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Abstract—This paper presents a novel strategy for high-fidelity
image restoration by characterizing both local smoothness and
nonlocal self-similarity of natural images in a unified statistical
manner. The main contributions are three-fold. First, from the
perspective of image statistics, a joint statistical modeling (JSM)
in an adaptive hybrid space-transform domain is established,
which offers a powerful mechanism of combining local smooth-
ness and nonlocal self-similarity simultaneously to ensure a
more reliable and robust estimation. Second, a new form of
minimization functional for solving the image inverse problem is
formulated using JSM under a regularization-based framework.
Finally, in order to make JSM tractable and robust, a new Split
Bregman-based algorithm is developed to efficiently solve the
above severely underdetermined inverse problem associated with
theoretical proof of convergence. Extensive experiments on image
inpainting, image deblurring, and mixed Gaussian plus salt-and-
pepper noise removal applications verify the effectiveness of the
proposed algorithm.

Index Terms—Image deblurring, image inpainting, image
restoration, optimization, statistical modeling.

I. Introduction

AS A FUNDAMENTAL problem in the field of image
processing, image restoration has been extensively stud-

ied in the past two decades [1]–[12]. It aims to reconstruct
the original high-quality image x from its degraded observed
version y, which is a typical ill-posed linear inverse problem
and can be generally formulated as

y = Hx + n (1)

where x, y are lexicographically stacked representations of
the original image and the degraded image, respectively; H

is a matrix representing a noninvertible linear degradation
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operator; and n is usually additive Gaussian white noise.
When H is identity, the problem becomes image denoising
[4], [5], [11]; when H is a blur operator, the problem becomes
image deblurring [14], [21]; when H is a mask, that is, H

is a diagonal matrix whose diagonal entries are either 1 or
0, keeping or killing the corresponding pixels, the problem
becomes image inpainting [22], [35]; when H is a set of
random projections, the problem becomes compressive sensing
[16], [17]. In this paper, we focus on image inpainting, image
deblurring, and image denoising.

In order to cope with the ill-posed nature of image restora-
tion, one type of scheme in literature employs prior knowledge
of a figure for regularizing the solution to the following
minimization problem [14], [15]:

argminx
1
2 ‖Hx − y‖2

2 + λ�(x) (2)

where 1
2 ‖Hx − y‖2

2 is the �2 data-fidelity term, �(x) is called
the regularization term denoting image prior, and λ is the reg-
ularization parameter. In fact, the above regularization-based
framework (2) can be strictly derived from Bayesian inference
with some image prior possibility model. Many optimization
approaches for regularization-based image inverse problems
have been developed [13]–[15], [41], [42].

It has been widely recognized that image prior knowledge
plays a critical role in the performance of image-restoration
algorithms. Therefore, designing effective regularization terms
to reflect the image priors is at the core of image restoration.

Classical regularization terms utilize local structural patterns
and are built on the assumption that images are locally
smooth except at the edges. Some representative works in the
literature are the total variation (TV) [2], [14], half quadra-
ture formulation [18], and Mumford-Shah (MS) models [20].
These regularization terms demonstrate high effectiveness in
preserving edges and recovering smooth regions. However,
they usually smear out image details and cannot deal well
with fine structures, since they only exploit local statistics,
neglecting nonlocal statistics of images.

In recent years, perhaps the most significant nonlocal statis-
tics in image processing is the nonlocal self-similarity exhib-
ited by natural images. The nonlocal self-similarity depicts
the repetitiveness of higher level patterns (e.g., textures and
structures) globally positioned in images, which is first utilized
to synthesize textures and fill in holes in images [19]. The
basic idea behind texture synthesis is to determine the value
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of the hole using similar image patches, which also influences
the image denoising task. Buades et al. [24] generalized this
idea and proposed an efficient denoising model called nonlocal
means (NLM), which takes advantage of this image property
to conduct a type of weighted filtering for denoising tasks by
means of the degree of similarity among surrounding pixels.
This simple weighted approach is quite effective in generating
sharper image edges and preserving more image details.

Later, inspired by the success of an NLM denoising filter,
a series of nonlocal regularization terms for inverse prob-
lems exploiting nonlocal self-similarity property of natural
images are emerging [25]–[29]. Note that the NLM-based
regularizations in [25] and [28] are conducted at the pixel
level, i.e., from one pixel to another pixel. In [9] and [39],
block-level NLM based regularization terms were introduced
to address image deblurring and super-resolution problems.
Gilboa and Osher [25] defined a variational framework based
on nonlocal operators and proposed nonlocal total variation
(NL/TV) model. The connection between the filtering methods
and spectral bases of the nonlocal graph Laplacian operator
were discussed by Peyré [27]. Recently, Jung et al. [29]
extended traditional local MS regularizer and proposed a non-
local version of the approximation of MS regularizer (NL/MS)
for color image restoration, such as deblurring in the presence
of Gaussian or impulse noise, inpainting, super-resolution, and
image demosaicking.

Due to the utilization of self-similarity prior by adaptive
nonlocal graph, nonlocal regularization terms produce superior
results over the local ones, with sharper image edges and more
image details [27]. Nonetheless, there are still plenty of image
details and structures that cannot be recovered accurately
because the above nonlocal regularization terms depend on the
weighted graph, while it is inevitable that the weighted manner
gives rise to disturbance and inaccuracy [28]. Accordingly,
seeking a method which can characterize image self-similarity
powerfully is one of the most significant challenges in the field
of image processing.

Based on the studies of previous work, two shortcomings
have been discovered. On one hand, only one image property
used in regularization-based framework is not enough to obtain
satisfying restoration results. On the other hand, the image
property of nonlocal self-similarity should be characterized
by a more powerful manner, rather than by the traditional
weighted graph. In this paper, we propose a novel strategy
for high-fidelity image restoration by characterizing both local
smoothness and nonlocal self-similarity of natural images in
a unified statistical manner. Part of our previous work has
been published in [30]. Our main contributions are listed as
follows. First, from the perspective of image statistics, we
establish a joint statistical modeling (JSM) in an adaptive
hybrid space and transform domain, which offers a powerful
mechanism of combining local smoothness and nonlocal self-
similarity simultaneously to ensure a more reliable and robust
estimation. Second, a new form of minimization functional
for solving image inverse problems is formulated using JSM
under regularization-based framework. The proposed method
is a general model that includes many related models as special
cases. Third, in order to make JSM tractable and robust, a

Fig. 1. Illustrations for local smoothness and nonlocal self-similarity of
natural images.

new Split Bregman-based algorithm is developed to efficiently
solve the above severely underdetermined inverse problem
associated with theoretical proof of convergence.

The remainder of the paper is organized as follows.
Section II elaborates the design of joint statistical modeling.
Section III proposes a new objective functional containing a
data-fidelity term and a regularization term formed by JSM,
and gives the implementation details of solving optimization.
Extensive experimental results are reported in Section IV. In
Section V we summarize this paper.

II. Proposed Joint Statistical Modeling in a

Space-Transform Domain

As mentioned in Section I, to cope with the ill-posed nature
of image inverse problems, prior knowledge about natural
images is usually employed, namely image properties, which
essentially play a key role in achieving high-quality images.

Here, two types of popular image properties are considered,
namely local smoothness and nonlocal self-similarity, as illus-
trated by image Lena in Fig. 1. The former type describes the
piecewise smoothness within local region, as shown by circular
regions, while the latter one depicts the repetitiveness of the
textures or structures in globally positioned image patches, as
shown by block regions with the same color. The challenge is
how to characterize and formulate these two image properties
mathematically. Note that different formulations of these two
properties will lead to different results.

In this paper, we characterize these two properties from
the perspective of image statistics and propose a JSM for
high fidelity of image restoration in an adaptive hybrid space-
transform domain. Specifically, JSM is established by merg-
ing two complementary models: 1) local statistical modeling
(LSM) in 2D space domain and 2) nonlocal statistical model-
ing (NLSM) in 3D transform domain, that is

�JSM(u) = τ · �LSM(u) + λ · �NLSM(u) (3)

where τ, λ are regularization parameters, which control the
tradeoff between two competing statistical terms. �LSM cor-
responds to the above local smoothness prior and keeps image
local consistency, suppressing noise effectively, while �NLSM

corresponds to the above nonlocal self-similarity prior and
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Fig. 2. Illustrations for local statistical modeling for smoothness in the space
domain at pixel level. (a) Gradient picture in horizontal direction of image
Lena. (b) Distribution of horizontal gradient picture of Lena, i.e., histogram
of (a).

maintains image nonlocal consistency, retaining the sharpness
and edges effectually. More details on how to design JSM to
characterize the above two properties will be provided below.

A. Local Statistical Modeling for Smoothness in Space
Domain

Local smoothness describes the closeness of neighboring
pixels in 2D space domain of images, which means the intensi-
ties of the neighboring pixels are quite similar. To characterize
the smoothness of images, there exist many models. Here,
we mathematically formulate a local statistical modeling for
smoothness in 2D space domain. From the view of statistics, a
natural image is preferred when its responses for a set of high-
passing filters are as small as possible [23], which intuitively
implies that images are locally smooth and their derivatives
are close to zero.

In practice, the widely used filters are vertical and horizontal
finite difference operators, denoted by Dv = [1 − 1]T and
Dh = [1 − 1], respectively. Fig. 2 shows the gradient picture
in horizontal direction of image Lena and its histogram. It
is obvious to see that the distribution is very sharp and most
pixels values are near zero. In literatures, the marginal statistics
of outputs of the above two filters are usually modeled
by generalized Gaussian distribution (GGD) [43], which is
defined as

pGGD(x) =
v · η(v)

2 · �(1/v)
· 1

σx

e−[η(v)·|x|/σx]v (4)

where η(v) =
√

�(3/v)�(1/v) and �(t) =
∫ ∞

0 e−uut−1du

is gamma function, σx is the standard deviation, and v is
the shape parameter. The distribution pGGD(x) is a Gaussian
distribution function if v = 2 and a Laplacian distribution
function if v = 1.If 0 < v < 1, pGGD(x) is named as a hyper-
Laplacian distribution. More discussions about the value of v

can be found in [23].
In this section, we choose Laplacian distribution to model

the marginal distributions of gradients of natural images by
making a tradeoff between modeling the image statistics
accurately and being able to solve the ensuing optimization
problem efficiently. Thus, let D = [Dv;Dh] and set v to be 1
in (4) to obtain LSM in space domain at pixel level, with
corresponding regularization term �LSM denoted by

�LSM(u) = ||Du||1 = ||Dvu||1 + ||Dhu||1 (5)

which clearly indicates that the formulation is convex and
facilitates the theoretical analysis.

Note that �LSM has the same expression as anisotropic TV
defined in [14] and [44], and can be regarded as a statistical
interpretation of anisotropic TV. It is important to emphasize
that local statistical modeling is only used for characterizing
the property of image smoothness. The regularization term (5)
has the advantages of convex optimization and low computa-
tional complexity. There is no need to design a very complex
regularization term, since the task of retaining the sharp edges
and recovering the fine textures will be accomplished by
the following nonlocal statistical modeling. More details for
solving LSM regularized problems will be given in the next
section.

B. Nonlocal Statistical Modeling for Self-Similarity in
Transform Domain

Besides local smoothness, nonlocal self-similarity is another
significant property of natural images. It characterizes the
repetitiveness of the textures or structures embodied by natural
images within nonlocal area, which can be used for retaining
the sharpness and edges effectually to maintain image nonlocal
consistency. However, the traditional nonlocal regularization
terms as mentioned in Section I essentially adopt a weighted
manner to characterize self-similarity by introducing nonlocal
graph according to the degree of similarity among similar
blocks, which often fail to recover finer image textures and
more accurate structures.

Recently, quite impressive results have been achieved in
image and video denoising by conducting the operation of
transforming a 3D array of similar patches and shrinking
the coefficients [4], [32]–[34]. It is worth emphasizing that
Dabov et al. [4], [21] did excellent work in the image restora-
tion field, especially their famous BM3D methods for image
denoising and deblurring applications, which have achieved
great success. Our proposed statistical modeling for self-
similarity is inspired by their success and significantly depends
on their work. In this paper, we mathematically characterize
the nonlocal self-similarity for natural images by means of the
distributions of the transform coefficients, which are achieved
by transforming the 3D array generated by stacking similar
image patches. Accordingly, this type of model can be named
as NLSM for self-similarity in 3D transform domain.

More specifically, as illustrated in Fig. 3, the strict descrip-
tion on the proposed NLSM for self-similarity in transform
domain can be obtained in the following five steps. First,
divide the image u with size N into n overlapped blocks
ui of size bs, i = 1, 2, ..., n. Second, for each block in red
denoted by ui, we search c blocks (such as nine in Fig. 3)
that are most similar to it within the blue search window.
Instead of using a tunable threshold to choose similar blocks
in [4] for denoising, our choice with a fixed number is not
only simple but also robust to the similarity criterion. Thus,
for simplicity, the criterion for calculating similarity between
different blocks is Euclidean distance. Moreover, it enables
solving the subproblem associated with NLSM quite efficient
(see Theorem 2). Define Sui the set including the c best
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Fig. 3. Illustrations for nonlocal statistical modeling for self-similarity in 3D transform domain at block level.

matched blocks to ui in the searching window with size of
L × L, that is, Sui = {Sui⊗1, Sui⊗2, ..., Sui⊗c}. Third, as to
each Sui , stack the c blocks belonging to Sui into a 3D array,
which is denoted by Zui . Fourth, denote T 3D as the operator
of an orthogonal 3D transform and T 3D(Zui ) as the transform
coefficients for Zui . Let 	u be the column vector of all the
transform coefficients of image u with size K = bs ∗ c ∗ n

built from all the T 3D(Zui ) arranged in the lexicographic order.
Note that the orthogonality of 3D transform is momentous in
solving NLSM, which will be discussed in the next section.
Finally, we analyze the histogram of the transform coefficients,
as shown in Fig. 3, which statistically demonstrates that the
histogram is quite sharp, and the vast majority of coefficients
are concentrated near the zero value. This is similar to the
previous local modeling of images and is also very suitable to
be characterized by GGD. Analogous to LSM in space domain,
by making a tradeoff between accurate modeling and efficient
solving, in this paper the distribution of 	u is modeled by
Laplacian function.

Therefore, the mathematical formulation of nonlocal statis-
tical modeling for self-similarity in 3D transform domain is
written as

�NLSM(u) = ||	u||1 =
∑n

i=1

∥∥T 3D(Zui )
∥∥

1. (6)

Accordingly, the inverse operator 
NLSM corresponding to
�NLSM can be defined in the following procedures. After
obtaining 	u, split it into n 3D arrays of 3D transform
coefficients, which are then inverted to generate estimates for
each block in the 3D array. The block-wise estimates are
returned to their original positions and the final image estimate
is achieved by averaging all of the above block-wise estimates.
Therefore, if 	u is known, the new estimate for u is expressed
as û = 
NLSM(	u). The convexity of NLSM in (6) can be
technically justified as follows. To make it clear, define R3D

i as
the matrix operator that extracts the 3D array Zui from u, i.e.,
Zui = R3D

i u. Then, define G3D
i = T 3DR3D

i , which is a linear
operator. It is obvious to observe that

∥∥T 3D(Zui )
∥∥

1 =
∥∥G3D

i u
∥∥

1
is convex with respect to u. Since the sum of convex functions
is convex, (6) is also convex as to u.

The difference between the proposed NLSM and BM3D
method mainly has three aspects. First, we mathematically
characterize the nonlocal self-similarity for natural images by
means of the distributions of the transform coefficients, which
are achieved by transforming the 3D array generated by stack-
ing similar image blocks. Second, for each block, we utilize
a fixed number of blocks that are most similar to it within

Fig. 4. Visual quality comparison of image restoration from partial random
samples for crops of image Barbara in the case of ratio = 20%. (a) Degraded
image with only 20% random samples available. (b) Restoration results by
only local statistical modeling, i.e., LSM (22.18 dB). (c) Restoration results
by LSM+NLM (22.97 dB). (d) Restoration results by NL/TV (23.08 dB).
(e) Restoration results by LSM+NLSM, i.e., the proposed JSM (27.21 dB).

the search window to construct its 3D array. Nonetheless, in
the BM3D works [4], [21], many tunable thresholds to choose
similar blocks are exploited, which is a bit complicated. Our
choice with a fixed number is not only simple but also robust
to the similarity criterion. Moreover, the fixed size of each 3D
array enables solving the subproblem associated with NLSM
quite efficient (see Theorem 2). Third, the proposed NLSM
is more general and can be directly incorporated into the
regularization framework for image inverse problems, such
as image inpainting, image deblurring, and mixed Gaussian
plus impulse noise removal, which will be provided in the
experimental section. Furthermore, a Split Bregman-based
iterative algorithm and a theorem are developed to solving
the NLSM regularized problem effectively and efficiently.

Here, we also give a visual comparison between the
proposed NLSM and two traditional nonlocal regularization
terms. Fig. 4 provides visual results of image restoration from
partial random samples for crops of image Barbara in the
case of ratio = 20%. Fig. 4(a) is the corresponding degraded
image with only 20% random samples available. Fig. 4(b)
is the reconstruction result achieved only by LSM. It looks
good in smooth regions, but loses sharp edges and accurate
textures. Fig. 4(c) is the reconstruction result achieved by
the local statistical modeling and NLM-based regularization
term together, denoted by LSM+NLM, where the nonlocal
regularization term is defined in [45]. Fig. 4(d) provides the
restoration result by nonlocal total variation (NL/TV), defined
in [28]. It is obvious that the reconstruction result with sharper
edges and more image details is obtained by incorporation
nonlocal graph However, accurate image textures still cannot
be recovered and the results are not very clear [see the scarf
in Fig. 4(d)]. Fig. 4(e) shows the restoration result by the
proposed LSM plus NLSM, i.e., the proposed JSM.

It can be observed that Fig. 4(e) exhibits the best visual
quality, not only providing consistent and sharp edges but also



ZHANG et al.: IMAGE RESTORATION USING JOINT STATISTICAL MODELING IN A SPACE-TRANSFORM DOMAIN 919

Fig. 5. Image-restoration process as the iteration number increases in the
case of image restoration from partial random samples for image House when
ratio = 20%. Here, k represents the iteration number. (a) k = 0. (b) k = 60.
(c) k = 120. (d) k = 210. (e) k = 300.

generating accurate and clear textures, which fully substanti-
ates the superiority of the proposed NLSM over the traditional
nonlocal regularizers.

In summary, the advantage of the nonlocal statistical mod-
eling is that self-similarity among globally positioned image
blocks is exploited in a more effective statistical manner in
3D transform domain than nonlocal graph incorporated in
traditional nonlocal regularizations. Extensive experiments in
the following section demonstrate that the NLSM for self-
similarity is able to not only reserve the common textures
and details among all similar patches, but also keep the
distinguished features of each block in a certain degree. Note
that the nonlocal statistical modeling for self-similarity is
data-adaptive because of its content-aware search for similar
blocks within nonlocal region. It is also worth stressing that
although (6) seems complicated as one regularization term
in the minimization function, we will give a very efficient
solution in the next section.

C. Joint Statistical Modeling (JSM)

Considering local smoothness and nonlocal self-similarity
in a whole, a new JSM can be defined by combining the
LSM for smoothness in space domain at pixel level and
the NLSM in transform domain at block level, which is
expressed as

�JSM(u) = τ ·�LSM(u) +λ ·�NLSM(u) = τ · ||Du||1 +λ · ||	u||1.
(7)

Thus, JSM is able to portray local smoothness and nonlo-
cal self-similarity of natural images richly, and combine the
best of the both worlds, which greatly confines the space
of inverse problem solution and significantly improve the
reconstruction quality. To make JSM tractable and robust,
a new Split Bregman-based iterative algorithm is developed
to solve the optimization problem with JSM as regulariza-
tion term efficiently, whose implementation details and con-
vergence proof will be provided in the next section. Ex-
tensive experimental results will testify the validity of the
proposed JSM.

Fig. 5 visually illustrates the image-restoration process of
the proposed algorithm. Fig. 5(a) is the degraded image of
House with 20% original samples, i.e., ratio = 20%. As the
iteration number k increases, it is obvious that the quality of
the restoration image becomes better and better, and ultimately
stabilizes, exhibited by Fig. 5(b)–(e).

Algorithm 1 Split Bregman Iteration (SBI)

1. Set k = 0, choose μ > 0,

d(0) = 0, u(0) = 0, v(0) = 0.

2. Repeat
3. u(k+1) = argminuf (u) + μ

2

∥∥Gu − v(k) − d(k)
∥∥2

2 ;

4. v(k+1) = argminvg(v) + μ

2

∥∥Gu(k+1) − v − d(k)
∥∥2

2 ;
5. d(k+1) = d(k) − (Gu(k+1) − v(k+1));
6. k ← k + 1;
7. Until stopping criterion is satisfied

III. Split Bregman-Based Iterative Algorithm for

Image Restoration Using JSM

By incorporating the proposed joint statistical modeling (7)
into the regularization-based framework (2), a new formulation
for image restoration can be expressed as

argminu
1
2 ‖Hu − y‖2

2 + τ · �LSM(u) + λ · �NLSM(u) (8)

where τ and λ are control parameters. Note that the first
term of (8) actually represents the observation constraint and
the second and the third represent the image prior local and
nonlocal constraints, respectively. Therefore, it is our belief
that better results will be achieved by imposing the above three
constraints into the ill-posed image inverse problem. Solving
it efficiently is one of the main contributions of this paper.

In this section, we apply the algorithmic framework of SBI
to solve (8) and present the implementation details and the
convergence of the proposed algorithm.

SBI is recently introduced by Goldstein and Osher [41]
for solving a class of �1 related minimization problems. The
basic idea of SBI is to convert the unconstrained minimization
problem into a constrained one by introducing the variable
splitting technique and then invoke the Bregman iteration [41]
to solve the constrained minimization problem. Numerical
simulations in [40] and [44] show that it converges fast and
only uses a small memory footprint, which makes it very
attractive for large-scale problems.

Consider an unconstrained optimization problem

minu∈RN f (u) + g(Gu) (9)

where G ∈ R
M×N

, f : R
N → R, g : R

M → R. The SBI
works as shown in Algorithm 1.

Let us go back to (8) and point out how to apply SBI to
solve it. First, define

f (u) = 1
2 ‖Hu − y‖2

2

g(v) = g(Gu) = τ · �LSM(u) + λ · �NLSM(u)

where

v =

[
w

x

]
= Gu, w, x ∈ R

N and G =

[
I

I

]
∈ R

2N×N
.

Therefore, (8) is transformed to

argmin
u∈R

N
,v∈R

2N f (u) + g(v) s. t. Gu = v. (10)
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Invoking SBI, line 3 in Algorithm 1 becomes

u(k+1) = argmin
u

f (u) +
μ

2
||Gu − v(k) − d(k)||22

=
1

2
‖Hu − y‖2

2 +μ

2

∥∥∥∥
[

I

I

]
u −

[
w(k)

x(k)

]
−

[
b(k)

c(k)

]∥∥∥∥
2

2

(11)

where d(k) =

[
b(k)

c(k)

]
∈ R

2N
, b(k), c(k) ∈ R

N .

Splitting �2 norm in (11), we have

u(k+1) = argmin
u

1
2 ‖Hu − y‖2

2 + μ

2

∥∥u − w(k) − b(k)
∥∥2

2

+ μ

2

∥∥u − x(k) − c(k)
∥∥2

2 .
(12)

Next, line 4 in Algorithm 1 becomes

v(k+1) =

[
w(k+1)

x(k+1)

]
= argmin

w,x

{
τ · �LSM(w)+λ · �NLSM(x)

+μ

2

∥∥u(k+1) − w − b(k)
∥∥2

2 +μ

2

∥∥u(k+1) − x − c(k)
∥∥2

2

}
.

(13)

Clearly, the minimization with respect to w, x are decou-
pled, thus can be solved separately, leading to

w(k+1) = argmin
w

τ · �LSM(w)+μ

2

∥∥u(k+1) − w − b(k)
∥∥2

2 (14)

x(k+1) = argmin
x

λ · �NLSM(x) + μ

2

∥∥u(k+1) − x − c(k)
∥∥2

2 . (15)

According to line 5 in Algorithm 1, the update of dk is

d(k+1) =

[
b(k+1)

c(k+1)

]
=

[
b(k)

c(k)

]
−

([
I

I

]
u(k+1) −

[
w(k+1)

x(k+1)

])

which can be simplified into the following two expressions

b(k+1) = b(k) − (u(k+1) − w(k+1)),
c(k+1) = c(k) − (u(k+1) − x(k+1)).

To summarize, the minimization for (8) is equivalent to
solve the three subproblems, namely u, w, x subproblems,
according to SBI. The complete algorithm for solving (8) is
described in Table I.

In Table I, the proximal map proxt(g)(x) with respect to a
proper closed convex function g and a scalar t > 0 is defined
by proxt(g)(x) = argmin

u

{ 1
2 ‖u − x‖2

2 + t · g(u)} [14].

In the light of the convergence of SBI, we have the following
theorem to prove the convergence of the proposed algorithm
using joint statistical modeling in Table I.

Theorem 1: The proposed algorithm described by Table I
converges to a solution of (8).

Proof: It is obvious that the proposed algorithm is an
instance of SBI. Since all the three functions f (·),�LSM(·),
and �NLSM(·) are closed, proper, and convex, the convergence
of the proposed algorithm is guaranteed by

G =

[
I

I

]
∈ R

2N×N

which is a full column rank matrix.
It is important to stress that the convergence will not be

compromised if the subproblems can be solved efficiently,

TABLE I

Complete Description of Proposed Algorithm Using JSM

(Version I)

which will also be demonstrated by the following experimental
section. In the following, we argue that the every separated
subproblem admits an efficient solution. For simplicity, the
subscript k is omitted without confusion.

A. u Subproblem

In order to make the solution of (12) more flexible, we
introduce two parameters μ1 and μ2 to replace μ, which will
not comprise the algorithm convergence. Thus, given w, x, the
u subproblem denoted by (12) becomes

u = argmin
u

1
2 ‖Hu − y‖2

2 + μ1
2 ‖u − w − b‖2

2 + μ2
2 ‖u − x − c‖2

2 .

(16)
Since (16) is a minimization problem of a strictly convex

quadratic function, there is actually a closed form for u, which
can be expressed as

u = (HT H+μ̃I)−1 · q (17)

where q = HT y + μ1(w+b) + μ2(x+c), I is identity matrix,
and μ̃ = μ1 + μ2. For image inpainting and image deblurring
problems, (17) can be computed efficiently [15].

As for image inpainting, since the sub-sampling matrix H

is actually a binary matrix, which can be generated by taking
a subset of rows of an identity matrix, H satisfies HHT = I.

Applying the Sherman–Morrison–Woodbury (SMW) matrix
inversion formula to (17) yields

u = 1
μ̃

(I − 1
1+μ̃

HT H) · q. (18)

Therefore, u in (18) can be computed very efficiently without
computing the matrix inverse operation in (17). Moreover,
owing to the particular structure of H , HT H is equal to an
identity matrix with some zeros in the diagonal, corresponding
to the positions of the missing pixels. Consequently, the cost
of (18) is only O(N). In this paper, the mixed Gaussian plus
salt-and-pepper noise removal is dealt with as a special case
of image inpainting, which will be elaborated in the following
section.
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As for image deblurring, H is the matrix representing a
circular convolution that can be factorized as

H = U−1DU (19)

where U is the matrix denoting 2D discrete Fourier trans-
form (DFT), U−1 is its inverse, and D is a diagonal matrix
containing the DFT coefficients of the convolution operator
represented by H . Thus

(HT H+μ̃I)−1 = (U−1D∗DU+μ̃U−1U)−1 = U−1(|D|2+μ̃I)−1U

(20)
where (·)∗ denotes complex conjugate and |D|2 the squared
absolute values of the entries of the diagonal matrix D. As
|D|2+μ̃I is diagonal, the cost of its inversion is O(N). In
practice, the products of U−1 and U can be implemented with
O(NlogN) using the FFT algorithm.

B. w Subproblem

w sub-problem, the proximal map associated to �LSM(·),
can be regarded as a denoising filtering with anisotropic
total variation as mentioned before. To solve it, one of the
intrinsic difficulties is the nonsmoothness of the term ||Du||1.
To overcome this difficulty, Chambolle [3] suggested to con-
sider a dual approach, and developed a globally convergent
gradient-based algorithm for the denoising problem, which
was shown to be faster than primal-based schemes. Later, some
accelerating methods, such as TwIST [13] and FISTA [14], are
proposed, exhibiting fast theoretical and practical convergence.
In our experiments, we exploit a fixed number of iterations
of FISTA to solve w sub-problem, which is computationally
efficient and empirically found not to compromise convergence
of the proposed algorithm.

C. x Subproblem

Given w, u, the x subproblem can be written as

x = proxα(�NLSM)(r)

= argmin
x

{
1

2
‖x − r‖2

2 + α · �NLSM(x)

}

= argmin
x

{
1

2
‖x − r‖2

2 + α ‖	x‖1

}
. (21)

By viewing r as some type of noisy observation of x,
we perform some experiments to investigate the statistics of
e = x − r. Here, we use color image Butterfly as an example
in the case of image deblurring, where the original image
is first blurred by Gaussian blur kernel and then is added
by Gaussian white noise of standard deviation 0.5. At each
iteration t, we can obtain r(k) by r(k) = u(k) − c(k−1). Since the
exact minimizer of (21) is not available, we then approximate
x(k) by the original image without generality. Therefore, we
are able to acquire the histogram of e(k) = x(k) − r(k) at each
iteration k. Fig. 6 shows the distributions of e(k) when k equals
4 and 8, respectively.

From Fig. 6, it is obvious to observe that the distribution
of e(k) at each iteration is quite suitable to be characterized by

Fig. 6. Distribution of e(k) and its corresponding variance Var(e(k)) for image
Butterfly in the case of image deblurring at different iterations. (a) k = 4 and
Var(e(4)) = 11.18. (b) k = 8 and Var(e(8)) = 10.95.

GGD [43] with zero-mean and variance Var(e(k)). The variance
Var(e(k)) can be estimated by

Var(e(k)) = 1
N

∥∥x(k) − r(k)
∥∥2

2 . (22)

Fig. 6 also gives the corresponding estimated variances at
different iterations. Furthermore, owing that the residual of
images is usually decorrelated, each element of e(k) can be
modeled independently.

Accordingly, to enable solving (21) tractable, in this paper
a reasonable assumption is made, with which even a closed-
form solution of (21) can be obtained. We suppose that each
element of e(k) follows an independent zero-mean distribution
with variance Var(e(k)). It is worth emphasizing that the above
assumption does not need to be Gaussian, or Laplacian, or
GGD process, which is more general. By this assumption, we
can prove the following conclusion.

Theorem 2: Let x, r ∈ R
N
, 	x, 	r ∈ R

K, and denote the
error vector by e = x − r and each element of e by e(j),
j = 1, ..., N. Assume that e(j) is independent and comes
from a distribution with zero mean and variance σ2. Then,
for any ε>0, we have the following property to describe the
relationship between ||x − r||22 and ||	x − 	r||22, that is

lim
N→∞,K→∞

P{| 1
N

||x − r||22 − 1
K

||	x − 	r||22| < ε} = 1 (23)

where P(·) represents the probability.
Proof: Due to the assumption that each e(j) is independent,

we obtain that each e(j)2 is also independent. Since E[e(j)] =
0 and D[e(j)] = σ2, we have the mean of each e(j)2, which
is expressed as

E[e(j)2] = D[e(j)] + [E[e(j)]]2 = σ2, j = 1, ..., N.

By invoking the Law of Large Numbers in probability theory,
for any ε>0, it leads to lim

N→∞
P

{
| 1
N

∑N
j=1 e(j)2 − σ2|<ε

2

}
=1,

that is

lim
N→∞

P
{∣∣ 1

N
‖x − r‖2

2 − σ2
∣∣ < ε

2

}
= 1. (24)

Further, denote each element of 	e by 	e(j), j = 1, ..., K.
Due to the definition of 3D transform coefficients vector 	e

and the orthogonal property of transform T 3D, we conclude
that 	e(j) is independent with zero mean and variance σ2.

Therefore, the same manipulations applied to 	e(j)2 yield
lim

K→∞
P

{
| 1
K

∑K
j=1 	e(j)2 − σ2| < ε

2

}
= 1, namely

lim
K→∞

P
{∣∣ 1

K
‖	x − 	r‖2

2 − σ2
∣∣ < ε

2

}
= 1. (25)
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Fig. 7. All experimental test images.

Considering (24) and (25) together, we prove (23).
According to Theorem 2, there exists the following equation

with very large probability (limited to 1) at each iteration k:

1
N

∥∥x(k) − r(k)
∥∥2

2 = 1
K

∥∥	(k)
x − 	(k)

r

∥∥2

2 . (26)

Now let us verify (26) by the above case of image de-
blurring. We can clearly see that the left side of (26) is
just Var(e(k)) defined in (22), with Var(e(4)) = 11.18 and
Var(e(8)) = 10.95, which is shown in Fig. 6.

At the same time, we can calculate the corresponding right
hand of (26), denoted by Var(	(k)

e ), with the same values of
k, leading to Var(	(4)

e ) = 10.98 and Var(	(8)
e ) = 10.87. Ap-

parently, at each iteration, Var(e(k)) is very close to Var(	(k)
e ),

especially when k is larger, which sufficiently illustrates the
validity of our assumption.

Incorporating (26) into (21) leads to

argmin
x

1
2 ‖	x − 	r‖2

2 + Kα
N

‖	x‖1 . (27)

Since the unknown variable 	x is component-wise separa-
ble in (27), each of its components 	x(j) can be independently
obtained in a closed form according to the so called soft
thresholding [42]

	x = soft(	r,
√

2ρ) (28)

where j = 1, ..., K, ρ = Kα
N

and

	x(j) = sgn(	r(j))max
{

|	r(j)| −
√

2ρ, 0
}

=

⎧⎨
⎩

	r(j) − √
2ρ,

0,

	r(j) +
√

2ρ,

	r(j) ∈ R(
√

2ρ, +∞)
	r(j) ∈ R[−√

2ρ,
√

2ρ]
	r(j) ∈ R(−∞, −√

2ρ).

Thus, the closed solution form of x subproblem (21) is

x = 
NLSM(	x) = 
NLSM(soft(	r,
√

2ρ)). (29)

D. Summary of Proposed Algorithm

So far, all issues in the process of handing the three subprob-
lems have been solved efficiently and effectively. In light of
all derivations above, a detailed description of the proposed
algorithm for image restoration using JSM is provided in
Table II.

TABLE II

Complete Description of Proposed Algorithm

Using JSM (Version II)

IV. Experimental Results

In this section, extensive experimental results are presented
to evaluate the performance of the proposed algorithm, which
is compared with many state-of-the-art methods. We apply
our algorithm to the applications of image inpainting, image
deblurring, and mixed Gaussian plus salt-and-pepper noise
removal. All the experiments are performed in MATLAB
7.12.0 on a Dell OPTIPLEX computer with Intel Core 2
Duo CPU E8400 processor (3.00 GHz), 3.25G memory, and
Windows XP operating system. In our implementation, if not
specially stated, the size of each block, i.e., bs is set to be
8×8 with 4-pixel-width between adjacent blocks, the size of
training window for searching matched blocks, i.e., L×L is
set to be 40×40, and the number of best matched blocks, i.e.,
c is set to be ten. Thus, the relationship between N and K

is K = 40N. The orthogonal 3D transform denoted by T 3D

is composed of 2D discrete cosine transform and 1D Haar
transform. All experimental images are shown in Fig. 7.

To evaluate the quality of image reconstruction, in addition
to PSNR, which is used to evaluate the objective image
quality, a new image quality assessment (IQA) model FSIM
is exploited to evaluate the visual quality. FSIM is proposed
recently and achieves much higher consistency with the sub-
jective evaluations than the state-of-the-art IQA metrics [31].
The higher FSIM value means the better visual quality, while
the FSIM value lies in the interval [0 1]. Note that the
results of every color image are obtained by its luminance
component, keeping its chrominance components unchanged.
In the following, the left of the slash denotes PSNR (dB)
and the right of the slash denotes FSIM. Due to space
limitations, only parts of the experimental results are shown
in this paper. Please enlarge and view the figures on the
screen for better comparison. Our MATLAB software and
more experimental visual results can be downloaded from
http://idm.pku.edu.cn/staff/zhangjian/IRJSM/.

A. Image Restoration From Partial Random Samples

We now handle the problem of image restoration from par-
tial random samples, for which the original image is operated
by a random mask and the random mask is assumed to be
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Fig. 8. Visual quality comparison of image restoration from partial ran-
dom samples for image Barbara in the case of ratio = 20%. (a) Origi-
nal image. (b) Degraded image with only 20% random samples available
(7.36 dB/0.4998). (c)–(h) Restoration results by SALSA (22.75 dB/0.8193)
[15], SKR (21.92 dB/0.8607) [35], MCA (25.69 dB/0.8939) [37], BPFA
(25.70 dB/0.8927) [38], FoE (23.68 dB/0.8812) [36], and the proposed
algorithm (27.54 dB/0.9264).

known. That means H in (8) is already known. The proposed
algorithm is compared with five recent representative methods:
steering kernel regression (SKR) [35], fields of experts (FoE)
[36], morphological component analysis (MCA) [37], and
SALSA [15] and BPFA [38].

SKR utilizes a steering kernel regression framework to
characterize local structures for image restoration [35]. MCA
calculates the sparse inverse problem estimate in a dictionary
that combines a curvelet frame, a wavelet frame and a local
DCT basis [37]. FoE learns a Markov random field model,
in which the parameters are trained from huge amounts of
example natural images [36]. SALSA develops a fast algorithm
for total variation regularization [15]. BPFA exploits the beta
process factor analysis framework to infer a learned dictionary
using the truncated beta-Bernoulli process [38]. The results of
the five comparative methods are generated by the original
authors’ softwares, with the parameters manually optimized.

Here, three color images are tested, with the percentage
of retaining original samples, denoted by ratio, being 20%,
30%, 50%, and 80%, respectively. The maximum iteration
number in Table II is dependent on ratio. In our experiment,
the maximum iteration number is set to be 400, 350, 250, and
100 for the above four ratios.

Table III lists PSNR/FSIM results among different methods
on the test images. From Table III, the proposed method
achieves the highest scores of PSNR and FSIM in all the cases,
which fully demonstrates that the restoration results by the
proposed method are the best both objectively and visually.

More specifically, the proposed algorithm obtains PSNR
improvement of about 2.7 dB and FSIM improvement of about
0.016 on average over the second-best algorithms (i.e., BPFA).
Note that, in the case of ratio = 20% in image House,
the average PSNR and FSIM improvements achieved by the
proposed method over BPFA is 4.2 dB and 0.02, separately.

Figs. 8 and 9 show visual quality restoration results for
Barbara and Foreman in the case of ratio = 20%, in which
the degraded images [i.e., Figs. 8(b) and 9(b)] are hardly iden-
tified. It is apparent that all the methods generate good results

Fig. 9. Visual quality comparison of image restoration from partial ran-
dom samples for image Foreman in the case of ratio = 20%. (a) Origi-
nal image. (b) Degraded image with only 20% random samples available
(4.57 dB/0.3551). (c)–(h) Restoration results by SALSA (26.27 dB/0.9065)
[15], SKR (30.35 dB/0.9492) [35], MCA (31.40 dB/0.9480) [37], BPFA
(29.64 dB/0.9298) [38], FoE (30.80 dB/0.9397) [36], and the proposed
algorithm (33.28 dB/0.9631).

Fig. 10. Visual quality comparison of text removal for image Barbara.
(a) Degraded image with text mask (15.03 dB/0.7266). (b)–(d) Restoration
results by SKR (30.93 dB/0.747) [35], FoE (31.53 dB/0.9745) [36], and the
proposed algorithm (37.99 dB/0.9899).

Fig. 11. Visual quality comparison of text removal for image Parthenon.
(a) Degraded image with text mask (13.91 dB/0.7213). (b)–(d) Restoration
results by SKR (31.02 dB/0.9666) [35], FoE (33.23 dB/0.9704) [36], and the
proposed algorithm (34.45 dB/0.9770).

on the smooth regions. SKR [35] is good at capturing contour
structures, but fails in recovering textures and produces blurred
effects. MCA [37] can restore better textures than FoE [36]
and SKR. However, it produces noticeable striped artifacts.
BPFA [38] is able to recover some textures, while generating
some incorrect textures and some blurred effects due to less
robustness with so small percentage of retaining samples for
dictionary learning. The proposed JSM not only provides accu-
rate restoration on both edges and textures but also suppresses
the noise-caused artifacts, exhibiting the best visual quality,
which is consistent with FSIM.

B. Image Restoration for Text Removal

We now deal with another interesting case of image inpaint-
ing, i.e., text removal. That means H is not a random mask,
but a text one. Four color images are degraded by a known
text mask. The purpose for text removal is to infer original
images from the degraded versions by removing the text
region. The proposed algorithm is compared with three state-
of-the-art approaches: SKR [35], FoE [36], and BPFA [38].
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TABLE III

PSNR/FSIM Comparisons of Various Methods for Image Restoration From Partial Random Samples

TABLE IV

PSNR/FSIM Comparisons for Text Removal

The experimental setting for text removal of our proposed
algorithm is the same as the one for image restoration from
partial random samples. Table IV lists the PSNR and FSIM
results among different methods on test images. It shows that
the proposed algorithm achieves the highest values in all the
cases, which substantiates the effectiveness of the proposed
algorithm. Figs. 10 and 11 further visually illustrate that the
proposed algorithm provides more accurate edges and textures
with better visual quality, compared with other methods.

C. Image Deblurring

In the case of image deblurring, the original images are
blurred by a blur kernel and then added by Gaussian noise
with standard deviation σ. Three blur kernels, a 9×9 uniform
kernel, a Gaussian blur kernel, and a motion blur kernel,
are exploited for simulation (see Table V). We compare the
proposed JSM deblurring method to three recently developed
deblurring approaches, i.e., the constrained TV deblurring
(denoted by SALSA) method [15], the SA-DCT deblurring
method [12], and the BM3D deblurring method [21]. Note that
SALSA is a recently proposed TV-based deblurring method
that can reconstruct the piecewise smooth regions. The SA-
DCT and BM3D are two well-known image-restoration meth-
ods that often produce the state-of-the-art image deblurring
results.

The PSNR and FSIM results on a set of four images are
reported in Table V. From Table V, we can conclude that the

Fig. 12. Visual quality comparison of image deblurring on image Butterfly
(9×9 uniform blur). (a) Noisy and blurred. (b) SALSA (30.30 dB/0.9300)
[15]. (c) BM3D (28.73 dB/0.8959) [21]. (d) Proposed (31.03 dB/0.9394).

Fig. 13. Visual quality comparison of image deblurring on image Leaves
(Gaussian blur). (a) Noisy and blurred. (b) SALSA (30.32 dB/0.9518) [15].
(c) BM3D (30.61 dB/0.9342) [21]. (d) Proposed (32.18 dB/0.9610).

proposed JSM approach significantly outperforms other com-
peting methods for all three types of blur kernels. The visual
comparisons of the deblurring methods are shown in Figs. 12
and 13, from which one can observe that the JSM model
produces much cleaner and sharper image edges and textures
than other methods with almost unnoticeable ringing artifacts.
The high performance of the proposed algorithm is attributed
to the employment of image local and nonlocal regularization
at the same time, which offers a powerful mechanism of
characterizing the statistical properties of natural images.

Furthermore, the JSM model is compared with AKTV [46],
which is known to work quite well in the case of large blur.
Here, the case with 19×19 uniform PSF for image Cameraman
is tested, with the corresponding blurred signal to noise ratio
(BSNR) equal to 40. BSNR is equivalent to 10*log (blurred
signal variance/noise variance). Smaller BSNR means larger
noise variance. The objective and visual quality comparisons
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TABLE V

PSNR/FSIM Comparisons for Image Deblurring

Fig. 14. Visual quality comparison of image deblurring on image Cam-
eraman (19×19 uniform blur and BSNR = 40). (a) Original. (b) Noisy and
blurred. (c) AKTV (25.19 dB/0.8109) [46]. (d) Proposed (26.51 dB/0.8724).

are shown in Fig. 14. From Fig. 14, it is apparent to see that
JSM model produces better results than AKTV with much
sharper image edges and less annoying ringing artifacts.

D. Mixed Gaussian Plus Salt-and-Pepper Noise Removal

In practice, we often encounter the case in which an image
is corrupted by both Gaussian and salt-and-pepper noise. Such
mixed noise could occur when an image that has already been
contaminated by Gaussian noise in the procedure of image
acquisition with faulty equipment suffers impulsive corruption
during its transmission over noisy channels successively.

In our simulations, images will be corrupted by Gaussian
noise with standard deviation σ and salt-and-pepper noise
density level r, where σ is assumed to be known before
and r is unknown. For mixed Gaussian plus impulse noise,
traditional image denoising methods that can only deal with
one single type of noise do not work well due to the distinct
characteristics of both types of degradation processes. Here,
two state-of-the-art algorithms compared with our proposed
method are FTV [48] and IFASDA [49]. Experiments are
carried out on four benchmark gray images in Fig. 7, where the
standard variance σ of Gaussian noise equals 10 and the noise
density level r varies from 40% to 50%. To handle this case,
we first apply an adaptive median filter [47] to the noisy image
to identify the mask H ; that is, change the problem of mixed
Gaussian and impulse noise removal into the problem of image
restoration from partial random samples with Gaussian noise,
and then run the proposed algorithm according to Table II.

TABLE VI

PSNR/FSIM Comparisons for Gaussian Plus

Salt-and-Pepper Noise Removal

Fig. 15. Visual quality comparison of mixed Gaussian plus salt-and-peppers
impulse noise removal on image Barbara. (a) Noisy image corrupted by
Gaussian plus salt-and-pepper impulse noise with σ = 10 and r = 50%.
(b)–(d) Denoised results by FTV (25.40 dB/0.8728) [48], IFASDA
(27.45 dB/0.9129) [49], and the proposed algorithm (31.04 dB/0.9383).

Table VI presents the PSNR/FSIM results of the three com-
parative denoising algorithms on all test images for Gaussian
plus salt-and-pepper impulse noise removal. Obviously, the
proposed method considerably outperforms the other meth-
ods in all the cases, with the highest PSNR and FSIM,
achieving the average PSNR and FSIM improvements over
the second-best method (i.e., IFASDA) are 1.8 dB and 0.01,
separately.

Some visual results of the recovered images for the three
algorithms are presented in Fig. 15. One can see that FTV [48]
is effective in suppressing the noises; however, it produces
over-smoothed results and eliminates much image details [see
Fig. 15(b)]. IFASDA [49] is very competitive in recovering the
image structures. However, it tends to generate some annoying
artifacts in the smooth regions [see Fig. 15(c)]. By comparing
with TV and IFASDA, the proposed method provides the most
visually pleasant results [see Fig. 15(d)].

E. Parameter Optimization

In our proposed algorithm, we have four parameters to
determine, i.e., τ,λ,μ1 and μ2, which seems quite complicated.
To make it tractable, we simplify the optimization of four
parameters into the optimization of one parameter μ̃. Specif-
ically, in (16), to make a tradeoff between LSM and NLSM,
μ1 and μ2 in the ratio of one to six is exploited, which is
verified by our experiments. Moreover, due to the relationship
μ̃ = μ1 +μ2, we get μ1 = 0.14μ̃ and μ2 = 0.86μ̃. To determine
τ and λ, we observe that the standard deviation σ of Gaussian
noise n in (1) is not larger than ten; a good rule of thumb
is τ = 10μ1, λ = 10μ2 [15]. Therefore, it yields τ = 1.4μ̃

and λ = 8.6μ̃. So far, the relationships between the above
four parameters and μ̃ are established. In practice, for each
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Fig. 16. PSNR evolution with respect to parameter μ̃ in the cases of motion
blur kernel with Gaussian noise standard deviation σ = 0.5 and σ = 1.5 for
three test images.

Fig. 17. Visual quality comparison of proposed algorithm with various μ̃ in
the case of image deblurring with motion blur kernel and σ = 0.5. (a) Original
image. (b) Deblurred result with μ̃ = 5e-4, PSNR = 26.87. (c) Deblurred result
with μ̃ = 2e-3, PSNR = 33.10. (d) Deblurred result with μ̃ = 3e-2, PSNR =
28.50.

case of image processing application, the optimization of μ̃ is
obtained by simply searching some values.

Take the case of image deblurring for example. Fig. 16
provides PSNR evolution with respect to μ̃ in the cases of
motion blur kernel with Gaussian noise standard deviation
σ = 0.5 and σ = 1.5 for three test images. From Fig. 16,
three conclusions can be observed. First, as expected, there
is an optimal μ̃ that achieves the highest PSNR by balancing
image noise suppression with image details preservation [see
Fig. 17(c)]. That means, if μ̃ is set too small, the image noise
cannot be suppressed [see Fig. 17 (b)]; if μ̃ is set too large,
the image details will be lost [see Fig. 17(d)]. Second, in each
case, the optimal μ̃ for each test image is almost the same.
For instance, in the case of σ = 0.5, the optimal μ̃ is 2e-3,
and in the case of σ = 1.5, the optimal μ̃ is 1e-2. This is very
important for parameter optimization, since the optimal μ̃ in
each case can be determined by only one test image and then
applied to other test images. Third, it is obvious to see that μ̃

has a great relationship with σ. A larger σ corresponds to a
larger μ̃.

F. Algorithm Complexity and Computational Time

Comparing the u, w, x subproblems, it is obvious to con-
clude that the main complexity of the proposed algorithm
comes from the x subproblem, which requires the operations
of 3D transforms and inverse 3D transforms for each 3D
array. In our implementation, for image House with size
256×256, each iteration costs about 1.25 s on a computer
with Intel 3.25 GHz CPU. Take image inpainting application
for example. With degraded images as default initialization
described by Table VII, it takes about 130 s by 100 iterations
in the case of ratio = 80% and about 510 s by 400 iterations in
the case of ratio = 20%. All the computational time for image
House with various methods are given in Table VII.

TABLE VII

Computational Time Comparisons of

Different Methods (Unit: s)

Fig. 18. Verification of the convergence and robustness of the proposed
algorithm. From left to right: progression of the PSNR (dB) results achieved
by proposed algorithm with various initializations with respect to the iteration
number in the cases of image inpainting with ratio = 0.3 for images Lena
and Barbara.

To speed up our proposed algorithm, on one hand, we can
exploit the results of SKR instead of degraded images as
initialization, which decreases the number of iteration enor-
mously. The last column of Table VII shows the computational
time, which is about one seventh of the original time (denoted
by the column next to the last). On the other hand, ongoing
work addresses the parallelization, utilizing GPU hardware to
accelerate the proposed algorithm.

G. Algorithm Convergence and Robustness

From the discussions above, the computational time of
the proposed algorithm would be significantly reduced along
with a good initialization. In this section, we will verify the
convergence and robustness of the proposed algorithm.

Take the cases of image inpainting application when
ratio = 30% for two images Lena and Barbara as examples.
The restoration results generated by SALSA [15], FoE [36],
SKR [35], BPFA [38] are utilized as initialization for the
proposed algorithm, respectively. Fig. 18 plots the evolutions
of PSNR versus iteration numbers for test images with various
initializations. It is observed that with the growth of iteration
number, all the PSNR curves increase monotonically and
almost converge to the same point, which fully demonstrates
the convergence of the proposed algorithm. The algorithm con-
vergence also makes the termination of the proposed algorithm
easier, which just needs to reach the preset maximum iteration
number. Furthermore, it is obvious that the initialization results
with higher quality require fewer iteration numbers to be
convergent. The tests fully illustrate the robustness of our
proposed method; that it, our proposed method is able to
provide almost the same results when starting with various
initializations.
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V. Conclusion

In this paper, a novel algorithm for high-quality image
restoration using the joint statistical modeling in a space-
transform domain is proposed, which efficiently characterizes
the intrinsic properties of local smoothness and nonlocal self-
similarity of natural images from the perspective of statistics
at the same time. Experimental results on three applications:
image inpainting, image deblurring, and mixed Gaussian and
salt-and-pepper noise removal have shown that the proposed
algorithm achieves significant performance improvements over
the current state-of-the-art schemes and exhibits nice conver-
gence property. Future work includes the investigation of the
statistics for natural images at multiple scales and orientations
and the extensions on a variety of applications, such as image
deblurring with mixed Gaussian and impulse noise and video
restoration tasks.
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