
Flexible CTU-level Parallel Motion Estimation

by CPU and GPU Pipeline for HEVC

Juncheng Ma
1
, Falei Luo

2
, Shanshe Wang

1
, Siwei Ma

1

1
Institute of Digital Media, Peking University, Beijing 100871, China

 {1jcma, 1swma}@pku.edu.cn

{
1
sswang@jdl.ac.cn}

2
University of Chinese Academy of Sciences, Beijing, China

{
2
falei.luo@vipl.ict.ac.cn}

Abstract—In the high efficiency video coding (HEVC)

encoder, motion estimation (ME) takes up more than 50%

encoding time. To reduce the complexity of the ME module in

HEVC, this paper proposes a flexible coding tree unit (CTU)-

level parallel ME method through CPU and GPU pipeline

collaboration. Firstly a highly scalable CTU-level parallel motion

search scheme on GPU is provided, in which, the parallel CTU

group can be configured to be any size to adapt to the variable

sequence resolution and hardware configurations. Then, the

motion search range can be adaptively adjusted based on the

motion intensity. Therefore, the unnecessary GPU time wasting

can be further avoided for slow-moving scenes, while high

performance kept for fast-moving scenes. Moreover, the ME

information returned from GPU can be used by CPU for fast

mode decision. Experimental results show that the proposed

method achieves up to 73% complexity reduction than HM10.0

anchor using CPU only with acceptable coding performance loss,

providing higher performance than the state-of-the-art scheme.

Index Terms—HEVC, Motion Estimation, GPU, CUDA,

Search Range

I. INTRODUCTION

The new published HEVC standard has achieved

significant higher coding efficiency compared to the

preceding standards, e.g. H.264/AVC [1][2]. However, the

encoder complexity increases greatly mainly due to the

motion estimation (ME) process for more variable coding

block size. Specifically, the ME module takes up more than

50% encoding time of the HEVC encoder (Fig. 1).

ME is a block matching algorithm (BMA) performed at the

encoder to find a matched prediction block in the reference

frame. Generally, there are two kinds of search methods to get

such a predicted block. The first one is full motion search by

searching all points in a search window, which is simple but

time-consuming. The second one is fast motion search by

searching several points in several iterations, so it’s faster than

the first way and is more common used in software encoder.

However, for hardware platform or some heterogeneous

computing (e.g. CPU plus GPU computing), the first way is

more suitable due to its regularity.

Fig. 1 Encoding time distribution of the HM encoder (LDP)

Recently, due to the rapid development of GPU processing

capability, there has been a strong demand of using GPU as a

co-processor to assist CPU to deal with data-intensive

application [3]. Fortunately, NVIDIA has announced a

programming friendly GPU architecture called “Compute

Unified Device Architecture” (CUDA) [4] to make massive

data parallel processing easier. Therefore, ME paralleling on

CPU plus GPU platform has been widely studied. Chen et al.

presented a block-level parallel scheme for the variable block

size ME in H.264/AVC on CUDA platform [5], achieving 12

times faster than the CPU only scheme. Another ME

acceleration method based on diamond search adaption on

GPU for H.264/AVC was proposed by Schwalb et al. and got

a significant reduction of computation time [6]. Wang et al.

designed a parallel variable block size ME algorithm [7], but

it can only process pixel-level ME line by line, and may bring

in significant coding performance loss.

In this paper, we propose a flexible CTU-level parallel ME

algorithm for HEVC by CPU and GPU cooperation. In the

proposed scheme, variable-block-size prediction units (PUs)

in a CTU are processed in only one CUDA thread block (Fig.

2), which is scheduled by GPU system, so the number of

simultaneously processed CTUs can be configured to be any

size. Then, the motion search range is adaptively adjusted

each time when the GPU computing is launched, according to

the motion intensity of the previous coded blocks. This

strategy can further reduce ME complexity for the slow-

moving scenes. Lastly, the motion vectors (MVs) and

corresponding cost – sum of absolute difference (SAD), are

returned by GPU and employed on CPU side to help mode

decision.

978-1-4799-6139-9/14/$31.00 ©2014 IEEE

Thread(0, 0)

Block(0, 0) Block(1, 0) Block(2, 0) Block(3, 0)

Block(0, 1) Block(1, 1) Block(2, 1) Block(3, 1)

Grid0

Thread(1, 0)

Thread(0, 1)

Thread(m, 0)

Thread(1, 1) Thread(m, 1)

...

...

Thread(0, n) Thread(1, n) Thread(m, n)...

...

...

...

Block(1, 1)

Fig. 2 Example of CUDA thread structure

The rest of the paper is organized as follows. Section 2

describes the ME of HEVC. Section 3 details the proposed

ME paralleling method by CPU and GPU pipeline

collaboration. Experimental result and analysis are presented

in Section 4. Finally Section 5 concludes the paper.

II. OVERVIEW OF MOTION ESTIMATION IN HEVC

In the HEVC encoder, an inter-coded CU can be partitioned

into multiple inter PUs, as illustrated in Fig. 3, and each PU

has its own reference frame and corresponding motion vectors

(MVs). The motion parameters of every PU are achieved by

inheriting from spatial neighbour or temporal co-located PUs

for “SKIP” or “MERGE” mode, or by invoking motion

estimation on reference frames for other inter modes. Then,

the mode with minimum rate-distortion (RD) cost is selected

as the final coding mode for the CU. The RD cost is modelled

as:

mode mode
J SSD R  (1)

where SSD indicates sum of square difference between the

original block and the prediction block, and R indicates the

bits number used for coding the prediction residual and

motion parameters. And λmode is the Lagrange multiplier that

determines the trade-off between rate and distortion.

To get the best motion parameters for a specific inter mode,

firstly the motion vector predictor (MVP) is derived from a set

of MV candidates. Then for inter modes except for “SKIP”

and “MERGE”, motion search algorithm is performed at

encoder. In HM encoder, integer-pel accuracy search is

performed at first starting from the MVP, to select a best

position based on SAD criterion (2). And as a second step,

fractional-pel refinement is performed to generate the final

quarter-pel accuracy MV based on sum of absolute

transformed difference (SATD) criterion (3), as shown below:

, ,pred sad pred sad pred
J SAD R  (2)

, ,pred satd pred satd pred
J SATD R  (3)

where λpred,sad and λpred,satd is the Lagrange multiplier for SAD

and SATD cost respectively, and Rpred is the approximate bit

rate of MV. In addition, to generate fractional-pel samples,

interpolation filtering is performed for the reference picture

samples.

2Nx2N/MERGE/SKIP Nx2N 2NxN

2NxnU 2NxnD nLx2N nRx2N

32x32

16x16
8x8

Fig. 3 Inter PU mode for CUs in variable depth

III. PROPOSED PARALLEL MOTION ESTIMATION SCHEME

The general idea of ME paralleling on GPU is dividing ME

computing by MVs and PU sizes and allocating it to every

running stream processing units, while CPU handling other

encoder tasks synchronously. Hence this CPU and GPU

pipeline framework can hide the ME coding time, directly

causing encoding time saving. However, the highest

parallelism degree depends on the hardware configuration, e.g.

on-chip memory or cores number, and the previous ME

paralleling methods [5-7] cannot expediently increase or

decrease the parallel data size for targeted hardware due to the

fixed data structure. Moreover, these methods may waste

unnecessary GPU time for searching the best MV for slow-

moving sequences due to the fixed search range. In our design,

these problems can be solved by setting variable-size parallel

CTU group (called CTU window below) and adaptive search

range.

A. Variable Parallel CTU Window

Our method is implemented in CUDA programming

architecture, in which threads are arranged in a block and

blocks are arranged in a grid, as shown in Fig. 2. All threads

in a block share the same “shared memory”, and no matter

how many blocks launched in a grid, they are automatically

scheduled by GPU system. Based on this feature, we

implement ME of one CTU in exactly one block, so the CTU

window can be set to any length by launching corresponding

number of blocks in a grid, as illustrated in Fig. 4.

 a) CTU window length = 5 b) CTU window length = one CTU row
Fig. 4 Examples of CTU window configure

0

CPU

GPU

0

1

1

2

2 N-1

N-1

...

...

Sync. Delay

MVs & SADs
Original

Picture

Reconstructed

Picture

Interpolation

Time

Fig. 5 CTU window pipeline between CPU and GPU

When the CTU window length is determined, every frame

in the sequence is coded as a CTU window pipeline, as shown

in Fig. 5, where N is the number of CTU window in a frame.

At first the original picture is transmitted from CPU to GPU,

then the parallel ME process of the first CTU window is

launched. Next, CPU and GPU are synchronized for the MVs

and SADs information of all PUs in CTU window i. After that,

CPU executes mode decision and other encoder tasks, while

GPU deal with CTU window i+1 simultaneously. Finally,

when the last CTU window is finished by CPU, the whole

reconstructed picture is transmitted to GPU for interpolation

and saved as a new reference picture.

B. MVP Derivation and Motion Search

Before motion search on the GPU side, the MVP is derived

at CTU-level from four 16x16 PUs in the temporal CTU by (4)

and (5), as shown in Fig. 6:
3

0

1
4 i
i

ColMV MV


  (4)

/MVP ColMV CurDPoc ColDPoc  (5)

where ColMV indicates the average MVs of four 16x16 PUs

in the referenced CTU. CurDPoc/ColDPoc is the picture order

count (POC) difference between the current/co-located picture

and the reference picture, respectively. In addition, if the co-

located picture does not exist, the above CTU is used instead.

MV0 MV1

MV2 MV3

Col
MV

MVP

LastDPoc

CurDPoc

Ref Pic Col Pic Cur Pic

a) MVs of four 16x16 PUs in a CTU b) temporal MV

Fig. 6 CTU-level MVP derivation

For integer-pel MV search, the variable-block-size SAD

generation and comparison starting from 4x4 block is

extended to more sizes from the method detailed in [5] for

H.264/AVC. After that, fractional-pel MV refinement is

performed around the best integer-pel MV position, just like

the HM but concurrently by PU sizes.

C. Adaptive Motion Search Range

Full search scheme is adopted on GPU due to its regularity,

and three targeted optimized search ranges (in integer-pel unit)

are used: 8, 16 and 32. The smaller the search range, the lower

complexity for parallel ME, but lower prediction performance

either. The opposite result is got with the search range set

larger. However, for slow-moving area such as background in

a picture, small search range is enough.

Base on temporal relativity, the co-located blocks is used

to prejudge an appropriate search range for the next CTU

window to be processed. Each CTU in the CTU window is

traversed, and for a certain CTU, define MVC as the MV of

the PU containing luma pixel location (15, 15) relative to the

top-left luma sample of the co-located CTU, and judge as

below:

 Defaultly assign search range 8 for the current CTU

window.

 If the partition depth of the co-located CTU is bigger

than 0 and |MVC| is bigger than 16, then assign search

range 16 for the current CTU window.

 If |MVC| is bigger than 32, then assign search range 32

for the current CTU window and exit the traversal.

D. GPU Returned Information-Assisted Mode Decision

The variable-block-size MVs and SADs information

returned by GPU can not only provide motion parameters for

ME, but also assist fast mode decision for inter-coded CUs.

Here is the modification for the original HM mode decision.

1) Check MERGE/SKIP and PART_2Nx2N mode with

early skip detection as before.

2) Define sad2Nx2N as the SAD of the 2Nx2N PU,

sad2NxN/sadNx2N as the sum SAD of two 2NxN/Nx2N PUs

of the current CU, respectively. If sad2NxN > t0 * sad2Nx2N

or sad2NxN > t1 * sadNx2N, then skip PART_2NxN mode.

The same goes for PART_Nx2N mode. The threshold t0 and t1

are empirically both assigned as 1.1.

3) For INTRA_2Nx2N mode, firstly calculate the SAD of

the best-SATD intra mode selected from original rough mode

decision (RMD) and most probable mode (MPM) procedure,

named sadIntra2Nx2N. Then if sadIntra2Nx2N > t2 *

sad2Nx2N, skip Intra_2Nx2N mode. The threshold t2 is

empirically assigned as 0.5.

4) Select the best mode for the current CU based on rate-

distortion cost as before.

IV. EXPERIMENTAL RESULTS

To verify the acceleration and compression performance of

the proposed ME paralleling method, it has been implemented

into HEVC reference software HM10.0. Simulations are

conducted on a desktop with AMD Phenom (tm) II X4 830

CPU Processor @ 2.80 GHz plus NVIDIA GeForce GTX 560

Ti GPU. The CUDA driver version of the GPU is 5.5 and the

CUDA capability version number is 2.1.

The experiment is performed under the low-delay P

configuration of common test condition [8], except that the

maximum CU size is set to be 32 and AMP is turned off. Full

search with adaptive search range between 8, 16 and 32 is

used for our proposed method and EPZS fast search with

search range 64 for the anchor. Test sequences with different

resolution, Kimono, ParkScene, Cactus, Johnny, FourPeople,

KristenAndSara, BQMall, BasketballDrill, BasketballPass

and BlowingBubbles, are examined with 10 seconds time

interval. And the CTU window length is configured to be one

row of CTU. The experimental results are shown in the Table

1.

TABLE I
PERFORMANCE AND TIME SAVING OF PROPOSED METHOD VS HM10.0

Y U V Time Saving

Kimono 1.5% 2.9% 2.7% 72%

ParkScene 2.4% 2.3% 3.0% 68%

Cactus 2.1% 1.7% 1.5% 69%

Johnny 2.4% 3.2% 2.4% 73%

FourPeople 1.5% 1.0% 2.0% 73%

KristenAndSara 2.1% 2.9% 1.5% 73%

BQMall 2.2% 2.8% 2.4% 70%

BasketballDrill 2.2% 1.7% 2.0% 70%

BasketballPass 2.4% 2.3% 1.5% 70%

BlowingBubbles 2.5% 2.4% 3.2% 62%

2.1% 2.3% 2.2% 70%

Sequence

1080P

720P

WVGA

WQVGA

Average

From Table 1, it can be seen that the proposed parallel

ME method can provide 70% complexity reduction on

average with about 2.1% coding performance loss. To further

compare the performance of the proposed algorithm with the

anchor, the rate-distortion performance curves of some

typical test sequences are shown in Fig. 7. It can be intuitively

seen that, the proposed algorithm doesn’t cause considerable

objective coding quality degradation, compared to the

significant 0.7 dB loss in the previous method [7].

We further verify the advantage of using adaptive motion

search range by verify how much GPU utilization ratio (or

GPU time) saved, as shown in Table 2, where the GPU

utilization ratio is calculated as below:

_ _ / _Util ratio GPU time Enc time (6)

where Enc_time is the total encoding time while GPU_time is

the total GPU running time. It can be seen from Table 2 that

adaptive motion search range can effectively reduce the GPU

utilization ratio down to less than 1/5 of fixed 32 search range

with little extra performance loss for slow-moving sequences,

and down to about 2/5 for fast-moving sequences.

V. CONCLUSIONS

This paper proposes a flexible CTU-level ME paralleling

scheme on CPU plus GPU platform. The flexibility of this

scheme lies in two aspects. Firstly, we arrange the CPU and

GPU pipeline between CTU windows, whose length can be

variably configured to apply to different hardware resources.

Secondly, we propose a motion search range adjustment

method based on the motion intensity of the co-located blocks.

Experimental results show that our method can achieve

significant coding complexity reduction with much smaller

objective coding quality degradation than the state-of-the-art

scheme, with extraordinary low GPU utilization ratio.

Fig. 7 The rate-distortion curves of proposed method and the anchor

TABLE II

GPU utilization ratio saving of adaptive motion search range

Util_ratio BD-rate Util_ratio BD-rate

FourPeople 6.2% 1.0% 1.2% 1.2%

Johnny 6.3% 1.9% 1.2% 2.1%

KristenAndSara 5.3% 1.7% 0.9% 1.6%

BasketballPass 4.4% 1.5% 1.8% 2.0%

RaceHorses 3.1% 2.3% 2.3% 2.4%

Sequence
Search Range = 32 Adapt.

ACKNOWLEDGMENT

This work was supported in part by the National High-tech

R&D Program of China (863 Program, 2012AA010805)，

National Science Foundation of China (61322106, 61103088).

REFERENCES

[1] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, and T. Wiegand, “High
efficiency video coding (HEVC) text specification draft 10,” Joint

Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3

and ISO/IEC JTC 1/SC 29/WG 11, document JCTVC-L1003, Geneva,
Switzerland, Jan. 2013.

[2] Draft ITU-T Recommendation and Final Draft International Standard

of Joint Video Specification ITU-T Rec. H.264/ISO/IEC 14996-10
AVC), Mar. 2003.

[3] GPGPU. [Online]. Available: http://www.gpgpu.org/.

[4] NVIDIA, NVIDIA CUDA Compute Unified Device Architecture
Programming Guide Version 6.0, 2014.

[5] W. N. Chen and H. M. Huang, “H. 264/AVC motion estimation
implmentation on compute unified device architecture (CUDA),”

Multimedia and Expo, 2008 IEEE International Conference on. IEEE,

2008.
[6] M. Schwalb, R. Ewerth and B. Freisleben. "Fast motion estimation on

graphics hardware for H.264 video encoding," Multimedia, IEEE

Transactions on 11.1 (2009): 1-10.
[7] X. W. Wang, L. Song, M. Chen and J. J. Yang, "Paralleling variable

block size motion estimation of HEVC on CPU plus GPU platform,"

Multimedia and Expo Workshops (ICMEW), 2013 IEEE International
Conference on. IEEE, 2013.

[8] F. Bossen, “Common HM test conditions and software reference

configurations,” ITU-T SG16 Contribution, JCTVC-L1100, Geneva,
Switzerland, Jan. 2013.

