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a b s t r a c t

In this paper, an effective low bit-rate video coding scheme is developed to realize state-of-the-art video
coding efficiency with lower encoder complexity, while supporting standard compliance and error
resilience. Such an architecture is particularly attractive for application scenarios involving resource-
deficient wireless video communications. At the encoder, in order to increase resilience to channel error,
multiple descriptions of a video sequence are generated in the spatio-temporal domain by temporal
multiplexing and spatial adaptive downsampling. The resulting side descriptions are interleaved with
each other in temporal domain, while still with conventional square sample grids in spatial domain. As
such, each side description can be compressed without any change to existing video coding standards. At
the decoder, each side description is first decompressed, and then reconstructed to the original
resolution with the help of the other side description. In this procedure, the decoder recovers the
original video sequence in a constrained least squares regression process, in which 2D or 3D piecewise
autoregressive model is adaptively chosen according to different predictive modes. In this way, the
spatial and temporal correlation is sufficiently explored to achieve superior quality. Experimental results
demonstrate that the proposed video coding scheme outperforms H.264/AVC and other state-of-the-art
methods in rate–distortion performance at low bit-rates and achieves superior visual quality at medium
bit rates as well, while with lower encoding computational complexity.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, low-cost devices such as CMOS cameras that are
able to ubiquitously capture video content from the environment
have appeared in almost all small wireless mobile devices, such as
smart-phones and tablet PCs. Furthermore, recent developments in
sensor networking have encouraged the use of video sensors in these
networks, which has fostered the development of Wireless Video
Sensor Network (WVSN) [1–5]. Following the trends in low-power
processing, wireless networking, and distributed sensing, WVSN has
developed as a new technology with a number of potential applica-
tions, ranging from mobile multimedia, security monitoring, and
advanced health care delivery to emergency response.

WVSN will be composed of inter-connected, battery-powered
miniature video sensors. WVSN is usually mission driven and app-
lication specific, therefore it must operate under a set of unique
constraints and requirements. The main concern for WVSN is that
the energy provisioned for a video sensor is not expected to be

renewed throughout its mission because sensor nodes may be
deployed in a hostile or unpractical environment. And the band-
width of wireless channels is usually limited. At the same time, it is
necessary to provide some error-resilient mechanism against
instability of wireless channels. More specially, there are several
factors that mainly influence the design of a WVSN:

� Compression efficiency, encoder complexity and bandwidth: An
effective video compression scheme can significantly reduce the
amount of video data to be transmitted, which in turn saves a
significant amount of energy in data transmission. However,
more effective video compression methods often require higher
computational complexity. These two conflicting effects imply
that in practical system design there is always a tradeoff among
compression efficiency, encoding complexity and bandwidth.

� Resiliency to channel errors: Wireless channels are unstable and
noisy. Therefore, the source coder should provide some
mechanism for robust and error-resilient coding of source data.

There exists a vast literature on video coding techniques. In
traditional hybrid video compression standards, such as MPEG-2
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[6], H.264/AVC [7] and HEVC, consecutive frames are encoded
jointly to achieve maximum coding efficiency, which are based on
the idea of predictive coding to exploit spatio-temporal correla-
tions. Although achieving the state-of-the-art rate-distortion per-
formance, they may not be suitable for low-cost video sensors
since predictive coding requires complex encoders and entails
high energy consumption. Besides, the predictive coding system
causes inter-frame dependency in decompression, which results in
error propagation for an error-prone channel. Another approach in
conventional wisdom is distributed video coding (DVC) [8–10],
which shifts the complexity to the decoder end to allow the use of
simple encoders. At the same time, DVC has an inbuilt robustness
to channel losses because there is a duality between distributed
source coding and channel coding. Clearly, DVC is very promising
for WVSN. However, despite years of intensive research on DVC,
the current systems still fail to meet the compression efficiency of
their predictive coding counterparts [11–13]. Moreover, the feed-
back channel is required in existing mainstream DVC schemes,
which will introduce delay and therefore is not suitable for
practical WVSN applications.

In this paper, we investigate the sparse sampling based approach
for wireless video communication. The fact that natural videos have
an exponentially decaying power spectrum in spatial domain and
strong correlations in temporal domain suggests the possibility of
interpolation-based compact representation of video signals. We find
that sparse sampling naturally fulfills the role of encoder because it
greatly reduces the amount of data. To achieve maximum coding
efficiency, the downsampled data should be further compressed. For
this purpose we choose a uniform downsampling scheme to generate
conventional square sample grids with smaller size. In this way, the
information needed to be compressed and transmitted is significantly
reduced, so that the proposed scheme can greatly reduce the encoder
complexity, and naturally prolong the operational lifetime of video
sensors. Similar to DVC, the proposed scheme provides an asymmetric
video codec design, which shifts the associated computation burdens
to the decoder. In this system design, the heavy-duty video decoding
can be performed by powerful computers or perceivably in near
future by cloud computing.

On the other hand, the needs for wireless-network-aware
coding techniques to mitigate the problem of packet losses have
generated much interest in multiple description coding. In the
more simple architecture, MDC of a video source consists in
generating two equivalent importance data streams that, all
together, carry the input information. At the receiver side, when
both the descriptions are available a high quality video is recon-
structed. If only one bit-stream is available at the decoder end, a
poorer but acceptable quality reconstruction is obtained. MDC has
emerged as a promising approach to enhance the error resilience
of a video delivery system. However, most of the existing video
MDC techniques [14-17,19,27-29] are not compliant to exist-
ing video coding standards, either being completely different

approaches or requiring a significant degree of modifications to
an existing standard. Moreover, since introducing redundancy for
error resilience, the compression efficiency of MDC based schemes
is usually lower than the conventional video coding standard. A
natural question is whether combing compact signal representa-
tion with MDC can be made a practical and competitive solution
for wireless video communications. In this paper we will give an
affirmative answer to the above question.

The rest of this paper is organized as follows. In Section 2, we
overview the related work. Section 3 presents the framework of
the proposed scheme. Sections 4 and 5 detail the main contribu-
tion of this paper: mode-dependent soft-decoding via constrained
least squares regression. Section 6 presents the experimental
results and comparative studies. Section 7 concludes the paper.

2. Related work

In the literature, many interpolation-based low bit-rate image/
video compression algorithms have been proposed. In [29], an
interpolation-dependent downsampling method was proposed to
hinge the interpolation to the downsampling process. In [18], Shen
et al. proposed a downsampling based video coding scheme, where an
example based super-resolution technique is employed to restore the
downsampled frames to their original resolutions. This work needs an
offline training set with different video resolution. In some practical
cases, the training set is not available. In [20], an adaptive down-
sampling mode decision in the encoder was proposed. The modes
including different directions and sizes can be determined by the
features of block contents. Ref. [30] proposes to find the optimal
downsampling ratio that balances the distortions caused by down-
sampling and coding, thus achieving the overall optimal RD perfor-
mance. However, this method will introduce heavy computation
complexity at the encoder side to perform complex rate-distortion
mode decision. All the above mentioned methods need modification
on the current image/video coding standard, which limits their
practicability. Compared with these methods, the proposed scheme
is standard compliant. We envision that our scheme can be a useful
enhancer of any existing video compression standard, by just adding
pre- and post-processing modules, to improve low bit-rates compres-
sion performance.

3. The framework of model-based low bit-rate video coding
scheme

3.1. Encoder

The major concern of our system design is to provide a light-duty
encoder under energy consumption and bandwidth constraints, mean-
while, have the ability to mitigate the problem of packet losses during

Fig. 1. The framework of the proposed video coding scheme.
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wireless transmission. In this paper, we propose a new encoder scheme
called temporal multiplexing with spatial adaptive downsampling, as
illustrated in Fig. 1. To improve error resilience of the bitstream, we
propose to divide the input video source into two side descriptions
according to their spatial and temporal relationships. Specially, the
input video sequence is first prefiltered with a Gaussian filter in
temporal domain. The filtered video frames are then split by a simple
multiplexer into odd and even side descriptions, each of which
contains odd and even frames respectively. After that, each frame in
two descriptions is performed spatially downsampling to further
compact the video signals. The generated two low-resolution (LR)
descriptions are mutually refinable and can be independently decoded.

For spatial downsampling, we choose not to perform uneven
irregular down sampling of a video frame according to local spatial
or frequency characteristics. Instead, we stick to conventional
square pixel grid by uniform spatial down sampling of the frame
with a factor of two. Yet the simple uniform downsampling
scheme is made adaptive by a directional low-pass prefiltering
step prior to downsampling. In this way, the two side descriptions
can be compressed by any third-party encoder and transmitted to
the decoder by the same or separate wireless channel.

The other purpose of this preprocessing is to induce a mechan-
ism of collaboration between the spatial uniform downsampling
process at the encoder and optimal upconversion process at the
decoder. The sampling locations of odd and even descriptions are
different, which are carefully designed to make the resulting LR
side descriptions interleave with each other on HR sample grid in
the temporal domain, as illustrated in Fig. 2. In this way, we can
introduce structure redundancy for two descriptions. This design
has advantages to be self-evident in the following development.

Now we can see that spatial adaptive downsampling can
efficiently ease the burden of the encoder and wireless transmis-
sion channel because it can greatly reduce the amount of data
needed to processing. In this way, it naturally extends the lifetime
of the WVSN. Meanwhile, since a uniform downsampling scheme
is chosen, the downsampled descriptions will constitute two LR
video sequences, which can be compressed to further reduce the
data rate by using standard encoder (e.g., H.264/AVC). Therefore,
the whole system remains standard compliant and practical.

3.2. Decoder

As we have seen in the previous subsection, the proposed
encoder generates two equal importance descriptions, which are
individually packetized and sent through either the same or
separate physical channels. Either channel may fail with prob-
ability pi; i¼ 1;2.

There are two common environments for MDC. One is the on–
off setting, in which a typical assumption is that both channels do
not simultaneously fail, and if a channel fails the corresponding
description is totally lost [15]. This case is focused on by most of

the existing MDC schemes. The other environment is packet lossy
network, in which packet losses occur in each description, and
both descriptions can be used at the decoder. In this case, the
performance of error concealment plays a very important role on
the final coding efficiency. In this paper, we focus on the on–off
case. And the proposed scheme can be easily extended to the case
of packet lossy network by using existing error concealment
technologies to first conceal the errors in each description then
use the proposed algorithm for reconstruction.

At the decoder, three situations are possible: both descriptions
are received or either one of the two descriptions is received. The
central decoder receives both descriptions and produces a high-
quality reconstruction (full frame rate), while the two side deco-
ders each receives only one of the two descriptions and produces
lower, but still acceptable, quality reconstructions (half frame
rate). In the following, we will detail the central decoder design.
Note that the side decoder is performed in the same way as the
Intra mode of the central decoder.

4. Mode dependent soft decoding by model-based estimation

In this section, we introduce the central decoder of the proposed
video compression system. At the central decoder, the two side
descriptions are individually decoded and mutually refined, which
we call hard-decoded videos. In contrast, the restored high-resolution
video sequence is called soft-decoded video, and the restoration pro-
cess is called soft decoding. Soft decoding can be expected to improve
the fidelity of hard-decoded videos because there is strong spatio-
temporal correlation between two side descriptions. The side decoder
is algorithmically similar to the central decoder, but uses only one side
description that is successfully received at the decoder for reco-
nstruction.

4.1. The interpolation model

The problem of soft decoding could be defined as follows: Let y be
the low-pass filtered, down-sampled and compressed frame. The
vector yAZM consists of M LR pixel values in a given lexicographical
order, where Z is an integer alphabet from which the pixel values are
drawn. What we want to do is to recover the underlying HR frame
xAZN . The formation of y from x is modeled as

y¼DHxþn; ð1Þ
where H is the low-pass filtering operation and D is the down-
sampling process. The term n is the quantization noise in compression.
Inwhat follows we develop a model-based reconstruction approach to
perform up-sampling, inverse filtering and denoising jointly.

Reconstruction of x from y is inherently an ill-posed inverse
problem. The performance of the reconstruction algorithm largely
depends on how well it can employ regularization conditions or
constraints when numerically solving the problem. The solution

Fig. 2. Uniform downsampling with temporal multiplexing. (a) The original frame. (b) Downsampled version (blue points) for odd frames. (c) Downsampled version (black
points) for even frames. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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can be greatly improved if a good adaptive video model can be
integrated into the estimation process, because the model can
regulate estimated pixels according to useful prior statistical
knowledge.

Motivated by the geometric constraint of edges and motion
trajectory, we propose to use three-dimensional piecewise auto-
regressive (3D-PAR) model for video interpolation at the decoder
side. In the proposed 3D-PAR model, an unknown HR pixel is
estimated as a linear weighted combination of its spatio-temporal
neighbors. Mathematically, let the unknown HR pixel located at
(i,j) in the frame t as xði; j; tÞ, we define the 3D-PAR model as
follows:

xði; j; tÞ ¼
X

ðu;v;kÞA Sði;j;tÞ
au;v;ki;j;t xðiþu; jþv; tþkÞþnði; j; tÞ; ð2Þ

where Sði; j; tÞ is the spatio-temporal support of the 3D-PAR model;
au;v;ki;j;t are the model parameters, and nði; j; tÞ is a random perturba-
tion independent of video signal. The model parameters are locally
estimated by the least squares method (which will be introduced
in the next section); therefore, the proposed 3D-PAR mode is
capable of being fit video signals to achieve spatio-temporal
adaptation.

4.2. Mode dependent soft decoding

We integrate the 3D-PAR model into the solution of the soft
decoding problem as formulated in Eq. (1). To simplify notations,
from now on we use a single index to identify 2D pixel locations,
and denote xði; tÞ as the current pixel to interpolate in the frame t.
In a local window W, our task is to jointly estimate the parameters
of the interpolation model and the block of HR pixels xAW such
that the estimated model can optimally fit the estimated x. Now
the HR frame reconstruction from a compressed LR frame can be
stated as the following constrained optimization problem:

min
x;α

X
iAW

Jxði; tÞ�
X

ðu;kÞA Sði;tÞ
αu;kxðiþu; tþkÞJ2;

s:t: Jy�DHxJ2oσ2
nðrÞ; ð3Þ

where fαu;kg are the parameters of PAR model to be fit to the
waveform in local window W, and σ2

nðrÞ is the energy of the
quantization noise of the compressed LR frame at bit rate r. Let L
be the number of the LR pixels inside W, Jy�DHxJ2oσ2

nðrÞ
corresponds to L inequality constraints.

Let us turn to choose an appropriate PAR model order d (i.e., the
length of model parameters vector). On one hand, if the number of
d is large, which means that there are many variables to estimate,
when the number of equations between these variables is not
enough, the problem of data overfitting will happen. On the other
hand, if pixels in the local window W have weak temporal
correlation with neighboring frames, such as W is a occlusion
region, the accuracy of estimation will degrade heavily due to the
introduction of uncorrelated temporal neighbors. Therefore, spa-
tial PAR model (i.e., 2D-PAR) and spatio-temporal PAR model (i.e.,
3D-PAR) should be adaptively chosen according to the spatio-
temporal statistics of W.

On a second reflection, fortunately, the two dimensions of the
image signal afford us ways to circumvent the problem of data
overfitting. One way to increase the number of equations or
constraints on pixels in W is the use of multiple PAR models that
associate pixels in different directions. Specifically, we introduce
two 6-order 3D-PAR models in our design, as illustrated in Fig. 3.
One is the diagonal model AR� which consists of four 8-connected
spatial neighbors and two temporal neighbors from the forward
and backward reference frames, and the other is the axial model
ARþ which consists of four 4-connected spatial neighbors and two
temporal neighbors from the forward and backward reference

frames. Moreover, according to the statistical duality between LR
frame and its HR counterpart, the predictive mode generated in LR
descriptions compression could provide us the prior knowledge to
decide whether only spatial or both spatial and temporal correla-
tion is used for HR frames reconstruction. In accordance with the
H.264/AVC standard, the proposed soft-decoding reconstruction
can be divided by the four modes: Intra, Skip, Inter-P, Inter-B. On a
second reflection, fortunately, the two dimensions of the image
signal afford us ways to circumvent the problem of data over-
fitting. One way to increase the number of equations or constraints
on pixels in W is to use multiple PAR models that associate pixels
in different directions. Specifically, we introduce two 6-order 3D-
PAR models in our design, as illustrated in Fig. 3. One is the
diagonal model AR� which consists of four 8-connected spatial
neighbors and two temporal neighbors from the forward and
backward reference frames, and the other is the axial model ARþ
which consists of four 4-connected spatial neighbors and two
temporal neighbors from the forward and backward reference
frames. Moreover, according to the statistical duality between LR
frame and its HR counterpart, the predictive mode generated in LR
descriptions compression could provide us the prior knowledge to
decide whether only spatial or both spatial and temporal correla-
tion is used for HR frames reconstruction. In accordance with the
H.264/AVC standard, the proposed soft-decoding reconstruction
can be divided by four modes: Intra, Skip, Inter-P, Inter-B.

4.2.1. Intra mode
For Intra mode, the problem of frame reconstruction degrades

to spatial image interpolation. The upconversion is based on the
diagonal and axial 2D-PAR image models and on the deconvolu-
tion of the directional low-pass prefiltering. Incorporating these
two PAR models into the original nonlinear estimation framework,
we state the task of upconversion as the following constrained
least squares problem:

min
x;a;b

ζ�
P
iAW

Jxði; tÞ�aTs s�ði; tÞJ2

þζþ P
iAW

Jxði; tÞ�bT
s sþ ði; tÞJ2þλJy�DHxJ2

8>><>>:
9>>=>>;; ð4Þ

where s�ði; tÞ and sþ ði; tÞ consist of four 8-connected and four 4-
connected spatial neighbors of xði; tÞ in the HR image, as and bs are
model parameters of diagonal and axial models, respectively, ζ�

and ζþ are fusion weights to combine the modeling strength of
the two PAR models.

Fig. 3. Two used 6-order 3D-PAR model. The central red pixel is the one to
estimate. The blue pixels are spatial neighbors. The black pixels are temporal
neighbors, which are aligned by forward and backward MVs. The left model is the
diagonal model AR� , which consists of four 8-connected spatial neighbors and two
temporal neighbors from the forward and backward reference frames. The right
one is the axial model ARþ , which consists of four 4-connected spatial neighbors
and two temporal neighbors from the forward and backward reference frames. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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4.2.2. Skip mode
For Skip mode, the LR pixels in the forward frame t�1 can be

directly copied to the current sample grid to construct a quincunx
lattice, as illustrated in Fig. 4. With the quincunx lattice, the Skip
mode performs spatial interpolation to estimate other missing
pixels. The optimization formulation is the same as Eq. (4), while
with 2L inequality constraints since two times LR samples can be
available. The increased constraints can provide more accurate
estimation from the solution space.

4.2.3. Inter-P and inter-B mode
For Inter-P and Inter-B mode, motion information is available to

facilitate the task of resolving intensity uncertainty of video signals
by exploiting the fundamental tradeoff between spatial and
temporal correlation. Two 3D-PAR models are used for such case,
where the current pixel is approximated as the weighted combi-
nation of samples within its spatial neighborhoods as well as the
temporal neighbors aligned by motion vectors. The task of upcon-
version can be stated as the following constrained least squares
problem:

min
x;a;b

ζ�
P
iAW

Jxði; tÞ�ðaTs s�ði; tÞþaTt ði; tÞÞJ2

þζþ P
iAW

Jxði; tÞ�ðbT
s sþ ði; tÞþbT

t ði; tÞÞJ2

þλJy�DHxJ2

8>>>><>>>>:

9>>>>=>>>>;; ð5Þ

where as and bs are spatial model parameters along diagonal and
axial direction, respectively; at and bt are temporal model para-
meters along the motion vector; (i,t) is the temporal reference
sample set which includes forward reference sample for the Inter-
P mode and bi-directional reference samples for the Inter-B mode.

5. Model estimation and convex optimization

The PAR model, via its parameters, offers an adaptive sparse
representation of video signals. Therefore, 2D-PAR and 3D-PAR
model estimations are a critical issue in the proposed low bit-rate
video coding scheme. In the following, we will show in detail how
to derive the model parameters. Besides, we will show how the
process of video reconstruction can be formulated as a convex
optimization problem and finally derive a closed-form solution.

5.1. Model parameters estimation

The model parameters specify the direction and amplitude of
edges in spatial and motion in temporal. They are estimated on the

fly for each pixel using sample statistics of a local spatio-temporal
covering. It accounts for the fact that the spatio-temporal statistics
of natural video signals are often piecewise stationary. The
accuracy of model parameter estimation directly influences the
quality of reconstructed frames. In the following, let us consider
how to estimate the model parameters as and bs for 2D-PAR model
used in Intra and Skip mode, and a¼ ½as; at � and b¼ ½bs;bt � for 3D-
PAR mode used in Inter-P and Inter-B mode.

For 2D-PAR model, our emphasis is to reconstruct significant
edges. The study of natural image statistics reveals that the second
order statistics of natural images tends to be invariant across
different scales, and those scale invariant features are shown to be
crucial for visual perception [21,22]. Therefore, we can estimate
local covariance coefficients from a low-resolution image, and
then project the estimated covariance to the high-resolution
image to adapt the interpolation. Moveover, in order to reduce
the influence of compression noise and enhance the robustness of
estimated model, we propose to learn model parameters as and bs

from decoded image using moving least square. Specifically, for a
local window W centered on xði; tÞ, we estimate the model
parameters by solving the following two optimization problems:

an

s ¼min
as

P
jAW

θði; jÞJyðj; tÞ�aTs s
�
y ðj; tÞJ2þλJas J2

� �
;

bn

s ¼min
bs

P
jAW

θði; jÞJyðj; tÞ�bT
s s

þ
y ðj; tÞJ2þλJbs J2

� �
; ð6Þ

where s�y and sþy are samples along diagonal and axial direction in
the LR frame y , respectively, θði; jÞ is the moving weight to reflect
the similarity of the sample on j with the sample on the center i. In
this paper, we combine the edge-preserving property of bilateral
filter and the robust property of non-local-means weights to
design effective moving weights, which is defined as follows:

θði; jÞ ¼ 1
N
exp � J i� jJ2

σ2
s

( )
exp �G � JSWðiÞ�SWðjÞJ2

σ2
p

( )
;

σs40;σq40: ð7Þ
where N is the normalization factor, G is a Gaussian kernel used to
take into account the distance between the central pixel and other
pixels in the patch, and SW(i) represents the pixel patch whose
components are intensity values of pixels in the similarity window
centered on i.

Setting the derivative to 0, the closed form solutions of Eq. (6)
are

an

s ¼ ðATΘAþλIÞ�1ATΘv;

bn

s ¼ ðBTΘBþλIÞ�1BTΘv; ð8Þ
where the column vector v is composed of all yði; tÞ in W. The ith
row of the matrix A consists of the four 8-connected neighbors of
yði; tÞ, and the ith row of the matrix B consists of the four 4-
connected neighbors of yði; tÞ.Θ is a diagonal matrix whose entries
in diagonal locations are moving weights.

As formulated in Eq. (4), we use ζ� and ζþ to combine the
modeling strength of the two PAR models. We can exploit the
squared errors associated with the solutions of two objective
functions in Eq. (8) to determine these two fusion weights:

ζ� ¼ eþ

eþ þe�
;

ζþ ¼ e�

eþ þe�
: ð9Þ

These weights are optimal in least squares sense if the fit errors of
the two models are independent.

In still images, intensity field is homogeneous along the edge
orientation. If considering the counterpart of edge contours in 3D,
we observe that intensity field is homogeneous along the motion

Fig. 4. Quincunx sample grid. The blue dots are LR samples in the current frame,
the black dots are copied from the forward frame, the blank dots are HR samples
needed to estimate. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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trajectory [24]. The duality between edge contour and motion
trajectory motivates us to use the similar approach as that of 2D-
PAR for model estimation of 3D-PAR. For 3D-PAR model, the model
parameters are adaptively estimated within a localized spatio-
temporal window from the side description video sequence by the
moving least-square method [26] on a pixel-by-pixel basis. Simi-
larly, the derivation a¼ ½as; at � and b¼ ½bs;bt � follows the moving
least squares formulation:

an ¼min
a

P
jAW

θði; jÞJyðj; tÞ�ðaTs s�y ðj; tÞþaTt tyðj; tÞÞJ2

þλJaJ2

8<:
9=;;

bn ¼min
b

P
jAW

θði; jÞJyðj; tÞ�ðbT
s s

þ
y ðj; tÞþbT

t tyðj; tÞÞJ2

þλJbJ2

8<:
9=;; ð10Þ

with the closed-form solutions:

an ¼ ðbATΘbAþλIÞ�1bATΘv;

bn ¼ ðbBTΘbBþλIÞ�1bBTΘv; ð11Þ

where the ith row of matrix bA consists of the four 8-connected
spatial neighbors, and one or two temporal neighbors of yði; tÞ; the
ith row of matrix bB consists of the four 4-connected spatial

Fig. 5. Rate–distortion performance comparison.

X. Liu et al. / Neurocomputing 162 (2015) 180–190 185



neighbors and one or two temporal neighbors of yði; tÞ. We can
obtain ζ� and ζþ in a similar way with Eq. (9).

5.2. Convex optimization

Once the PAR model is constructed, soft decoding can be
performed efficiently by constrained linear least squares estima-
tion. Considering that the prediction of the 2D-PAR or 3D-PAR
model is linear combinations of the pixels in a spatial or spatio-
temporal neighborhood, we can arrange the estimated parameters
fag and fbg of the diagonal and axial model into two sparse
matrixes A and B, and finally incorporate the model into the
objective function. For convenient representation we rewrite
Eqs. (4) and (5) in the matrix form:

xn ¼min
x

ζ�
P
iAW

Jx�AxJ2þζþ P
iAW

Jx�BxJ2

þλJy�DHxJ2

8<:
9=;: ð12Þ

The objective function can be further written in quadratic form as

min
x

rðxÞTrðxÞ; ð13Þ

where the residue vector rðxÞ is defined as

rðxÞ ¼

ffiffiffiffiffiffi
ζ�

p
ðI�AÞxffiffiffiffiffiffiffi

ζþ
q

ðI�BÞxffiffiffi
λ

p
ðy�DHxÞ

26664
37775: ð14Þ

And the objective function in Eq. (13) is a linear least square
problem that can obtain a closed-form solution as

x¼ ðF TF Þ�1F TG ð15Þ
with

F ¼

ffiffiffiffiffiffi
ζ�

p
ðI�AÞffiffiffiffiffiffiffi

ζþ
q

ðI�BÞffiffiffi
λ

p
DH

26664
37775 ð16Þ

and

G¼
0
0

�
ffiffiffi
λ

p
y

264
375: ð17Þ

6. Experimental results

In this section, experimental results are presented to verify the
performance of the proposed video coding scheme with respect to
rate-distortion performance, subjective quality and encoder com-
plexity. For thoroughness and fairness of our comparison study, we
selected six video sequences as test ones, including two CIF
sequence: Foreman, Mother and Daughter; three 4CIF sequence:
City, Crew, Ice; and one HD sequence: Bigship. All of them are with
frame rate 30 Hz, and each sequence contains 100 frames.

Fig. 6. Subjective quality comparison of reconstructed second frame in City sequence with (PSNR, SSIM, Bit Rate). (a) H.264 Zero Motion(24.12db, 0.6013, 626.16kbps)
(b) DBC, (27.01db, 0.7076, 635.54 kbps) (c) H.264-Motion (27.87db, 0.6857, 610.19 kbps) and (d) Our method (27.46db, 0.7132, 625.14 kbps).
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The following video codecs will be used as benchmarks to
evaluate the performance of the proposed codec.

� H.264-Motion: This codec is performed on JM16.0 [23] in main
profile exploiting spatial and temporal redundancy (i.e., intra
and inter prediction are both selected). The GOP size is 6 with
IBPBPB structure. The RD optimization is done in the high-
complexity mode. The loop filter is enabled. Entropy coding is
performed in CABAC mode, and the search range of motion
estimation is set to 32. It can be considered as the state-of-the-
art encoder-centralized video codec.

� H.264-Zero Motion: We use JM16.0 [23] in main profile to code
the GOP of 24 frames with the first frame coded as I frame and
all other frames coded as predictive frames, for which the rest
settings are the same as H.264-Motion except that the range of
motion search is set to 1. It is often used as a benchmark in
comparison for non-ME based low complexity video codec.

� DBC: This is a state-of-the-art downsampling-based video
coding scheme [18].

Since DVC and H.264-Intra give too poor RD performances, we have
not included their results into comparison. The performance compar-
ison among our method and them can be indirectly reflected by
H.264/AVC standard codecs. Through comparisons with these two
standard codecs motioned above, results are shown that serve to
support the efficiency of the proposed scheme for low bit-rate coding.

6.1. Low bit-rate performance comparison

To verify the performance improvement of the proposed
scheme at low bit rates, we use coarse quantization parameters
(QP) to obtain rate–distortion curves shown below. And the
comparisons shown here are all for approximately the same
average bit rate over the entire sequence and therefore can be
readily compared in terms of the PSNR values. The RD curves of six

Fig. 7. Subjective quality comparison of the reconstructed second frame in Ice sequence with (PSNR, SSIM, Bit Rate). (a) H.264 Zero Motion(28.68db, 0.8703, 397.27kbps)
(b) DBC, (33.01db, 0.9203, 423.76 kbps) (c) H.264-Motion (33.77db, 0.9073, 401.01 kbps) and (d) Our method (33.36db, 0.9259, 413.44 kbps).
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Fig. 8. Analytical rate distortion curves of different downsampling factors.
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video sequences are plotted in Fig. 5. We can find for most of the
six test sequences the proposed scheme can achieve better RD
performance at low bit-rate compared with other five codecs. The
gain is up to 1.5 dB for CIF sequences and 1.2 dB for 4CIF sequences
compared with H.264-Motion, which is regarded as the state-of-
the-art video codec. Compared with H.264-Zero Motion, which is
also with a low-complexity encoder, the gains are obvious and is
up to 1.5 dB for CIF sequences and 3 dB for 4CIF sequences.
According to the trend of RD curves, the proposed method
outperforms H.264-Zero Motion at a wide range of bit-rate.

Our method outperforms DBC as well. In DBC, the training image is
with original size and compressed by intra mode at low bit-rate;
therefore, its quality is poor. The quantization noise within it will
propagate to other frames by the process of SR. Moreover, if there is
irregular motion in the GOP, such as the City sequence, the training
image fails to provide good prior information.

6.2. Medium bit-rate performance comparison

The advantage of the proposed scheme is not only limited to low
bit-rates but also gives the subjective comparison results at medium
bit-rates. As illustrated in Figs. 6 and 7, we show the decoded frames
of two 4CIF sequences by the proposed side and central decoders and
other compared codecs. From the results, it is easy to see that H.264-
Zero Motion produces objectionable visual artifacts (e.g., jaggies and
ringings) in edge areas, H.264-Motion performs better but still suffers
from annoying blurring artifacts along the edges. The proposed
schemes on side and central decoder are both largely free of those
defects. Even when the bit rate gets higher and H.264-Motion starts
to have higher PSNR than the proposed method, its visual quality still
appears inferior, as demonstrated by examples in Figs. 6 and 7. This is
due to the fact that quantization in H.264/AVC standard is uniform
and there is no special mechanism to preserve edges that are
important for human visual perception. The proposed method
produces significantly enhanced perceptual quality. The results are
visually compelling in reconstructing edges and textures. The pro-
duced edge and texture are clean and sharp, and most visual artifacts
appeared in the results of H.264-Motion are eliminated in the
proposed method. The proposed method also achieves better sub-
jective quality compared with DBC. These results demonstrate that
the proposed method can efficiently favor the reconstruction of
edges. The superior visual quality of the proposed method is due to
the good fit of the piecewise autoregressive model to edge structures
and the fact that human visual system is highly sensitive to phase
errors in reconstructed edges.

6.3. The influence of downsampling factor

Ref. [25] shows why down-sampling based image coding can
beat traditional image compression standard from a perspective of
rate–distortion analysis. [18] extends the analytical model to
downsampling-based video coding. Since this analytical model is
general and not involved to specific interpolation algorithm, here,
we borrow the analytical model of [18] to show how the down-
sampling factors influence the final RD performance. The RD
curves of different downsampling factors are shown in Fig. 8.
Here, factor¼1 actually represents the traditional video coding
standard. As illustrated in Fig. 8, both factor¼2 and factor¼3 beat
the traditional video coding standard at low bit-rates. By down-
sampling before compression, the bit budget for each DCT coeffi-
cient is increased. As such, more bits are allocated to DC and lower
frequency AC coefficients, thus less quantization error is intro-
duced and consequently better decoded quality is achieved. We
note that factor¼3 wins factor¼1 and factor¼2 only at very low

bit-rates. The case factor¼2 achieves good tradeoff between rate
and distortion. Therefore, in this paper, we choose the down-
sampling factor as 2.

6.4. Encoder complexity comparison

We also give the encoder running time comparison of the
compared three codecs on six test sequences. The compared
codecs are run on a typical computer (2.5 GHz Intel Dual Core,
4G Memory). For each sequence, we keep the bit-rates of three
codecs almost the same. As illustrated in Fig. 9, it is easy to find
that the proposed method achieves lowest encoder complexity,
the running time is even lower than H.264-Zero Motion. The
running time is about 1/4 that of H.264-Motion, because the video
data needed to be compressed reduces to 1/4 of original ones by
downsampling. These results demonstrate our method can pro-
vide a lightweight encoder, which is attractive for resource-
deficient wireless video communications.

7. Conclusion

In this paper, we presented an effective and flexible low bit-
rate video coding scheme through combing the idea of sparse
sampling and multiple description coding for wireless video
communications. At the encoder, multiple low-resolution descrip-
tions are generated by temporal multiplexing and spatial adaptive
downsampling. Based on the PAR image model and predictive
modes in compression, the decoder solves an inverse problem to
jointly estimate the model coefficients and the high resolution
frame. Experimental results demonstrate that the proposed video
coding scheme outperforms H.264/AVC and other state-of-the-art
methods at low bit-rates.
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