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Abstract. It has been widely demonstrated that integrating efficient perceptual 
measures into traditional video coding framework can improve subjective coding 
performance significantly. In this paper, we propose a novel block-level JND 
(just-noticeable-distortion) model, which has not only adjusted pixel-level JND 
thresholds with more block characteristics, but also integrated them into a block-
level model. And the model has been applied for adaptive perceptual quantization 
for video coding. Experimental results show that our model can save bit rates up 
to 24.5% on average with negligible degradation of the perceptual quality. 

Keywords: JND model, masking effect, adaptive perceptual quantization, visu-
al quality, video coding performance. 

1 Introduction 

Traditional hybrid video coding aims to remove spatial and temporal statistical redun-
dancies for signal compression. However, most of these methods often neglect per-
ceptual features for better subjective video coding. Considering that human eyes are 
the ultimate receivers, it is worthwhile to dedicate perceptually friendly coding re-
searches to further remove perceptual redundancies and improve subjective quality. 
The just noticeable distortion (JND) threshold, i.e. the distortion that observers just 
begin to notice, is one of the popular perceptual methods used for such applications. 

There have been abundant research efforts to develop rational JND models and ap-
ply them into video coding. The existing JND models can be classified into pixel do-
main and transform domain, respectively. In the pixel domain, most JND models use 
luminance adaptation and texture masking to compute pixel-level JND [1]. X.K.Yang 
et al. extended the JND model with a Nonlinear Additively Masking Model (NAMM) 
by integrating the luminance and texture masking together [2]. Except the luminance 
and texture that affect the perceived distortion, some other important factors have been 
studied, such as Chen et al. introduced a famous FJND model [3] integrated with retina 
foveation model to account for the relationship between visibility and eccentricity. 
Most of the transform domain JND methods are modeling in DCT domain, and the 
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subband JND features higher accuracy with the consideration of channel’s interactions. 
Among the popular DCT domain JND models, researchers focus on luminance adapta-
tion, the spatial CSF (contrast sensitivity function) and temporal CSF effects [4] to get 
useful spatial-temporal JND models. However, Jia’s model [4] only refers the magni-
tude of motion contribution to final spatial-temporal JND threshold, but the direction-
ality of motion is neglected. Wei et al. furthered the model by introducing a gamma 
correction to compensate the original luminance adaptation effect and a novel temporal 
modulation factor to integrate temporal properties [5].  

The existing JND methods have been widely used in hybrid video coding to en-
hance coding performance. In [7], a low-complexity perceptual rate distortion model 
has been introduced to replace the Lagrange RD cost model and demonstrated inter 
mode decision performance improvement. Chen et al. [3] optimized the quantization 
parameter for each MB (macro-block) based on its FJND information. The Lagrange 
multiplier in the rate-distortion optimization is adapted to ensure that the MB noticea-
ble distortion is minimized. Some researchers have utilized JND models to improve 
the compression rates mainly by residues [6] [8] or DCT coefficients [9-10] filtering 
based on a hard or soft JND threshold. 

From the JND models and application methods in video coding mentioned before, 
we can find that most the popular JND models have some characteristics as follows. 
First, although these models have considered adjacent characteristics of a pixel or a 
subband during the modeling procedure, they are just applied by separate pixel-level 
filtering [6, 8, 9, 10], and these methods do not consider that traditional video coding is 
on the basis of block units, which prefers more on smooth compression. And pixel-
level filtering may introduce much artifact distortion fluctuation in a block. Second, the 
computational complexity is too large for most JND models, such as using the canny 
operator in [5]. At last, none of them pay attention to the fact that the quantization 
parameter decided by traditional mode decision has not considered perceptual proper-
ties, namely, the QP can be perceptually adjusted to remove more visual redundancies 
or enhance perceptual quality. In order to resolve these problems, an adaptive percep-
tually quantization method for video coding based on a block-level JND model is pro-
posed in this paper. It not only integrates the pixel-level JND into the block-level JND, 
but also uses perceptual quantization to improve compression efficiency. 

The reminder of this paper is organized as follows. In Section 2, the main structure 
of the proposed block-level JND model is introduced. Based on our block-level JND 
model, an adaptive perceptual quantization method is integrated into video coding 
framework in Section 3. In Section 4, the experimental results are shown and dis-
cussed. The Section 5 draws the conclusions of our work. 

2 Proposed Block-Level JND Model 

The proposed block-level JND model is computed by two steps, computing pixel-
level JND and then integrating it into block-level JND. The pixel-level JND in [5] can 
be expressed for every 4 4× block in an image as the integration of a spatial JND 
value JNDs and a temporal modulation factor FT, 

 ( ) ( ) ( ), , , , , ,T S TJND n i j JND n i j F n i j= ⋅  (1) 
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where n is the index of a 4 4× block in the image, i and j are the DCT coefficients 
indices. Then the block-level JND can be computed as, 

 ( )( )blcok blockJND k lnD kα= ⋅   (2) 

where k denotes the kth 8 8× block in a macro-block,  JNDblock  is the JND threshold 
of a 8 8×  block, α is an empirical control parameter. Dblock  means the HVS percep-
tual sensitivity of a block computed by the integration of its pixel-level TJND  and 

the block energy, which will be detailed later. 

2.1 The Pixel-Level JND Threshold 

The spatial JND threshold is the product of luminance adaptation factor, the contrast 
masking factor and the frequency property of DCT sub-band, it can be calculated as, 

 ( ) ( ) ( ), , ( , , ) , ,S basic lum contrastJND n i j T n i j F n F n i j= ⋅ ⋅  (3) 

where Tbasic is the base JND threshold generated by the CSF effect, Flum  is the lumi-
nance adaptation and Fcontrast  denotes the contrast masking effect. 

First, the basic threshold is considered. The HVS is sensitive to spatial frequencies, 
and the spatial frequency of the (i, j)th subband in the nth DCT block is related to 
block dimension N, which can be computed as in [5], 

 ( ) ( )22

,

1
/ /

2i j x yi j
N

ω θ θ= +  (4) 

where xθ , yθ denotes the horizontal and vertical visual angle respectively, and they are 

the same as, 

 ( )( )2 arctan 1/ 2x y vd chR Pθ θ= = ⋅ ⋅ ⋅  (5) 

where Rvd stands for the ratio of viewing distance [5] to picture height Pch. Then the 
basic threshold for DCT subband can be calculated as, 
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where s accounts for the spatial summation effect with an empirical value 0.25, pa-
rameter r is set to 0.6,  and the normalization factors iφ or jφ are expressed as 
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 (7) 

and more parameters can be found in [5]. And because of the difference between 
4 4×  block and 8 8× block, for mφ  in (7), the i jφ φ will make the basic perceptual 

distortion fail by half, so we set the basic threshold of a 4 4×  block as follows to 
ensure perceptual distortion consistency with [5] 

 2 12T T= ⋅  (8) 
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In order to take more block-level luminance characteristics into account [12], we 
adjust each basic threshold as 
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where 4 4(0,0, )C n × and ( )8 8
0,0C ×

is the nth 4 4× block DC coefficient in a 8 8× block 

and the 8 8× block DC coefficient respectively, the parameter τ here equals to 0.649. 
The luminance adaptation for HVS mainly depends on average luminance intensity 

value I of each 4 4×  block, and it is described as in [5] 
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It is easy to know that in smooth and edge areas the distortion can be more easily 
recognized than texture areas with high energy, so we should compute the contrast 
masking factor according to different type of blocks, namely Plane, Edge and Texture. 
However, the Canny operator may be too complicated in [5] for block classification, 
here we replaced it with a famous and useful block classification method in DCT 
domain [13] used for JPEG encoder. According to [13], the 4 4×  block can be divid-
ed into four indicative areas as show in Fig.1, where DC, L, M, and H denotes the 
absolute sums of DCT coefficients in different areas respectively. By easily compu-
ting the (L+M)/H, L/M, M+H and comparing them with experimental threshold 1μ ,

2μ , 1α , 2α , 1β , 2β , γ etc., we can decide the block type as Plane, Edge and Texture 

quickly. Generally, the larger values of L/M and (L+M)/H for a block means higher 
possibility to be Edge area, and usually smaller M+H indicates Plane block. More 
details and the comparison procedure can be found in [13].  

DC

L(low frequency)

M(mdeium frequency)

H(high frequency)

 

Fig. 1. Classification indicators for a 4 4× DCT block 

Therefore through employing the elevation factor in [5], 
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we can compute Fcontrast as follows, 
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where ( ), ,C n i j  denotes the (i ,j)th DCT coefficient in the nth block. 

In order to consider the temporal effect, we need to evaluate the temporal modula-
tion factor FT. Many works have demonstrated that there are no independent charac-
teristics between the spatial and temporal frequencies, so we should take spatial factor 
into account for the temporal modulation factor. In [5], FT is derived as 
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where fs accounts for spatial frequency discussed above and ft denotes the temporal 
frequency, which have relationships with motion vectors acquired by motion estima-
tion, current frame rate, and eyes move velocity, etc. Detailed calculation procedure 
has been described in [5].  

Finally, the pixel-level JND threshold in classic 4 4× DCT domain can be obtained 
as (1), which is the basis of block-level JND model. 

2.2 The Block-Level JND Threshold 

The block-level JND threshold is proposed based on the following facts. Firstly, ob-
servers are more easily attracted to a block or an area than a pixel in an image.  
Among most natural scenes, the distortion beyond a block-level perceptual distortion 
threshold in a block will be more easily noticed than a pixel-level difference out of its 
threshold. Secondly, observers can be more easily attracted to high frequency content 
and is more sensitive to the distortion of low frequency areas, such as edges and noise 
in plane area, respectively. And human eyes have less interest in the medium frequen-
cy areas which contain much information and energy, and become less sensitive to 
their distortion. Therefore, it is rational to take subband pixel-level JND of a block 
and its energy distribution characteristics together into account to find a reasonable 
JND threshold for each block in a picture.  

Similar to [11], a block-level JND for image is proposed, it has considered the en-
ergy distribution characteristics in a block and the difference of block types in JND 
modeling, and it can be expressed as, 

 ( ) ( ) ( ) 2

0 0 0

, , | , , |
M N N

block T
n i j

D k JND n i j C n i j
= = =

= ⋅  (14) 

where M is the number of sub-block divided in a block, here its value is 4. The  
larger the Dblock, the less sensitivity to distortion of the block for HVS, i.e. the more 
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redundancies can be removed for better compression without much visual difference. 
And from the expression of Dblock, we can find that in the very low and very high fre-
quency sub-bands, such as very simple plane area with near-zero JNDT  and very com-
plex edge areas with very low energy respectively, their values tend to be smaller than in 
medium frequency sub-bands with larger JNDT  and energy such as modest texture are-
as. As a consequence, there will be less artifact distortion fluctuation in a block than pix-
el-level JND and we can avoid introducing too much artifact distortion in low frequency 
areas and protect more details in high frequency areas. At the end, the block-level JND 
can be computed as (2), which will be incorporated in perceptual video coding.  

3 Adaptive Perceptual Quantization for Video Coding 

In the traditional hybrid video coding standards, an offset of quantization parameter 
QP, namely QPΔ , will be used in Differential Pulse Code Modulation (DPCM) and 

transmitted in coded bit stream, and the QP used for residual DCT coefficient quanti-
zation or inverse quantization can be expressed as, 

 0QP QP QP= + Δ  (15) 

where QP0 is original quantization parameter of current macro-block, and it will be 
used for uniform quantization in a macro-block. However, the QP used in the best 
mode coding does not explore perceptual characteristics very well. According to [14], 
the quantization error should be limited to  

 | | | |QP rec blocke C C JND= − ≤  (16) 

where Crec stands for the reconstructed DCT coefficient. Taking the maximum un-
noticeable distortion into account, a perceptual quantization step should be limited to 
the block-level noticeable distortion, so we can get 

 2step blockQP JND= ⋅  (17) 

where QPstep is a uniform quantizer step applied to each DCT coefficient C. Then we 
can combine the procedure in [14] with the proposed block-level JND model in Sec-
tion 2 and get the perceptual JNDQPΔ  as, 

 2eil( log )JND blockQP C K JNDΔ = ⋅  (18) 

where Ceil(x) denotes the closest integer not more than the argument, K means the rela-
tionship between QP and QPstep  and it varies from different video coding standard. At 
the end, the perceptually adaptive quantization parameter QPJND  is computed as 

 0JND JNDQP QP QP= + Δ  (19) 

In order to comply with traditional macro-block video coding standard, we should 
average all the mentioned QPJND of each 8 8× block in a macro-block for uniform 
quantization as, 

 ( )_
0

1 B

JND MB JND
k

QP QP k
B =

=   (20) 
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where B is the number of blocks in a coding macro-block. The QPJND_MB  will be used 
for the best mode coding to remove more perceptual unnoticeable redundancies and 
integrate it into video coding procedure as shown in Fig. 2. The quantization offset 

_JND MBQPΔ
 
values’ mapping will be transmitted to final bit stream as follows 

 _ _ 0JND MB JND MBQP QP QPΔ = −  (21) 

4 Experimental Results 

In order to evaluate the performance of our proposed block-level JND scheme, the 
integration procedure is implemented on AVS Jizhun profile. The GOP length is 15 
with structure IBBPBBP….The frame rate is 30 frames per second, the motion esti-
mation is carried out at a quarter pixel resolution with search range of 16 and the 
RDO is enabled. The test sequences are 4:2:0 YUV format covering CIF, 720p and 
1080p resolutions. We have compared the subjective quality and bit rate compression 
performance of video encoded by the proposed method with Yang’s model [2], which 
is a famous and useful JND model [10]. The chosen subjective distortion measure is  
the Multiple Scale-Structural Similarity (MS-SSIM) [15] calculated on the luminance 
frames and averaged for the whole sequence. The Table 1 shows our experimental 
results and the Fig.3 (a) to Fig.3 (b) demonstrate subjective performance improvement 
directly. And we can make some discussions as follows. 

 

Fig. 2. Perceptual adaptive quantization video coding diagram 

According to the Table 1, we can conclude that our block-level JND model shows 
less negligible subjective loss and lower MS-SSIM reduction than Yang’s with the 
value of -0.3265% and -0.5654%, respectively. It means that the perceptually pro-
cessed sequences almost have the same visual quality as original reference encoded 
sequences and are better than Yang’s. We can see that the proposed block-level JND 
model yields an average 24.5% bit rate savings compared to Yang’s 18.8% bit rate 
reduction. Meanwhile, Yang’s PSNR loss is almost twice than our model, which 
means that because of considering block-level JND characteristics rather than directly 
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using separate JND filtering, our model can shape perceptual noise more uniformly. 
The Fig.3 (a) and (b) show the integral performance by bit rate versus MS-SSIM ex-
ampled by sequence “Optics” and sequence “Life”. We can easily find that our model 
has a better subjective performance, which is in accordance with the result of Table 1. 

Table 1. Performance of proposed block-level JND model 

Sequences QP 
Proposed model Yang's model 

ΔBitrate   
(%) 

ΔPSNR 
(dB) 

ΔMS-
SSIM (%) 

ΔBitrate   
(%) 

ΔPSNR 
(dB) 

ΔMS-
SSIM (%) 

Football     
(CIF) 

16 -12.07% -1.18 -0.1347% -5.00% -2.37 -0.2565% 
20 -13.55% -1.32 -0.2181% -3.97% -1.68 -0.2490% 
24 -13.38% -1.24 -0.3127% -2.83% -1.01 -0.2231% 
28 -12.59% -1.08 -0.3835% -1.96% -0.58 -0.1832% 

Foreman     
(CIF) 

16 -33.44% -2.16 -0.2154% -17.08% -3.20 -0.2388% 
20 -35.32% -2.12 -0.2565% -14.89% -2.27 -0.2046% 
24 -32.60% -1.72 -0.2912% -11.70% -1.35 -0.1624% 
28 -25.20% -1.19 -0.2659% -7.51% -0.71 -0.1153% 

Optis      
(720p) 

16 -24.29% -1.89 -0.4112% -32.73% -5.01 -1.1559% 
20 -36.70% -2.34 -0.8442% -35.60% -3.98 -1.2634% 
24 -35.31% -1.66 -0.7978% -29.96% -2.48 -1.1315% 
28 -26.24% -1.15 -0.7721% -20.96% -1.57 -1.1011% 

Sheriff      
(720p) 

16 -22.89% -1.68 -0.2139% -33.53% -5.99 -0.9714% 
20 -30.63% -2.06 -0.4333% -35.97% -4.77 -0.9858% 
24 -33.69% -1.85 -0.5478% -34.16% -3.25 -0.8771% 
28 -28.64% -1.30 -0.4905% -26.16% -1.96 -0.7071% 

Life       
(1080p) 

16 -24.42% -1.43 -0.0725% -22.62% -5.72 -0.3959% 
20 -27.86% -1.54 -0.1194% -22.86% -4.50 -0.3994% 
24 -29.10% -1.35 -0.1417% -21.28% -3.07 -0.3692% 
28 -25.95% -1.00 -0.1609% -16.92% -1.93 -0.3128% 

Tennis      
(1080p) 

16 -14.94% -1.02 -0.1425% -16.07% -4.22 -0.6586% 
20 -21.75% -1.06 -0.3198% -18.15% -3.22 -0.7470% 
24 -15.17% -0.58 -0.1433% -11.44% -2.05 -0.4653% 
28 -12.26% -0.51 -0.1470% -8.85% -1.53 -0.3960% 

Average   -24.50% -1.43 -0.3265% -18.84% -2.85 -0.5654% 

 

Fig. 3. Subjective performance comparison (a) sequence “Optics” (b) sequence “Life” 
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5 Conclusion 

In this paper, we have proposed a novel block-level JND model and integrated it with 
video coding scheme to generate the perceptually adaptive quantization. The proposed 
algorithm is fully compatible with current mainstream video coding standard and also 
can be applied for H.264/AVC and HEVC coding framework. The experimental results 
show average 24.5% bit rate saving with negligible impact on the sequence perceptual 
quality. In the future, we plan to explore more accurate JND model and integrate its 
applications into hybrid video coding to further enhance the coding performance.  
 
Acknowledgements. This work is partially supported by grants from the Chinese 
National Natural Science Foundation under contract No.61171139 and National High 
Technology Research and Development Program of China (863 Program) under con-
tract No.2012AA011703. 

References 

1. Chou, C.H., Li, Y.C.: A perceptually tuned subband image coder based on the measure of 
Just-Noticeable-Distortion Profile. IEEE Transaction on Circuits and Systems for Video 
Technology 5(6), 467–476 (1995) 

2. Yang, X.K., Lin, W.S., Lu, Z., Ong, E.P., Yao, S.S.: Just-noticeable-distortion profile with 
nonlinear additivity model for perceptual masking in color images. In: IEEE International 
Conference on Acoustics, Speech, and Signal Processing, pp. 609–612 (2003) 

3. Zhenzhong, C., Guillemot, C.: Perceptually-Friendly H.264/AVC Video Coding Based on 
Foveated Just-Noticeable-Distortion Model. IEEE Transactions on Circuits and Systems 
for Video Technology 20(6), 806–819 (2010) 

4. Yuting, J., Weisi, L., Kassim, A.A.: Estimating Just-Noticeable Distortion for Video. IEEE 
Transactions on Circuits and Systems for Video Technology 16(7), 820–829 (2006) 

5. Zhenyu, W., Ngan, K.N.: Spatio-Temporal Just Noticeable Distortion Profile for Grey 
Scale Image/Video in DCT Domain. IEEE Transactions on Circuits and Systems for Video 
Technology 19(3), 337–346 (2009) 

6. Hao, C., et al.: Temporal color Just Noticeable Distortion model and its application for 
video coding. In: IEEE International Conference on Multimedia and Expo (ICME), Suntec 
City (2010) 

7. Huan, W., Xueming, Q., Guizhong, L.: Inter mode decision based on Just Noticeable Dif-
ference profile. In: 2010 17th IEEE International Conference on Image Processing (ICIP), 
Hong Kong (2010) 

8. Chun-Man, M., King, N.N.: Enhancing compression rate by just-noticeable distortion 
model for H.264/AVC. In: IEEE International Symposium on Circuits and Systems, 
ISCAS 2009, Taipei (2009) 

9. Luo, Z., et al.: H.264/Advanced Video Control Perceptual Optimization Coding Based on 
JND-Directed Coefficient Suppression. IEEE Transactions on Circuits and Systems for 
Video Technology 23(6), 935–948 (2013) 

10. Qi, C., Li, S.: AVS encoding optimization with perceptual just noticeable distortion model. 
In: 2013 9th International Conference on Information, Communications and Signal Pro-
cessing (ICICS), Tainan (2013) 



 An Adaptive Perceptual Quantization Algorithm Based on Block-Level JND 63 

11. Wilson, T.A., Rogers, S.K., Myers Jr., L.R.: Perceptual-based hyper spectral image fusion 
using multiresolution analysis. Optical Engineering 34(11), 3154–3164 (1995) 

12. Watson, A.B.: Visually optimal DCT quantization matrices for individual images. In: Data 
Compression Conference, DCC 19, UT, Snowbird (1993) 

13. Tong, H.H.Y., Venetsanopoulos, A.N.: A perceptual model for JPEG applications based 
on block classification, texture masking, and luminance masking. In: Proceedings of the 
1998 International Conference on Image Processing, ICIP 1998, Chicago, IL (1998) 

14. Naccari, M., Mrak, M.: Intensity dependent spatial quantization with application in HEVC. 
In: 2013 IEEE International Conference on Multimedia and Expo (ICME), San Jose, CA 
(2013) 

15. Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: Study of subjective 
and objective quality assessment of video. IEEE Trans. on Image Proc. 19(6), 1427–1441 
(2010) 


	An Adaptive Perceptual Quantization Algorithm Based on Block-Level JND for Video Coding
	1 Introduction
	2 Proposed Block-Level JND Model
	2.1 The Pixel-Level JND Threshold
	2.2 The Block-Level JND Threshold

	3 Adaptive Perceptual Quantization for Video Coding
	4 Experimental Results
	5 Conclusion
	References




