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ABSTRACT

Person re-identification (re-id) aims to match a certain person
across multiple non-overlapping cameras. It is a challenging
task because the same person’s appearance can be very d-
ifferent across camera views due to the presence of large
pose variations. To overcome this issue, in this paper, we
propose a novel unified person re-id framework by exploiting
person poses and identities jointly for simultaneous person
image synthesis under arbitrary poses and pose-invariant per-
son re-identification. The framework is composed of a GAN
based network and two Feature Extraction Networks (FEN),
and enjoys following merits. First, it is a unified generative
adversarial model for person image generation and person
re-identification. Second, a pose estimator is utilized into the
generator as a supervisor in the training process, which can
effectively help pose transfer and guide the image generation
with any desired pose. As a result, the proposed model can
automatically generate a person image under an arbitrary
pose. Third, the identity-sensitive representation is explicitly
disentangled from pose variations through the person identity
and pose embedding. Fourth, the learned re-id model can
have better generalizability on a new person re-id dataset by
using the synthesized images as auxiliary samples. Extensive
experimental results on four standard benchmarks includ-
ing Market-1501 [69], DukeMTMC-reID [40], CUHK03 [23],
and CUHK01 [22] demonstrate that the proposed model can
perform favorably against state-of-the-art methods.
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Figure 1: Due to the presence of large pose variation-
s, the same person’s appearance can be very different
across multiple camera views.
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1 INTRODUCTION

Person re-identification (re-id) is to match a certain person
across multiple non-overlapping camera views. Given one
query image of a certain person, an ideal person re-id system
is expected to retrieve all the images of the same person
from a set of gallery images. In the last few years, the re-
id has attracted more and more research interest, because
of its wide range of applications such as activity analysis,
searching people of interest (e.g. criminals or terrorists) and
long-term tracking. Despite of significant progress in recent
years, it remains a difficult task for developing robust algo-
rithms to match persons in scenarios with challenging factors
such as cluttered backgrounds, severe occlusions, illumination
changes and pose variations.

A variety of approaches have been proposed to address the
above problems [46, 49, 52, 55], by representation learning
or building robust signature matching. For example, in [46],
the whole body is divided into a few fixed parts for person
appearance representation learning without considering the
alignment between parts. In [49], a Global-Local-Alignment
Descriptor (GLAD) is proposed to detect key pose points and
extract local features from corresponding regions. Among
the above methods, most of them still show low re-id accu-
racy in real scenarios. A critical influencing factor on re-id
accuracy is the large appearance changes of human body,
which can be attributed to the changes in various covariate
factors independent of the person’s identity. These factors
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include viewpoint, body configuration, lighting, and occlu-
sion. Among these factors, pose plays the most important
role in causing a person’s appearance changes. Here pose is
defined as a combination of viewpoint and body configura-
tion, and it also affects self-occlusion. As shown in Figure 1,
the same person’s appearance can be very different across
camera views, due to the presence of large pose variations.
For instance, the person in the bottom row carry a big back-
pack, which is in full display from the back, but disappears
from the front in the top row. As a result, it is challenging
to build a robust re-id system with pose variations, but it is
more applicable in real scenarios. Therefore, in this paper, we
focus on the pose-invariant person re-id, which is to perform
re-id by identifying or authorizing individuals identity with
images captured under arbitrary poses.

However, it is not easy to extract robust pose-invariant
features from person images. The factors to determine a
person’s appearance can be categorized into either identity-
sensitive ones or identity-insensitive ones. The former factors
mainly include some static physical attributes such as gender,
carrying, clothing color, and texture. The latter factors are
the dynamic covariates mainly associated with pose variations.
The traditional methods aim to keep as much the effects of
the former as possible and as little the ones of the latter
as possible, and usually have two distinct perspectives: (1)
utilizing hand-craft local invariant features extracted from
images to represent the visual appearance of a person image
[48, 66, 70]. (2) learning a discriminative distance metric to
reduce the distance among features of person images with the
same identity [15, 37, 54]. However, hand-craft features may
be not robust enough to handle pose variations since human
body has a complex non-rigid structure with lots of degrees
of freedom. In addition, the distance metric is computed for
each pair of cameras, which makes distance metric learning
based person re-id methods suffer from high computational
complexity. Furthermore, the identity-sensitive and identity-
insensitive information are complexly interactional, e.g., the
appearance of the carrying depends on the pose. Therefore, it
is challenging for the traditional methods to perform person
re-id free of the influence of pose variations.

Recently, inspired by the success of deep networks on a
wide range of visual tasks [9, 10, 60, 72], a number of methods
have been proposed to employ deep models to learn discrim-
inative pose-invariant features. For example, Su et al.[43]
utilize normalized part regions detected from a person image
to learn pose-invariant feature representations. Differently,
Zhao et al. [65] combine region selection and detection with
deep re-id in a unified model. However, it is well known
that deep models need to be trained with sufficient labeled
samples, while the data annotation is expensive and time-
consuming for the person re-id task. A camera network can
easily consist of hundreds of cameras in a real-world scenario.
It is difficult and tedious to manually collect and annotate
sufficient identities and sufficient images per identity across
views in the camera networks. Moreover, the generalizability
of existing deep models to new camera networks is unsatis-
factory. Generally, additional annotated data is needed for

model fine-tuning when a trained deep re-id model is applied
to a new camera network, or the performance would dras-
tically declined. To deal with this issue, a better way is to
generate training data automatically by exploiting human
pose information. In recent times, the generative adversari-
al network (GAN) based approaches have been successfully
used to generate impressively realistic faces [17, 30], house-
numbers [64], bedrooms [39] and a variety of other image
categories [13, 75] through a two-player game between a gen-
erator 𝐺 and discriminator 𝐷. This inspires us to resort to
the GAN to enlarge and enrich the training set. Despite many
promising developments [17, 33, 39, 62, 74], image synthe-
sis remains the main objective of GAN, which cannot be
straightforwardly applied to the person re-identification task.

Inspired by the above discussions, a novel unified deep
person re-id framework is proposed in this paper. Our ful-
l pipeline proceeds in two stages. At stage-I, we design a
GAN-based structure to generate person images under ar-
bitrary poses, which results in an increase in the training
data. To disentangle the pose information from the identity-
sensitive representation, we construct the generator 𝐺 with
an encoder-decoder structure, which serves as a person image
changer. The input to the encoder 𝐺𝑒𝑛𝑐 is a combination of
the condition person image and its pose embedding, and the
output of the encoder 𝐺𝑑𝑒𝑐 is a synthesized realistic-looking
person image under the desired pose, and the learnt identity-
sensitive representation bridges the encoder 𝐺𝑒𝑛𝑐 and the
decoder 𝐺𝑑𝑒𝑐. Besides, a pose estimator is embedded into the
GAN-based model as a supervisor to guide the desired pose
structure generation. At stage-II, we utilize the synthesized
images with different poses to train the re-id model, which
can produce a set of pose-free features. Then, we combine
the learned pose-free features with the features extracted
from the original images, and thus obtain the final robust
pose-invariant feature representations. Specifically, with the
synthesized images as auxiliary samples, the learned re-id
model is far more likely to generalize to a new person re-id
dataset.

The major contributions of this work can be summarized
as follows. (1) We propose a novel generative adversarial
model by exploiting person poses and identities jointly for
simultaneous person image synthesis under arbitrary poses
and pose-invariant person re-identification. (2) In order to
guide the image generation with any desired pose, we exploit
a pre-trained human body pose estimator into the generator
as a supervisor in the training process to help pose transfer.
As a result, the proposed model can automatically generate
a person image under an arbitrary pose. (3) The identity-
sensitive representation is explicitly disentangled from pose
variations through the person identity and pose embedding
in 𝐺 and 𝐷. (4) By using the synthesized images as auxiliary
samples, the learned re-id model has better generalizability
on a new person re-id dataset. Experimental results on four
benchmarks including Market-1501 [69], DukeMTMC-reID
[40], CUHK03 [23], and CUHK01 [22] demonstrate that the
proposed model can achieve a competitive performance by
comparing with state-of-the-art methods.
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2 RELATED WORK

Image Generation by Deep Generative Models. With
the emergence of deep generative models, many methods have
been proposed to generate realistic images of objects [18].
Generally, the most commonly used generative models can be
categorized into two groups. The first line of works is based
on Variational Autoencoder (VAE) [18] framework. The VAE
based models are trained by applying a re-parameterization
method to maximize the lower bound of the data likelihood.
The second group of works derives from the most popular
generative model - Generative Adversarial Network (GAN)
[12]. The GAN models are designed to simultaneously learn
a discriminator 𝐷 to distinguish generated samples from real
ones and a image generator 𝐺 to generate samples that can
fool the discriminator by playing a min-max game.

With the rapidly development of the GAN models, amaz-
ing effects have been achieved in image generation. Isola
et al. [16] propose a conditional GAN framework to trans-
fer the low-level information of the condition image to the
output one, which achieves incredible performance in image-
to-image translation. Many other variants of GAN , such
as VAEGAN [19], stacked-GAN [57] are also proposed in
succession. However, most of them are designed for simple-
texture high-quality sample generation, instead of person
images which have complex background and non-rigid hu-
man body structure. There are some very recent works aiming
at generating person images in surveillance scenario. Zheng
et al. [74], firstly propose to use deep image generator for
person re-id. Nevertheless, they directly adopt the DCGAN
architecture [39] to generate person images from noise, and
thus cannot control either identity or pose in the generated
person images, which leads to unrealistic results. Ma et al.
[32] propose a pose guided person generation network which
allows to synthesize person images conditioned on a refer-
ence image and an intended pose. In [20], the generation
process is divided into two stages: pose generation and ap-
pearance refinement, and a mask ℓ1 loss is employed to pay
more attention to transferring the human body appearance
instead of background information. Qian et al. [38] propose
a PN-GAN model which also allows to generate realistic,
identity-preserving and pose controllable person images. The
synthesized images of eight canonical poses are utilized to
enhance the scalability and generalizability of the model.
Compared with these approaches, the proposed model has
the following differences. (1) It can generate person images
with arbitrary poses. (2) A pose estimator is embedded in the
proposed model to guide the image generation with any de-
sired pose. (3) The proposed model can explicitly disentangle
identity-sensitive information from different poses.
Person re-id by Deep Learning. Recently, Employing
Deep Neural Network (DNN) has become main trend for
person re-id task. The related work can be summarized into
three categories based on their motivation and network struc-
tures, i.e., classification-based network, metric learning-based
network, and part-based network. Classification-based Net-
work: In [51, 53, 71], the pre-trained classification network

is fine-tuned on target person re-id datasets to generate the
discriminative representation. For example, Zheng et al. [71]
simply employ the DNN to extract features used for person
Re-id. To overcome the distribution bias between different
person re-id datasets, Xiao et al. [53] propose a novel dropout
strategy to train a classification model. Metric Learning based
model: Different from the classification-based methods, the
metric learning-based model is trained to verify the similarity
between images among each set. For person re-id, there are
two popular metric learning-based models: siamese network
and triplet network. Several works [41, 42, 46, 50, 56, 59, 73]
employ the siamese network to verify whether the two input
images contain the same person. The siamese network is
trained with known pair-wise simialrity, which could be too
strict and hard to collect. Therefore, Some works [7, 28, 29]
study to train the network with relative similarity among
three images, named as triplet, to learn the discriminative
description for person re-id. Part-based method: One of the
main challenges for person re-id is the diversity of human pose.
Therefore, it is hard to generate a robust and aligned global
representation. Targeting to generate a robust representation
for person re-id, several works [21, 43, 43, 55, 63, 65] focus on
how to generate aligned local person parts used for generat-
ing aligned person representation. Different from the existing
methods, the proposed model is designed to exploit different
poses and person identities jointly for simultaneous person
image synthesis under arbitrary poses and pose-invariant
person re-identification.

3 OUR APPROACH

In this section, we describe the design of our image generation
model and our strategy for effectively using the synthesized
images to train the Feature Extraction Network (FEN) for
person re-id. Our model consists of a GAN based person
image generation model and two FENs as shown in Figure 2.
The details are elaborated as follows.

3.1 Person Image Generation

Our image generation model aims to simultaneously transfer
the person on the referenced image from a given pose to a
target pose and preserve important appearance information
of the identity. To achieve the above goal, a conditional GAN
architecture is employed to tackle such a challenging task. As
in all GAN based models, the image generation is composed
of a Generator 𝐺 and a Discriminator 𝐷. The generator
is trained to synthesize realistic identity-preserving person
image under a desired pose conditioned on a given sample,
and the discriminator is to distinguish generated samples
from real data and help to improve the performance of the
generator. The details of the proposed image generation
model are shown in Figure 3.
Generator and Pose Embedding. To obtain human body
poses, we employ an off-the-shelf state-of-the-art pose esti-
mator [2] to avoid expensive annotation of poses, which is
not fine-tuned on any re-id benchmark dataset. The pose
estimator takes a person image of size ℎ × 𝑤 × 3 as input
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Figure 2: Overview of the proposed framework.
It consists of the GAN-based model to generate
identity-preserving person images under arbitrary
poses and the two Feature Extraction Networks
(FENs) to learn robust pose-invariant features from
the original images and synthesized images for the
re-id task.

and outputs 19 confidence maps of body part locations and
corresponding Part Affinity Fields (PAFs) which encode the
degree of association between body parts. Then, the coordi-
nates of 18 keypoints and 3-channel skeleton map 𝑃𝑚 can be
inferred based on the confidence maps and PAFs. By using
these information directly as input, the proposed model can
map each keypoint to a position on the human body. There-
fore, we encode the coordinates of the 18 keypoints as 18
heatmaps 𝑃ℎ. Each heatmap is filled with 1 in a radius of 4
pixels around the corresponding keypoints and 0 elsewhere
(see Figure 3). We finally concatenate 𝑃ℎ and 𝑃𝑚 into a
21-channel tensor 𝑃 as pose embedding.

Given an input person image 𝐼𝑎 and a target person image
𝐼𝑏 in which the person has the same id 𝑦𝑎 and a different
pose 𝑃𝑏 with 𝐼𝑎, we need to learn a generator to synthesize

an image 𝐼 that is as similar as the 𝐼𝑏. As shown in Figure 3,
our generator 𝐺 consists of an encoder 𝐺𝑒𝑛𝑐 and a decoder
𝐺𝑑𝑒𝑐. The 𝐺𝑒𝑛𝑐 aims to learn an identity representation from
input which is the concatenation of the condition person
image 𝐼𝑎 and its pose information 𝑃𝑎: 𝑓𝑎 = 𝐺𝑒𝑛𝑐 (𝐼𝑎, 𝑃𝑎).
The 𝐺𝑑𝑒𝑐 aims to synthesize a natural target person image

𝐼 = 𝐺𝑑𝑒𝑐 (𝑓𝑎, 𝑃𝑏, 𝑧) with the identity representation 𝑓𝑎, a
target pose specified by 𝑃𝑏, and a random noise 𝑧 ∈ R𝑑

for modeling other variance besides identity or pose (e.g.
background). Specifically, the 𝐺𝑒𝑛𝑐 integrates 𝐼𝑎 and 𝑃𝑎 from
small local neighborhoods to global areas to encode as much
identity-sensitive information as possible in 𝑓𝑎. Then, with
a separate target pose embedding input to the 𝐺𝑑𝑒𝑐 and
the person identity considered in 𝐷, the 𝐺𝑒𝑛𝑐 is trained to
disentangle the pose variations from 𝑓𝑎 in the adversarial
learning process. Specifically, to avoid that a large amount
of low-level information associated with appearance is lost
in the bottleneck layer, skip connections are introduced to

propagate these information from the bottom convolution
layers of the encoder to the corresponding layers in decoder.

The employed network architecture of the generator is
summarized as follows. The encoder of generator consists
of N residual blocks and one fully-connected layer, where N
depends on the size of input. Each residual block consists
of two convolution layers with 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 followed by one
sub-sampling convolution layer with 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 except the
last block. The decoder is symmetric to the encoder. As
shown in Figure 3, there are skip connections between the
corresponding layers of the encoder and decoder which are
built by concatenating the corresponding feature maps to-
gether. Note that rectified linear unit (ReLU) is applied to
each convolution layer except the fully connected layer and
the output layer, and no batch normalization or dropout are
applied.
Discriminator. The discriminator is usually designed to
differentiate whether the input images are real groundtruth
images or fake generated images. To avoid that the generator
𝐺 is misled to directly output the condition image 𝐼𝑎 instead
of synthesizing natural image of target pose 𝐼𝑏, we pair the 𝐺

output 𝐼 with 𝐼𝑎, and train the discriminator 𝐷 to distinguish

the fake pair
(︁
𝐼, 𝐼𝑎

)︁
from the real pair of target image and

condition image (𝐼𝑏, 𝐼𝑎) (as shown in Figure 3).
Architecture Training. The 𝐺 and 𝐷 are trained using a
combination of a standard conditional adversarial loss 𝐿𝐺𝐴𝑁 ,
a masked ℓ1 loss and a pose regression loss. In our conditional
GAN, the objective function is formulated as follows:

𝐿𝐺𝐴𝑁 (𝐺,𝐷) =E𝐼𝑎,𝐼𝑏∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log𝐷 (𝐼𝑎, 𝐼𝑏)]+

E𝑧∼𝑝𝑧(𝑧)

[︁
log

(︁
1−𝐷

(︁
𝐼𝑎, 𝐼

)︁)︁]︁
,

(1)

where 𝐼 = 𝐺 (𝐼𝑎, 𝑃𝑎, 𝑃𝑏, 𝑧) is the synthesized target image.
Because the condition person image and the target person

image are captured under disjoint camera views respectively,
it is difficult for the model to imagine what the target image
background would look like. Therefore, we adopt a masked ℓ1
loss proposed by [32] for the 𝐺, which encourages the model
to focus on transferring the human body appearance instead
of background information. The masked ℓ1 loss is defined by:

𝐿𝑙1−𝑚𝑎𝑠𝑘 =
⃦⃦⃦(︁

𝐼 − 𝐼𝑏
)︁
⊙ (1 +𝑀𝑏)

⃦⃦⃦
1
, (2)

where 𝑀𝑏 is the target pose mask that is set to 0 for back-
ground and 1 for foreground. However, a well-known problem
caused by the use of ℓ1 loss is that the synthesized image is
blurry to a certain degree. To further improve the generated
human pose structure, we attach a pre-trained human body
pose estimator [2] to the generator as a supervisor in the
training process. The pose regression loss is formulated as:

𝐿𝑝𝑜𝑠𝑒 =

𝑇∑︁
𝑡=1

(︀
𝐿𝑡

𝐻 + 𝐿𝑡
𝑉

)︀
, (3)

where 𝐿𝑡
𝐻 and 𝐿𝑡

𝑉 are defined as follows:

𝐿𝑡
𝐻 =

𝐽∑︁
𝑗=1

∑︁
𝑝

⃦⃦
𝐻𝑡

𝑗 (𝑝)−𝐻*
𝑗 (𝑝)

⃦⃦2

2
, (4)
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Figure 3: The proposed GAN-based image generation model embedded with an effective pose estimator. The
generator 𝐺 is constructed with an encoder-decoder structure to synthesize identity-preserving person images
and the discrminator 𝐷 is a binary classifier to distinguish fake image pairs from real image pairs.

𝐿𝑡
𝑉 =

𝐶∑︁
𝑐=1

∑︁
𝑝

⃦⃦
𝑉 𝑡
𝑐 (𝑝)− 𝑉 *

𝑐 (𝑝)
⃦⃦2

2
, (5)

where 𝐻*
𝑗 is a part confidence map of the 𝑗-th channel and

𝑉 *
𝑐 is a part affinity vector field of the 𝑐-th channel, which are

the final output of the employed pre-trained pose estimator 𝜑
with the target person image 𝐼𝑏 input to it, i.e., (𝐻*, 𝑉 *) =

𝜑 (𝐼𝑏). Similarly,
(︀
𝐻𝑡, 𝑉 𝑡

)︀
= 𝜑

(︁
𝐼
)︁
are generated from the

synthesized image 𝐼. Specifically, the pose estimator refines
the predictions over successive stages, 𝑡 ∈ {1, . . . , 𝑇}, with
intermediate supervision at each stage, which can address
the vanishing gradient problem by replenishing the gradient
periodically. Note that we do not tune the parameters of the
pose estimator 𝜑 and back propagate the gradient only for
𝐺 in the training process.

Finally, we have the following loss function for the genera-
tor 𝐺 and the discriminator 𝐷, respectively.

𝐿𝐺 = 𝐿𝐺
𝐺𝐴𝑁 + 𝜆1 · 𝐿𝑙1−𝑚𝑎𝑠𝑘 + 𝜆2 · 𝐿𝑝𝑜𝑠𝑒, (6)

𝐿𝐷 = −𝐿𝐷
𝐺𝐴𝑁 , (7)

where 𝜆1 is the weight of 𝐿𝑙1−𝑚𝑎𝑠𝑘. It controls low-level
information transferring in the image generation process.
𝜆2 is the weight of 𝐿𝑝𝑜𝑠𝑒 to control the refinement of the
generated pose structure. 𝜆1 , and 𝜆2 of the generated images
In the training process of the person image generation model,
the optimization step would be to iteratively minimize the
loss function 𝐿𝐺 and 𝐿𝐷 until convergence.

3.2 Person re-id with synthesized images

Person re-id aims to retrieve the images that are about the
same identity with the query image from a large-scale gallery
dataset. Assume that there is a training dataset of 𝑁 persons

𝑆𝑡𝑟𝑎𝑖𝑛 =
{︁{︀

𝐼𝑗𝑖
}︀𝐶𝑗

𝑖=1
, 𝑦𝑗

}︁𝑁

𝑗=1
, where 𝐼𝑗𝑖 is the 𝑖-th image (out

of 𝐶𝑗 images) of the 𝑗-th person whose person id is 𝑦𝑗 . In
the training process we learn a feature extractor 𝜙 which

maps person images into a feature space, so that a given
image 𝐼 can be represented by a feature vector 𝜙𝐼 = 𝜙 (𝐼).
In the testing process, given a query image 𝐼𝑞 and a gallery

set {𝐼𝑘}𝐺𝑘=1, we need to find all the images of the same id
with 𝐼𝑞 from gallery set. This is done by ranking the identity-
similarity which measured by the Euclidean distance between
𝜙𝐼𝑞 and {𝜙𝐼𝑘}

𝐺
𝑘=1.

Training Stage. To learn more robust features, we train two
Feature Extraction Networks (FENs) as shown in Figure 2.
Here, the FEN-1 and FEN-2 are both built as the architecture
of ResNet-50 [14] which has proven to be effective for deep
feature learning. The FEN-1 is trained using the original
images to extract identity-sensitive features in the presence
of pose variation. The FEN-2 is finetuned on FEN-1 using
the synthesized images with 20 arbitrary poses to compute
re-id features which are free of pose variation. Specifically,
we only adopt classification loss for training our person re-id
model. Since the image generation model inevitably loses
or distorts some information associated with identity in the
process of pose transferring, we introduce a label smoothing
regularization [74] trick to the classification loss function
when fine-tuning FEN-2 using the synthesized images.

𝐿𝑐𝑙𝑠 = −
𝐾∑︁

𝑘=1

log (𝑝 (𝑘)) 𝑞 (𝑘) (8)

Assume that 𝑘 ∈ {1, . . . ,𝐾} are the pre-defined classes of
the training data, where 𝐾 is the number of classes. The cross-
entropy loss is formulated as in Eq.(8), where 𝑝 (𝑘) ∈ [0, 1] is
the predicted probability of the input belonging to class 𝑘,
𝑞 (𝑘) is defined as:

𝑞 (𝑘) =

{︂
0 𝑘 ̸= 𝑦
1 𝑘 = 𝑦,

(9)

where 𝑦 is the groundtruth class label. The label smoothing
regularization takes the distribution of the non-groundtruth
classes into account and encourages the network not to be
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too confident towards the groundtruth. The regularized label
distribution 𝑞𝐿𝑆𝑅 (𝑘) is formulated as:

𝑞𝐿𝑆𝑅 (𝑘) =

{︂ 𝜌
𝐾

𝑘 ̸= 𝑦

1− (𝐾−1)𝜌
𝐾

𝑘 = 𝑦
, (10)

where 𝜌 ∈ [0, 1] is a hyperparameter. If 𝜌 is zero, Eq. (10)
reduces to Eq. (9). If 𝜌 is too large, the model may fail to
predict the ground truth label. In our case, 𝜌 is set to 0.1.
According to Eq. (10), the cross-entropy is re-written as:

𝐿𝐿𝑆𝑅 = − (1− 𝜌) log (𝑝 (𝑦))− 𝜌

𝐾

𝐾∑︁
𝑘=1

log (𝑝 (𝑘)). (11)

Testing Stage. Once the training of our person re-id model
is finished, during testing, given a query image 𝐼𝑞, we feed it
into FEN-1 to output a feature vector. Then we synthesize 20
images of 𝐼𝑞 with arbitrary poses and feed them into FEN-2
to obtain the pose-free features. A final feature vector is
obtained by fusing the above two feature vectors by element-
wise maximum operation. For each gallery image, we do the
same process to obtain the gallery feature vectors in an off-
line manner. We then rank the identity-similarity of gallery
images by measuring the Euclidean distance between the
final feature vectors of the query and gallery images.

4 EXPERIMENTS

In this section, we show experimental results of the proposed
model for person images synthesis and person re-identification.
For the former task, we show qualitative results of the gen-
erated images under different poses. For the latter one, we
quantitatively evaluate the re-id performance.

4.1 Datasets

To demonstrate the effectiveness of the proposed model, we
conduct extensive experiments on four widely-used datasets
including Market-1501 [69], DukeMTMC-reID [40], CUHK03
[23], and CUHK01 [22]. The details are as follows.
Market-1501: This dataset is collected from six different
view cameras. It has 32,668 bounding boxes of 1,501 identi-
ties obtained with a Deformable Part Model person detector.
Following the standard split, we use 751 identities with 12,936
images as training set and the rest 750 identities with 19,732
images for testing. DukeMTMC-reID: It is constructed
from the multi-camera tracking dataset DukeMTMC and
contains 1,812 identities. Following the evaluation proto-
col [74], 702 identities are adopted as the training set and the
remaining 1,110 identities as the testing set. During testing,
one query image for each identity in each camera is used
for query and the remaining as the gallery set. CUHK03:
It includes 14,096 images of 1,467 identities, captured by
six camera views with 4.8 images for each identity in each
camera on average. We adopt the more realistic yet harder
detected person images setting. The training, validation and
testing sets consist of 1,367 identities, 100 identities and 100
identities, respectively. The testing process is repeated with
20 random splits as in [24]. CUHK01: It contains 971 identi-
ties with 2 images captured in two disjoint camera views per
person. As in [22], we utilize as probe the images of camera

Figure 4: Qualitative results on the Market-1501
dataset. The columns 1, 2 and 3 represent the input-
s of our model. The column 4 corresponds to target
images. The last four columns show the outputs of
our three baselines and PG-GAN [32], respectively.

A and adopt those from camera B as gallery. 486 identities
are randomly selected for testing and the remaining are used
for training. The experiments are repeated for 10 times with
the average results reported.

4.2 Image Generation Results

Experimental Settings. We evaluate the proposed image
generation model on the Market-1501 dataset. Persons’ ap-
pearance in this dataset vary significantly due to pose varia-
tion, illumination change, different viewpoints and occlusion,
which make the person generation task more challenging. We
need pairs of images of the same person in two different poses.
Following [32], we adopt 439,420 pairs person images in the
training set to train our image generation model.
Qualitative Analysis. We provide qualitative results on
the Market-1501 dataset to compare the proposed model
with recently published deep person image generation model
[32]. Moreover, we present an ablation study to clarify the
impact of two supervised losses introduced to the generator 𝐺
on the final performance, namely the masked ℓ1 loss ℓ𝑙1−𝑚𝑎𝑠𝑘

and the pose regression loss ℓ𝑝𝑜𝑠𝑒. Specifically, the following
models are compared for ablation study, which are obtained
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Table 1: Results on the Market-1501 dataset.

Methods
Single-Query Multi-Query
R-1 mAP R-1 mAP

TMA [34] 47.90 22.3 - -
SCSP [3] 51.90 26.40 - -
DNS [58] 61.02 35.68 71.56 46.03

LSTM Siamese [46] - - 61.60 35.31
Gated Sia [45] 65.88 39.55 76.50 48.50
HP-net [31] 76.90 - - -
Spindle [63] 76.90 - - -

Basel. + LSRO [74] 78.06 56.23 85.12 68.52
PIE [68] 79.33 55.95 - -

Verif.-Identif. [73] 79.51 59.87 85.84 70.33
DLPAR [65] 81.00 63.40 - -

DeepTransfer [11] 83.70 65.50 89.60 73.80
PDC [43] 84.14 63.41 - -
JLML [25] 85.10 65.50 89.70 74.50

Zhang et al. [61] 92.60 82.30 - -

Ours 92.81 82.67 93.62 84.50

by “amputating one of the two supervised losses. Note that
the model architecture is the same for these models.
∙ Our model without ℓ𝑝𝑜𝑠𝑒: This model is trained with the

adversarial loss and the masked ℓ1 loss ℓ𝑙1−𝑚𝑎𝑠𝑘.

∙ Our model without ℓ𝑙1−𝑚𝑎𝑠𝑘: This model training is per-
formed using the adversarial loss together with the pose
regression loss ℓ𝑝𝑜𝑠𝑒.

∙ Our full model : This model is trained using the combina-
tion of the adversarial loss, the masked ℓ1 loss ℓ𝑙1−𝑚𝑎𝑠𝑘,
and the pose regression loss ℓ𝑝𝑜𝑠𝑒.
In Figure 4, we show the qualitative results of [32] and our

three baseline methods. These images show the progressive
improvement through the three baselines. From Figure 4 we
observe that: (1) Comparing to [32], the images synthesized
by our full model are more realistic, sharper and with local
details more similar to the details of the conditioning image,
e.g., the carrying condition and other details such as hair style
and shoe-wear are better preserved in each synthesized image.
we deem that it is because the identity-sensitive information
is disentangled from different poses in the image generation
process and thus the negative effects of pose variations are
overcome to a large extent. (2) When the ℓ𝑝𝑜𝑠𝑒 is not used
for model training, the synthesised poses are still similar
to the target poses silhouette but some local details are
lost. (3) When the ℓ𝑙1−𝑚𝑎𝑠𝑘 is removed, we can see a clear
degradation of the persons’ appearance quality. This indicates
that it is important to focus on transferring the human body
appearance instead of background information.

4.3 Person Re-identification Results

Evaluation metrics. Two evaluation metrics are used to
quantitatively measure the re-id performance. The first one
is Rank-1, Rank-5 and Rank-10 accuracy. For Market-1501
and DukeMTMC-reID datasets, the mean Average Precision
(mAP) is also used.

Table 2: Results on the DukeMTMC-reID dataset.
The SL and TL indicate the supervised learning and
transfer learning settings respectively.

Methods R-1 R-5 R-10 mAP

LOMO+XQDA [26] 30.80 - - 17.00
ResNet50 [14] 65.20 - - 45.00

Basel.+LSRO [74] 67.70 - - 47.10
AttIDNet [27] 70.69 - - 51.88
SVDNet [44] 76.70 86.40 89.90 56.80
DPFL [6] 79.20 - - 60.60

Ours-SL 88.67 93.06 97.11 79.32
Ours-TL 61.05 76.61 83.74 54.13

Experimental Settings. In the following experiments, we
have two different settings. One is the standard Supervised
Learning (SL) setting on all datasets: the models are trained
on the training set of the dataset, and evaluated on the
corresponding testing set. The other one is the Transfer
Learning (TL) setting on the DukeMTMC-reID, CUHK01,
and CUHK03 datasets. Specifically, the re-id model is trained
on Market- 1501. We then directly adopt the trained single
model to run the testing on the test set of DukeMTMC-reID,
CUHK01, and CUHK03 datasets. Here, no model updating is
done by using any data from these datasets. The TL setting is
especially useful in real-world scenarios, where a pre-trained
model needs to be deployed to a new camera network without
any model fine-tuning. This setting can also evaluate how
generalizable a re-id model is.

Supervised Learning Results. We report our results ob-
tained under the supervised learning settings on the Market-
1501, DukeMTMC-reID, CUHK03, and CUHK01 datasets in
Table 1, Table 2, Table 3, and Table 4, respectively. Here, we
compare the proposed model with the best performing re-id
models on the four re-id datasets. Based on the results, it is
clear that our model outperforms most of existing methods
or achieves comparable results, and we can make the follow-
ing observations: (1) The proposed model achieves the best
results on the Market-1501, DukeMTCM-reID and CUHK01
datasets. Particularly on the DukeMTCM-reID dataset, our
model obtains 88.67% Rank-1 accuracy and 79.32% mAP
which are around 9% and 19% higher than the second best
reported results in [6], respectively. (2) Compared with the
method [74] that utilizes generated images for the re-id model
training, our model achieves notable improvement on all four
datasets (e.g, over 20% at mAP on the Market-1501 and
DukeMTCM-reID datasets). This is because the proposed
model can synthesize identity-preserving images under de-
sired poses, which can thus be used for supervised training
to learn pose-invariant feature representations. In contrast,
the synthesize images in [74] can only be used as unlabeled
or weakly-labeled data because of no identity and pose infor-
mation modeled in it. Note that, the baseline performance of
the ResNet-50 is reported in [74]. The rank-1 accuracies are
73.69%, 71.5% and 60.28% on the Market-1501, CUHK03,
and DukeMTMC-reID datasets, respectively. Therefore, it is
helpful to utilize the synthesized person images for the re-id
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Table 3: Results on the CUHK03 dataset. The SL
and TL indicate the supervised learning and transfer
learning settings respectively.

Methods R-1 R-5 R-10

DeepReid [24] 19.89 50.00 64.00
Imp-Deep [1] 44.96 76.01 83.47
EMD [42] 52.09 82.87 91.78
SI-CI [47] 52.17 84.30 92.30

LSTM Siamese [46] 57.30 80.10 88.30
PIE [68] 67.10 92.20 96.60

Gated Sia [45] 68.10 88.10 94.60
Basel.+LSRO [74] 73.10 92.70 96.70

PDC [43] 78.92 94.83 97.15
DLPAR [65] 81.60 97.30 98.40

Verif-Identif. + LSRO [74] 84.60 97.60 98.90
Zhang et al. [61] 91.9 98.7 99.4

Ours-SL 89.53 97.65, 99.87
Ours-TL 71.24 95.62 99.48

model training. (3) Compared with the existing pose-guided
re-id models [3, 63, 65, 68], the improvements of the pro-
posed model are quite striking. The proposed model achieves
92.81% and 82.67% in terms of Rank-1 and mAP, respective-
ly, on the Market-1501 dataset. In [65], the method achieves
the best performance with the results of 81.00% and 63.4%
in terms of Rank-1 and mAP, respectively. Compared with
the best method in [65], the proposed model outperforms
around 11% and 19% higher accuracy in terms of Rank-1 and
mAP, respectively. The results imply that it is quite effective
to train the re-id model by utilizing the synthesized person
images under different poses for removing the negative effects
of pose variations on the final feature representations. (4)
On the small-scale dataset CUHK01, the proposed model
achieves the highest performance 84.79% in term of Rank-1 as
shown in Table 4. The gap between ours and the second best
is much bigger (over 13% on Rank-1 accuracy). Note that
the traditional methods based on handcrafted features and
metric learning (e.g., GOG [35]) are still quite competitive,
even beating some deep models (around 4% Rank-1 accuracy
higher than [7]), which shows that limitations of the existing
deep models on generalizability. With the synthesized person
images, the proposed model is more adaptive to the small
dataset and can achieve much better performance than exist-
ing models. (5) On the CUHK03 dataset, the proposed model
achieves comparable performance by comparing with the best
existing method [61]. It is because the strong generalizabil-
ity of our model may hurt the performance on one specific
dataset. In order to further demonstrate the generalization
ability, we evaluate our model on transfer learning setting.

Transfer Learning Results. We show our results obtained
under the transfer settings on the DukeMTMC-reID, CUHK03,
and CUHK01 datasets in Table 2, Table 3, and Table 4, re-
spectively. In this experimental setting, we only adopt the
training data from the Market-1501 dataset to train the mod-
els, and evaluate the trained model on the test set of each
individual dataset. On the CUHK03 dataset, Table 3 shows

Table 4: Results on the CUHK01 dataset. The SL
and TL indicate the supervised learning and transfer
learning settings respectively.

Methods R-1 R-5 R-10

ITML [8] 15.98 35.22 45.60
eSDC [66] 19.76 32.72 40.29
kLFDA [54] 32.76 59.01 69.63
mFilter [67] 34.30 55.00 65.30
Imp-Deep [1] 47.53 71.50 80.00

DeepRanking [4] 50.41 75.93 84.07
Ensembles [36] 53.40 76.30 84.40
ImpTrpLoss [7] 53.70 84.30 91.00

GOG [35] 57.80 79.10 86.20
Quadruplet [5] 62.55 83.44 89.71
NullReid [58] 64.98 84.96 89.92
G-Dropout [53] 71.70 88.60 92.60

Ours-SL 84.79 94.88 98.14
Ours-TL 59.31 82.42 92.72

that our model achieves 71.24% Rank-1 accuracy, which beats
some deep re-id models [45, 46, 68] which are fine-tuned on
the training set of the CUHK03 dataset. On the CUHK01
dataset, we can achieve 59.31% Rank-1 accuracy in Table 4
which is comparable to many existing models trained under
the supervised learning setting. These results thus demon-
strate that the proposed model has the potential to be truly
generalizable to a new re-id data from new camera networks.

5 CONCLUSIONS

We proposed a novel deep person re-id model in this work.
The proposed method contains a deep person image genera-
tion model which can synthesize person images for the re-id
model training. Moreover, the identity-sensitive information
can be disentangled from pose variations in the image gen-
eration process. As a result, the proposed image generation
model can automatically generate identity-preserving per-
son images under arbitrary poses. In contrast to previous
re-id approaches extracting discriminative features which
are identity-sensitive but view-insensitive, the proposed re-id
model can learn robust pose-invariant features from both
original person images and synthesized images. Besides, by
using the synthesized images as auxiliary samples to perform
the model training, the learned re-id model can have better
generalizability on a new person re-id dataset.
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