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ABSTRACT

Inter prediction serves as the foundation of prediction based
hybrid video coding framework. The state-of-the-art video
coding standards employ the reconstructed frames as the ref-
erences, and the motion vectors which convey the relative
position shift between the current block and the prediction
block are explicitly signalled in the bitstream. In this pa-
per, we propose a high efficient inter prediction scheme by
introducing a new methodology based on virtual reference
frame, which is effectively generated with the deep neural
network such that the motion data does not need to be ex-
plicitly signalled. In particular, the high quality virtual refer-
ence frame is generated with the deep learning based frame
rate up-conversion (FRUC) algorithm from two reconstructed
bi-prediction frames. Subsequently, a novel CTU level cod-
ing mode termed as direct virtual reference frame (DVRF)
mode, is proposed to adaptively compensate for the current
to-be-coded block in the sense of rate-distortion optimization
(RDO). The proposed scheme is integrated into the HM-16.6
software, and experimental results demonstrate significant su-
periority of the proposed method, which provides more than
3% coding gains on average for HEVC test sequences.

Index Terms— Inter prediction, virtual reference frame,
deep learning, video coding

1. INTRODUCTION

As the state-of-the-art video coding standard, High Efficiency
Video Coding (HEVC)[1][2] adopts block based hybrid video
coding framework, including block based intra/inter predic-
tion and transform. The inter prediction, which aims to re-
move the temporal redundancy, serves as an indispensable
part of the coding framework. In particular, inter prediction
makes use of the temporal correlation between pictures to ob-
tain the predicted version of the current to-be-coded block.
HEVC employs multiple decoded frames as references, such
that the motion information including motion vector (MV)
and reference frame index are required to be signalled in the
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bitstreams in order to specify the predicted blocks. Gener-
ally speaking, motion data accounts for a large proportion of
the total bitstream. In order to represent the motion data in
a more efficient way, HEVC adopts two coding modes, i.e.,
advanced motion vector prediction (AMVP) mode and merge
mode. More specifically, when AMVP mode is chosen, the
reference index, motion vector predictor (MVP) and motion
vector difference (MVD) need to be coded in the bitstream
to restore the motion data. Regarding the merge mode, only
merge index is needed to reuse the motion data from neigh-
boring blocks. Although AMVP and merge modes have ef-
fectively reduced the bitrate consumptions during motion data
coding process, there is still a heavy burden to signal motion
information in the bitstreams, especially in low bitrate coding
scenarios. As such, there is a high demand to generate a high
quality virtual reference frame which can be directly used to
predict the current one. In this manner, the motion informa-
tion can be implicitly conveyed in the virtual reference frame
generation process with the reconstructed reference frames.

The Hierarchical B Coding Structure is adopted in
HEVC, and in comparison with the classical B picture coding,
the coding efficiency can be improved by up to 1.5 dB [3]. A
typical hierarchical B structure with 4 temporal levels in Ran-
dom Access (RA) configuration is depicted in Fig.1, where 10
and B8 belong to temporal level 0, which provide high quality
reference for subsequent frames. Once frames in level 0 are
reconstructed, level_1 frame B4 can be bi-predicted by 10 and
B8. Regarding level 2 frames B2 and B6, both reconstructed
frames of level 0 and level_1 can be used as references. Be-
sides, level_3 contains B1, B3, B5 and B7 which reference
all the three lower level frames. Generally speaking, each
B picture can be predicted using the nearest pictures of the
lower temporal levels in forward and backward directions.
Furthermore, as the temporal distance between two reference
frames is getting closer for higher level frames, the prediction
of the intermediate frame becomes more reliable.

Based on the hierarchical B coding structure, we further
investigate the generation of the virtual reference frame that
can be directly applied for inter prediction without the de-
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Fig. 1. Hierarchical B coding structure in HEVC.

mand of motion information signalling. In particular, based
on the natural relationship between frame rate up-conversion
(FRUC) and hierarchical B frame prediction, we propose to
generate high quality virtual reference frame for high level B
frames with the-state-of-the-art deep FRUC approach Adap-
tive Separable Convolution [4]. In order to take fully advan-
tage of the virtual reference frame, a novel CTU level cod-
ing mode direct virtual reference frame (DVRF) mode is de-
signed to adaptively select the best reconstruction method in
the sense of rate-distortion optimization (RDO). Experimen-
tal results on HM-16.6 verify the performance of the proposed
scheme on HEVC test sequences.

The rest of this paper is organized as follows. Section 2
reviews the Adaptive Separable Convolution algorithm. Our
proposed scheme for better coding efficiency is presented in
Section 3. Experimental results and analyses are given in Sec-
tion 4, and finally the paper is concluded in Section 5.

2. REVIEW OF DEEP LEARNING BASED FRUC

The rapid development of deep learning has greatly facili-
tated the development of FRUC algorithms. Several works
have been proposed to explore deep learning for better FRUC
performance. In particular, Zhou et al. [5] trained a convo-
lutional neural network (CNN) to predict appearance flows,
which was then used to reconstruct the target view. In [6], the
deep voxel flow approach generated dense voxel flows to op-
timize frame interpolation results with deep neural network.
Among the existing deep learning based methods, Adap-
tive Separable Convolution shows considerable superiority in
term of both interpolation quality and complexity cost.
Traditional FRUC methods interpolate the target frame
in two steps: dense motion estimation and pixel interpola-
tion. Niklaus et al. [7] formulated pixel interpolation as a
local convolution process over patches in the input images,
and provided an Adaptive Convolution approach which com-
bines motion estimation and pixel synthesis in a single step.
As shown in Fig. 2, for each individual output pixels (x,y), the
deep convolutional network takes receptive field patches R1(x,
y) and Ry(x, y) as input, and outputs a convolution kernel with
size of N x N. This kernel then convolves with two patches
P, and P centered at (x,y) to produce the target pixel. A ma-
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Fig. 2. llustration of the Adaptive Convolution [7] method.

jor drawback of Adaptive Convolution lies in its memory cost.
To generate the kernels for all pixels in a 1080p video frame,
the output kernels alone will require 26 GB of memory, which
makes it impractical in real time applications. In view of this,
Niklaus et al. [4] then proposed Adaptive Separable Convo-
lution algorithm which approximates 2D convolution kernels
with a pair of 1D kernels. In this way, an N x N convolution
kernel can be encoded using only 2N variables, showing con-
siderable superiority than 2D convolution version. In this pa-
per, Adaptive Separable Convolution is employed to generate
the virtual reference frame due to its superior performance.

3. THE PROPOSED SCHEME

In order to improve the coding efficiency based on HEVC, we
propose to generate the virtual reference frame for B frame
prediction, such that the motion information is implicitly
encoded into the virtual reference frame during the FRUC
process. More specifically, for B frame compression, we first
generate a high quality reference frame through Adaptive
Separable Convolution algorithm. Subsequently, a CTU level
coding mode is devised to adaptively select the interpolated
frame as reconstructions. The details of these two processes
are elaborated as follows.

3.1. Virtual Reference Frame Generation

In general, both FRUC and B frame prediction target for in-
terpolating the intermediate frame with the frames in forward
and backward directions. Ideally, if FRUC provides compara-
ble interpolation quality as normal B frame motion prediction
process, the signalling of additional MV information is not
necessary. Since deep learning approach has achieved supe-
rior performance in various video processing tasks, we pro-
pose to adopt the FRUC method Adaptive Separable Convo-
lution in the virtual frame generation, which can be utilized
in the future inter prediction process.

As shown in Fig. 3, assuming that B1 is the frame to be
compressed, and given two reconstructed frames of 10 and B2,
a virtual reference frame B1 can be directly synthesised with
deep learning based FRUC [4]. In particular, let F(-) denote
FRUC process, the derivations of the predictions for level 3
frames in this group of pictures (GOP) can be expressed as
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Fig. 3. Illustration of generating virtual reference frame with
hierarchical B coding structure.

follows:
B1 = F(Rec(10), Rec(B2))
B3 = F(Rec(B2), Rec(B4)) |
B5 = F(Rec(B4), Rec(B6)), M
B7 = F(Rec(B6), Rec(BS8))

where Rec(-) represents reconstructed frame, and I§1, I§3, B5
and B7 denote the generated virtual reference frames.

An intuitive idea to take advantage of the virtual refer-
ence frames is directly applying them as the reconstructed
frames. However, this strategy is less efficient since it is
still an open problem to interpolate the intermediate frames
in complex motion scenarios. In order to adaptively enable
the usage of the virtual reference frame, an adaptive mech-
anism in the sense of rate-distortion optimization (RDO) is
developed, which will be presented in the next subsection.

3.2. CTU-Level Direct Virtual Reference Frame Mode

In order to take advantage of the virtual reference frame in
a more efficient way, we propose a novel CTU level cod-
ing mode-direct virtual reference frame (DVRF) mode . The
proposed method selects the virtual reference frame as the
reference in a RDO manner, such that the RD performance
is consistently improved with the expense of mode flag sig-
nalling. Compared with the traditional inter coding methods
in HEVC, the proposed DVRF mode does not need to sig-
nal any motion information, and the residuals data are also
skipped without transform, quantization and entropy coding.

3.2.1. DVRF Mode

Here, it is worth mentioning that the proposed DVRF cod-
ing mode applied to B frames with bi-predicted references,
such that the application is restricted to the Random Access
(RA) configuration. Specifically, the DVRF mode is enabled
as a potential coding mode when the current frame has bi-
directional reference, and the temporal distances between the
current to-be-coded frame and the two references are identi-
cal.
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Fig. 4. Tllustration of the proposed DVRF coding mode.
The co-located block in the virtual reference frame is directly
copied to the current to-be-coded CTU.

As is shown in Fig. 4, for the current to-be-coded frame
Fr, Fr_a+ and Fpy a4, which are the nearest bi-directional
reference frames in the reference list, are adopted to generate
a high quality virtual reference frame Fy ;,1,4:- Subsequently,
for each CTUs in the current frame, a DVRF mode flag is sig-
nalled in the bitstreams to indicate whether the DVRF mode is
chosen. In particular, when DVREF flag is true, the co-located
block in the virtual reference frame is treated as the recon-
struction block. Otherwise, traditional HEVC encoding pro-
cess is conducted to encode the current CTU.

3.2.2. CTU Level Mode Decision

The selection of the DVRF mode is achieved with RDO. Let
Jueve denote the RD cost of the traditional HEVC coding
method for the current CTU, such that the rate-distortion cost
of the traditional HEVC coding can be formulated as:

Jueve = Duepve + A*Rugve 2
where Dy rpyve and Rygyve denote the distortion and rate
of the HEVC coding, respectively. The parameter \ is the
Lagrange multiplier, which controls the relationship between
rate and distortion. For the proposed DVRF mode, let Jpy rr
denote the RD cost of the DVRF mode, which can be ex-
pressed as:

Jpvrr = Dpver + A * RpvRF 3)
where Dpyrr and Rpyrp are the distortion and rate of
the DVRF mode. The flag is set to be true when Jpy rr <
JuEve, and otherwise it is set to be false.

It should be noted that when DVRF mode is chosen, only
DVRF flag needs to be singled in the bitstream. Regarding
the traditional HEVC modes, motion data including merge
index, MVP index, MVD and the quantized transform coef-
ficients need to-be-coded. The effective reduction of coding
bits makes DVRF mode a competitive one among all the can-
didate inter prediction methods.



Table 1. RD performance comparison when applying the
proposed method to Level 3 B frames

Sequences BD Rate Average
1 Performance g
Kimono -1.6%
ParkScene -2.2%
Class B Cactus 2.7% -1.4%
BasketballDrive -0.6%
BQTerrace 0.2%
BasketballDrill -2.6%
- o,
Class C BQMall 4.4% -2.5%
PartyScene -2.4%
RaceHorsesC -0.5%
BasketballPass -3.9%
- o,
Class D BQSquare 3.4% -3.5%
BlowingBubbles -3.0%
RaceHorses -1.6%
Average -2.3%

4. EXPERIMENTAL RESULTS

The coding performance of the proposed method is validated
in this section. The proposed scheme is integrated into HM-
16.6, and the Adaptive Separable Convolution model [8][4]
is used to generate the virtual reference frame. Four quanti-
zation parameters (QP), i.e., 27, 32, 37, 42, are employed in
the experiment. Since we focus on improving the quality of
luma component, YUV400 format is adopted in our experi-
ment. Moreover, the number of encoding frames is set to be
twice of the frame rate, and all other experimental conditions
follow common test conditions [9].

Generally speaking, the proposed DVRF mode can be ap-
plied to all the B frames with bi-directional references. How-
ever, the B frames in different levels have distinct character-
istics, which may further influence the usage of the DVRF
mode. On one hand, the DVRF mode tends to provide finer
predictions for B frames with higher levels since the temporal
distance of the two frames in FRUC is closer. On the other
hand, as DVRF mode seeks optimal performance in terms of
RD optimization, the reconstruction quality may get worse
when DVRF mode is involved. Accordingly, applying the
DVRF mode to lower level B frames is not preferred as the
reference quality to the subsequent higher level frames should
be taken into consideration. In view of this, we conduct two
experiments in RA configuration to explore the performance
of DVRF mode for different levels of B frames.

In the first experiment, we apply DVRF mode only to
level 3 frames, and the simulation results are depicted in
Table 1. As we can see, FRUC provides on average 2.3%
BD rate gain on HEVC sequences, and up to 5.4% gain is
achieved on BQSquare, which demonstrates the effectiveness
of the proposed scheme. However, for some particular se-
quences, such as RaceHorse and RaceHorseC, DVRF mode
only provides slightly better RD performance, as the quality
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Table 2. RD performance comparison when applying the
proposed method to Level 2 and Level 3 B frames

BD Rate
Performance
-1.7%
-2.6%
-4.6%
-1.1%
-0.2%
-3.2%
-6.0%
-3.0%
-0.8%
-5.4%
-7.1%
-4.1%
-2.2%
-3.2%

Sequences Average

Kimono

ParkScene

Class B Cactus -2.0%
BasketballDrive
BQTerrace
BasketballDrill
BQMall
PartyScene
RaceHorsesC
BasketballPass
BQSquare
BlowingBubbles
RaceHorses

Average

Class C

-3.2%

Class D

-4.7%

of the virtual reference frames cannot be guaranteed in the
extensive motion scenarios. Regarding BQTerrace, DVRF
mode even has negative effect as Adaptive Separable Convo-
lution may not be able to well handle the waterwave case.

In the second experiment, the DVRF mode is applied to
both level 2 and level _3 B frames. As shown in Table 2, the
compression efficiency achieves further improvement com-
pared with the level 3 frames only. In particular, 3.2% coding
gain is achieved, which demonstrates the robustness of the
proposed method when the input frames of the FRUC algo-
rithm have longer temporal distance.

5. CONCLUSION

In this paper, a novel CTU level inter prediction method with
the advanced deep learning based FRUC method is presented.
The novelty of the proposed method lies in that the virtual
reference frame is adaptively generated with advanced deep
learning based FRUC method, such that better prediction per-
formance can be achieved without the expense of signalling
any motion information. Experimental results show the sig-
nificant superiority of the proposed method, and more than
3% coding gain has been achieved when compared to the
state-of-the-art video coding standard.
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