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ABSTRACT

The coding efficiency of distributed video coding system is 
significantly determined by the side information quality and 
correlation model. Motivated by theoretical analysis of the 
maximum likelihood treatment for linear regression model, 
we propose a novel joint online learning model for side 
information generation and correlation model estimation in 
this paper. In our proposed scheme, each pixel in the side 
information is approximated as the linear weighted 
combination of samples within a local spatio-temporal 
neighboring space. Weights are trained in a self-feedback 
fashion, during which the correlation model parameters can 
also be achieved. The efficiency of the proposed joint 
learning model is confirmed experimentally.  

Index Terms— Side information, correlation model, 
linear regression model, joint learning, distributed video 
coding

1. INTRODUCTION 

Distributed video coding (DVC) is a new video coding 
paradigm which can shift the complexity from encoder to 
decoder. Because of its potential for several emerging 
applications such as wireless video surveillance and mobile 
camera phones, DVC has been receiving more and more 
attention in recent years. Many practical DVC schemes 
share a general architecture [1]. Typically, the encoder 
applies the turbo encoding on each Wyner-Ziv (WZ) frame, 
in which parity bits are generated. To achieve compression, 
only parts of these parity bits are sent. By exploiting the 
video correlation partially or totally, the decoder construct 
an estimation of the current WZ frame named side 
information (SI), which can be viewed as a noisy version of 
the current frame. Correlation model converts the SI into 
soft-input information needed for turbo decoding. The turbo 
decoder combines the received parity bits and soft-input 
information to decode the current frame.  

From the process stated above we can see clearly that the 
performance of DVC system depends on two factors: the 
first one is the quality of SI, which relies considerably on 
the motion modeling between successive frames; the second 
one is the accuracy of correlation model estimated. Both are 
quite tough since original frames are not available at the 

decoder and the statistics of video source are dynamically 
varying in spatial and temporal domain.  

For SI estimation, one of the most popular methods in the 
literature of DVC is motion compensated temporal 
interpolation (MCTI) based on block-matching algorithm 
(BMA) [1]. For correlation model parameters (CMP) 
estimation, the most popular approach is to use some 
estimated reliability information regarding the obtained 
motion vector based on BMA in the SI generation process 
[2]. BMA plays a key role in estimating SI and CMP in 
these fashions. The apparent advantage of BMA is its 
conceptual simplicity, and it can reflect some relationship 
between motion and estimated intensity values. However, 
since the original frames are not available at the decoder, 
BMA may not be effective locally, which usually results in 
some errors in estimated SI and CMP. To overcome this 
problem, some locally accurate motion models are 
introduced, e.g. the filter-based fashion [3]. Such localized 
estimation can be viewed as an implicit approach of 
exploiting motion-related temporal dependency, in which 
motion information is embedded into predictive coefficients. 

In this paper, we propose a novel joint online learning 
strategy for SI and CMP based on linear regression model, 
which is performed at the decoder at pixel level. Model 
weights and CMP are trained in a self-feedback fashion, 
during which reconstructed pixels in neighboring spatio-
temporal space are utilized as samples. Our method 
represents an important departure from previous work in the 
literature and provides a more efficient WZ video coding 
solution. 

The rest of this paper is organized as follows. In Section 
2, we give a theoretical analysis of the maximum likelihood 
treatment for linear regression model, which can bring us 
some motivation for jointly learning strategy. We describe 
our proposed model in detail in Section 3. In Section 4, the 
experimental results are presented to show the efficiency of 
our approach and Section 5 concludes this paper. 

2. MAXIMUM LIKELIHOOD TREATMENT FOR 
LINEAR REGRESSION MODEL 

Suppose 1 2 3{ ( , , )}X k k k

] [1, ]H W

is the given video sequence,where 
are spatial coordinates and is the 

frame index. We denote the position of a pixel in SI by a 
1 2( , ) [1,k k 3k
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vector . Linear regression model for pixel 
interpolation is formulated as: 
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where M is the model order which represents the number of 
samples used in interpolation, is the 
weight vector learned within a local training window sized 
of N,

1w ( , , )T
Mw w

denotes the intensity vector of neighboring 
samples of . We assume the target intensity value of is0n

0t y
0n

( , w)n ,                                        (2) 
where is Gaussian noise with precision (inverse variance) 

. In view of probability theory, t is a random variable 
satisfied Gaussian distribution and can be formulated as 

-1
0 0)= ( | ( , w), )t y n( | , w,p t n .                   (3) 

Now consider a pixel set of input with 
corresponding intensity valuesT t , which are in 
the same training window. Making the assumption that 
these pixels are drawn independently from the distribution 
(3), we obtain the following expression for the likelihood 
function: 
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Taking the logarithm of the likelihood function, we have 
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where the sum-of-squares error function is defined by 
21

0

1
(w) w ( )

2

N
T

D i
i

E t in                     (6) 

Then we can use maximum likelihood to determine 
andw .The gradient of the log likelihood function (5) 

takes the form 
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Solving for andw we obtain 
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where is a pixel matrix sized of N M . From (8), we 
can see that the maximum likelihood treatment is identical 
with the least square solution for linear regression model [3]. 
From (8) and (9), we find model weights and correlation 
model parameters for each pixel can be estimated in the 

same process, which motivated the proposed joint learning 
model. 

3. THE PROPOSED JOINT LEARNING MODEL 

3.1. Model Parameters Selection 
In the proposed model, the intensity value of each pixel in 

SI is approximated as the linear weighted combination of 
samples within its neighboring space, as described in (10).  

1 2 1 2
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X k k w k k                             (10) 

where 1 2( , )X k k

2 )
stands for the interpolated value at location 

in SI. w denote model weights which are trained in 
a local window, the size of which is set to 

1( ,k k
16 16 for QCIF 

sequence in our experiment. 1 2( , )k k are neighboring 
samples of the pixel at , which include not only the
pixels within its two temporal neighborhoods in the forward 
and the backward key frames but also the available 
interpolated pixels within its spatial neighborhood in the 
current frame in the proposed model. This is different from 
the setting in [5]. Each temporal neighborhood is specified 
as a

1 2( , )k k

12 1L 2L  region bounded by 1 ,k L 2k L ,
where L is the spatio-temporal order. Consequently, the 
spatial neighborhood is specified as a region with the size of 

(2 1) (2 1)L L / 2 . Thus the model order M is: 
.    (11) 2 (2 1) (2 1) (2 1) (2 1) / 2M L L L L

Fig.1 illustrates the case when .1L

1tX tX 1tX

Fig.1  Side information interpolation with 1L
It should be pointed out that the spatio-temporal order is 

closely related to the motion in the training window. 
Smaller spatio-temporal order will achieve good 
performance for stationary regions; however, for moving 
regions, larger spatio-temporal order is necessary. In our 
experiment, the motion vector in MCTI can be utilized to 
measure the motion level of the training window. The 
spatio-temporal order of the model is computed by 

, 1max
i ii

block blockblock S
L abs mvx abs mvy (12)

where S represents the training window, and

 represent the horizontal and vertical motion 

vectors  of the ith 8

iblockmvx

iblockmvy

8 block after performing MCTI.  
3.2. Model Weight Training 

In order to derive more accurate model weights, we group 
five successive frames as an interpolation unit (IU) and ass-
ume weights remain the same in each IU. An iterative self-
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feedback method proposed in our previous work is utilized 
for training [5]. Each iteration consists of two stages. In the 
first stage, we use the reconstructed key frames 

2 , ,t t t 2X X X to interpolate side information 1tX and 1tX ,
as illustrated in Fig.2. In the second stage, as shown in Fig.1,
the key frame tX is re-interpolated by the side information 

1tX 1tand X  generated in the first stage. The weights for 
each training window are calculated by jointly minimizing 
the distortion between the interpolated frames and initial 
frames, which is formulated as follows. Fig.3 Two adjacent interpolation units 
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k k .                 (15) where tX and tX are training windows in initial frame and 

interpolated frame on time t respectively. For key frames, 
we regard the H.264 intra decoded frames as the initial 
ones. , 1t1tX X and 11, ttX X  have the same meaning 

as tX and tX . For WZ frames, SI generated by MCTI is 

regarded as initial values of pixels. 1tX , tX and 1tX are
updated in each iteration until the difference of distortion in 
(13) is below a threshold or the maximum iteration time is 
reached . Model weight parameters are determined when the 
process of iteration is over.

where , and  denote the 
actual values of the training samples for pixel at on
time t-2,t-1 and t respectively. Note that the actual values 
are intra decoded ones for key frames and MCTI results for 
SI. , and represent the 
estimated values in the proposed model for corresponding 
samples.  
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The estimation process is illustrated in Fig.4. There are 
three kinds of points. The white one is the pixel for which 
the CMP is computed; the black ones stand for the actual 
values of training samples; the gray ones denote the values 
estimated. The average of SAD values between black points 
and gray ones is computed as 2 .Fig.2 The first stage in weights training 

1tX tX 1tX

3.3. Joint Learning for SI and CMP 
In our proposed model, IU slides along the time axis at a 

step of GOP size as depicted in Fig.3. As a consequence, 
multiple SI can be generated through different UI for one 
WZ frame. For instance, there are two interpolated results 

t 1

IUFX and
t 1

IUBX at time t+1, one is from IU forward (IUF)

and the other is from IU backward (IUB). Note that 
t 1

IUFX

contains more forward motion information as its weights are 
trained from frames t 2X , tX and 2tX , while 

t 1

IUBX contains 
more backward motion  information  as  its  weights  are  
trained  from   frame tX , 2tX and 4tX . We consider that 
better interpolation performance can be achieved by 
averaging these two interpolated results. As a consequence, 
the SI estimated in our model is formulated as 

Fig.4   Correlation model parameters estimation 
The Laplacian distribution parameter is defined by 

2

2                                        (16) 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, experimental results are provided to dem- 
onstrate the performance of the proposed scheme. Results of 
two test sequences including Foreman  and Mobile  (QCIF, 
30Hz, 4:2:0) are presented. In each sequence, 100 frames 
are selected and the GOP structure is IWI, where key frames 
are encoded in H.264 intra mode with three QP 
values:20,24,28. Table 1 includes the objective performance 
comparison for interpolated SI, where: 

t 1 t 1
1 ( IUF IUB

tX X X ) / 2 .                        (14) 
For CMP estimation, Eq.(9)  implies a direct method. In 

order to derive more accurate CMP values, in our 
experiment, Eq.(9) is modified as (15) 

MCTI_OBMC: the block-matching-based motion
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Table 1    Objective quality comparison for interpolated side information (in dB) 
Foreman Mobile 

QP=28 QP=24 QP=20 QP=28 QP=24 QP=20
MCTI_OBMC 34.49 35.56 36.44 32.80 34.22 34.76

STAR 34.59 35.82 36.78 33.21 35.10 35.84
LearningWithAverage 35.11 36.5 37.51 33.44 35.38 36.18

Gain(overMCTI_OBMC) 0.62 0.94 1.07 0.64 1.16 1.42
compensation temporal interpolation, OBMC is used 
as a post process to smooth motion field [6]. 
STAR: spatio-temporal auto regressive model 
proposed in [5] for frame interpolation. 
LearningWithAverage: the method we proposed in 
this paper. 

From Table 1 we can see that our approach significantly 
outperforms the MCTI_OBMC approach for SI 
interpolation.  Our method can improve up to 1.42dB for 
Mobile sequence and 1.07dB for Foreman sequence 
respectively. Overall simulation results presented in Fig.5 
also show the efficiency of our method. Our model can 
improve 1dB for Mobile sequence at most and 0.5dB for
Foreman sequence. 

To evaluate the performance of online learning for CMP, 
we need to choose a benchmark. Offline learning provides 
insights on the maximum or “ideal” estimation performance 
since the CMP are obtained using both original data and SI. 
In our experiment, we utilize the method presented in [2] to 
do offline learning, which consists of two steps: 

Step 1) Compute residual frame R between the WZ frame 
and the corresponding SI frame as follows. 

                  (17) 1 2 1 2 1 2( , ) ( , ) ( , )R k k WZ k k SI k k
Step 2) For each pixel in R frame, the Laplacian 

distribution parameter  is computed as follows. 
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The overall RD performances of Foreman and Mobile
sequences are shown to demonstrate the efficiency of 
online learning in Fig.6. From the simulation results we can 
see our online learning strategy is close to offline learning.  

5. CONCLUSION 

In this paper, we proposed a novel strategy based on 
linear regression model to jointly estimate side information 
and correlation model in distributed video coding. In the 
proposed scheme, the intensity value and correlation model 
parameter of each pixel in side information are estimated 
simultaneously according to its neighboring spatio-temporal 
samples. Experimental results verify that the proposed 
method significantly improve the quality of SI and is close 
to offline learning approach for correlation model 
estimation. 
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