.0. Simulations are 

conducted on a desktop with AMD Phenom (tm) II X4 830 

CPU Processor @ 2.80 GHz plus NVIDIA GeForce GTX 560 

Ti GPU. The CUDA driver version of the GPU is 5.5 and the 

CUDA capability version number is 2.1. 

The experiment is performed under the low-delay P 

configuration of common test condition [8], except that the 

maximum CU size is set to be 32 and AMP is turned off. Full 

search with adaptive search range between 8, 16 and 32 is 

used for our proposed method and EPZS fast search with 

search range 64 for the anchor. Test sequences with different 

resolution, Kimono, ParkScene, Cactus, Johnny, FourPeople, 



KristenAndSara, BQMall, BasketballDrill, BasketballPass 

and BlowingBubbles, are examined with 10 seconds time 

interval. And the CTU window length is configured to be one 

row of CTU. The experimental results are shown in the Table 

1. 
 

TABLE I 
PERFORMANCE AND TIME SAVING OF PROPOSED METHOD VS HM10.0 

Y U V Time Saving

Kimono 1.5% 2.9% 2.7% 72%

ParkScene 2.4% 2.3% 3.0% 68%

Cactus 2.1% 1.7% 1.5% 69%

Johnny 2.4% 3.2% 2.4% 73%

FourPeople 1.5% 1.0% 2.0% 73%

KristenAndSara 2.1% 2.9% 1.5% 73%

BQMall 2.2% 2.8% 2.4% 70%

BasketballDrill 2.2% 1.7% 2.0% 70%

BasketballPass 2.4% 2.3% 1.5% 70%

BlowingBubbles 2.5% 2.4% 3.2% 62%

2.1% 2.3% 2.2% 70%

Sequence

1080P

720P

WVGA

WQVGA

Average
 

 

From Table 1, it can be seen that the proposed parallel 

ME method can provide 70% complexity reduction on 

average with about 2.1% coding performance loss. To further 

compare the performance of the proposed algorithm with the 

anchor, the rate-distortion performance curves of some 

typical test sequences are shown in Fig. 7. It can be intuitively 

seen that, the proposed algorithm doesn’t cause considerable 

objective coding quality degradation, compared to the 

significant 0.7 dB loss in the previous method [7]. 

We further verify the advantage of using adaptive motion 

search range by verify how much GPU utilization ratio (or 

GPU time) saved, as shown in Table 2, where the GPU 

utilization ratio is calculated as below: 

_ _ / _Util ratio GPU time Enc time            (6) 

where Enc_time is the total encoding time while GPU_time is 

the total GPU running time. It can be seen from Table 2 that 

adaptive motion search range can effectively reduce the GPU 

utilization ratio down to less than 1/5 of fixed 32 search range 

with little extra performance loss for slow-moving sequences, 

and down to about 2/5 for fast-moving sequences. 

V. CONCLUSIONS 

This paper proposes a flexible CTU-level ME paralleling 

scheme on CPU plus GPU platform. The flexibility of this 

scheme lies in two aspects. Firstly, we arrange the CPU and 

GPU pipeline between CTU windows, whose length can be 

variably configured to apply to different hardware resources. 

Secondly, we propose a motion search range adjustment 

method based on the motion intensity of the co-located blocks. 

Experimental results show that our method can achieve 

significant coding complexity reduction with much smaller 

objective coding quality degradation than the state-of-the-art 

scheme, with extraordinary low GPU utilization ratio. 

  
 

  
Fig. 7  The rate-distortion curves of proposed method and the anchor 

 
TABLE II 

GPU utilization ratio saving of adaptive motion search range 

Util_ratio BD-rate Util_ratio BD-rate

FourPeople 6.2% 1.0% 1.2% 1.2%

Johnny 6.3% 1.9% 1.2% 2.1%

KristenAndSara 5.3% 1.7% 0.9% 1.6%

BasketballPass 4.4% 1.5% 1.8% 2.0%

RaceHorses 3.1% 2.3% 2.3% 2.4%

Sequence
Search Range = 32 Adapt.
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