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Abstract

Visual feature descriptors have been successfully deployed in a wide range of applications,
e.g. visual retrieval and analysis. To transmit these descriptors over bandwidth-limited
networks, a high efficiency feature coding technique is highly desired to maximize compres-
sion capability and achieve compact feature representations. In this paper, a hybrid visual
feature descriptor compression framework is presented and implemented in the encoding
and decoding loops of texture videos. In particular, the multiple-hypothesis prediction is
employed to effectively remove redundancies originated not only from spatial and temporal
similarities, but also from reconstructed video frames. As the ultimate purpose of the trans-
mitted descriptors is retrieval, the rate-accuracy optimization (RAO) technique is proposed
to obtain the best tradeoff between the rate and retrieval performance. Such paradigm
enables the conventional video stream to achieve high efficient retrieval/analysis with very
low bitrate consumption. Moreover, we also demonstrate that texture video compression
can also benefit from the additional information provided by the transmitted descriptors,
leading to significantly improvement of coding efficiency on top of the high efficiency video
coding (HEVC) standard. Extensive simulations have shown that the proposed method
can offer significant bitrate reduction in representing both the descriptors and texture video
frames, and meanwhile providing desirable retrieval performance.

1 Introduction

With the striking rises in the popularity of hand-held terminals and the exponen-
tial increase of images and videos, a variety of mobile visual search and analysis
applications emerge with the purpose of linking the virtual and physical worlds, such
as landmark recognition, scene recognition and product search. To this end, many
effective and robust local descriptors have been developed, e.g., scale-invariant fea-
ture transform (SIFT) [1], and speeded up robust features (SURF) [2]. Compression,
storage and transmission of such visual features have shown remarkable importance
in these applications. Therefore, compact, discriminant and efficient representation
techniques of the local feature descriptors are highly desired.

In the literature, prior works mainly focused on the elimination of the intrinsic data
dependencies of image descriptors, such as vector quantization [3] locality sensitive
hashing (LSH) and [4], Karhunen-Lòeve Transform (KLT) [5]. The recently devel-
oped compact descriptors for visual search (CDVS) standard [6] has also been proven
to achieve highly efficient retrieval performance with very low bitrate in representing
the image feature descriptors. Existing methods on image feature compression can
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be straightforwardly extended to video applications by coding the descriptors frame
by frame, or removing the temporal redundancy with inter-prediction [7,8]. Particu-
larly, Makar et al. [7] proposed a temporally coherent keypoint detector by forward
propagation. Baroffio’s work [8] resembled the video coding framework integrating
both Intra and Inter frame prediction to compress descriptors.

In another perspective, the visual features have been successfully deployed not only
for visual search but also for image (set) [9–11] and video compression [12]. In [9], the
feature descriptors were encoded together with a thumbnail image. With the guidance
of decoded descriptors, images can be effectively reconstructed by referencing to the
similar images in the cloud. In [10, 11], to improve the coding performance, images
in the same set that contain strong similarities were dependently coded by feature
matching. For video compression, [12] provided a feasible solution, where feature
matching techniques was utilized in “merge” and motion vector prediction.

In this work, a hybrid descriptor representation strategy is presented. The dis-
tinguished property of our approach is that the descriptors extracted from the video
sequence are well represented in the standard video coding framework using very few
bits. In this manner, the video coding information can be fully exploited in represent-
ing feature descriptors. Specifically, two technical merits, i.e. the multiple-hypothesis
prediction and rate-accuracy optimization (RAO), are highlighted in this scheme. Fi-
nally, we demonstrate the effectiveness of this paradigm for affine motion estimation
in the high-efficiency video coding (HEVC) framework. Experimental results demon-
strate that the proposed framework not only provides accurate visual retrieval, but
also leads to efficient video coding performance.

2 The Framework of Video Descriptor Representations

The architecture of the proposed scheme is illustrated in Fig. 1. Our work follows
the predictive video coding framework, where previously coded features are used to
predict the current one, and the residuals after prediction is further compressed by
transform, scalar quantization and entropy coding. Particularly, multiple-hypothesis
prediction with the devised Intra-frame, Inter-frame and Reconstructed-frame modes,
is developed to provide accurate prediction. To optimize this process, the rate-
accuracy optimization (RAO) strategy that employs the matching accuracy as the
distortion criterion is proposed in best mode selection. Subsequently, the prediction
residuals are converted into frequency domain representation with the discrete cosine
transform (DCT), followed by scalar quantization and entropy encoding to generate
the ultimate feature stream.

Without loss of generality, we demonstrate the framework by compressing the
SIFT descriptors, which is one of the most commonly used local features in practical
applications. However, it is not limited to SIFT and can be readily extended to
other local features. For clarification, some notations are defined as follows. Let
Si
j =

(
xi
j, y

i
j,ν

i
j

)
be the jth SIFT feature extracted from ith frame, where xi

j and
yij correspond to the location coordinates, and νi

j denote the 128-dimensional SIFT
descriptor vector. In particular, ν̃i

j and ν̂i
j indicate the reconstructed descriptor and

the descriptor extracted from reconstructed frames, respectively.
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Figure 1: Architecture of the proposed local feature descriptor representation scheme.

3 Technical highlights

3.1 Multiple-Hypothesis Prediction

Multiple-hypothesis prediction is one of the key techniques in video compression stan-
dards, such as the H.265/HEVC [13]. In this work, the multiple-hypothesis prediction
modes including Intra-frame, Inter-frame and Reconstructed-frame (Recon-frame)
predictions, are also employed for providing efficient prediction of video descriptors.

Intra-frame prediction targets at eliminating redundancies caused by non-local
similarities in natural images. In this work, the Intra-frame prediction is performed by
seeking the best reference descriptor ν̃intra that minimizes the following cost function,(

ν̃intra, k̃
)
= argmin

ν̃i
k,k∈[0,j)

∥∥νi
j − ν̃i

k

∥∥
1
+ λ ·R(j − k), (1)

where the first term
∥∥νi

j − ν̃i
k

∥∥
1
denotes the prediction error, measured by the l1

norm. The second term R(j − k) accounts for the coding rate of the index offset. λ
is the Lagrangian multiplier that controls the relative importance between errors and
rates. The calculation of the optimal λ will be discussed latter.

The objective of Inter-frame prediction is to remove temporal redundancies be-
tween adjacent frames. To efficiently obtain the best matched descriptor in previous
frames, we propose to reuse the motion vector (MV) in video coding, which is used
in motion compensation from previous frames. The MV is composed of the location
offsets (dx & dy) and associated reference frame index (di). For each being coded local
descriptor Si

j =
(
xi
j, y

i
j,ν

i
j

)
, the MV (dx, dy, di) can be derived from the correspond-

ing coding block. In this manner, the search origin is set as (xi
j + dx, y

i
j + dy) in the

(i− di)
th frame. The search set Ψ is restricted to KΨ nearest features. Consequently,

the optimal Inter-frame prediction descriptor ν̃inter is obtained as follows,(
ν̃inter, k̃

)
= argmin

ν̃
i−di
t ∈Ψ,t∈[0,KΨ)

∥∥νi
j − ν̃i−di

t

∥∥
1
+ λ ·R(t), (2)
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where t is the index of the best match in the search set Ψ. Such searching strategy
can achieve a good balance between accuracy and computational complexity.

The design philosophy of the third prediction mode is employing the reconstructed
frame to extract feature descriptors that can serve as predictors. However, the com-
putational complexity of performing the complete feature extraction in reconstructed
frame is considerable for decoder side. Therefore we propose to signal three side-
parameters, including the octave o, scale s and orientation θ, in order to skip the
keypoint detection process. Both o and s are integers and can be encoded by fixed-
length code. However, the orientation is a floating number ranging from −π to π,
which requires a quantizer for integer conversion. Specifically, let Nθ be the number
of orientations after quantization, the optimal Ñθ can be solved as follows,

Ñθ = argmin
Nθ

(D(Nθ) + λ ·R(Nθ)), (3)

where D(Nθ) and R(Nθ) represent the prediction error and rate respectively, both are
the functions of Nθ. Assume the quantized orientation is represented by fixed-length
code, then we have R(Nθ) = log2(Nθ). The relationship between prediction error and
Nθ can be fitted as a power function, i.e., D(Nθ) = aNθ

b + c, by training over large
amount of sequences. By incorporating R(Nθ) and D(Nθ) into Eqn. (3), the optimal

Ñθ can be calculated as Ñθ =
( −λ
ab ln 2

)1/b
.

After prediction, the residuals are further compressed by the DCT, scalar quan-
tized and entropy coding sequentially. Here the quantization parameter for descriptor
compression is denoted asQPF to distinguish the one in video coding, which is denoted
as QP . For entropy coder, we utilize the context-based adaptive binary arithmetic
coding (CABAC) [14] algorithm, which is widely adopted in the HEVC standard.

3.2 Rate-Accuracy Optimization

The rate-distortion optimization (RDO) strategy has been widely adopted in the
state-of-the-art video codecs [15–18], for minimizing distortions subject to a constraint
bitrate as expressed in Eqn. (1). Generally, the ultimate task of visual descriptors
is matching/retrieval. Conventionally applied distortion measures such as sum of
absolute difference (SAD) or mean squared error (MSE) cannot reflect the actual
degradation in matching performances. To address this issue, we propose a novel rate-
accuracy optimization (RAO) approach where the distortion is evaluated in terms of
the pair-wise matching accuracy,

min (JA) , where JA = DA + λAR, (4)

where λA indicates the new Lagrangian multiplier. The DA term quantifies the per-
formance degradation in object matching with the compressed descriptors. However,
it is difficult to directly obtain it in the feature encoding process, which inspires us
to estimate DA by the ranking differences in pair-wise matching. Specifically, let ν
and ν̃ denote the original and compressed descriptors, and F represents a collection
of descriptors as the matching target. For all descriptors di ∈ F, we get a ranking Ro
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Figure 2: The relationship between optimal QPF and the Lagrangian multipliers. The fitted
functions are plotted with 95% confidence bounds. (a) λ in RDO; (b) λA in RAO.

in terms of the distance from the original descriptor ν satisfying that,

rio < rjo
i �=j∈[1,K]

, s.t.
∥∥di − ν

∥∥
1
<

∥∥dj − ν
∥∥
1
, (5)

where rio, r
j
o ∈ Ro and K is the size of the descriptor collection F. The ranking Rr

in terms of the reconstructed descriptor ν̃ can be calculated in the similar way,

rir < rjr
i �=j∈[1,K]

, s.t.
∥∥di − ν̃

∥∥
1
<

∥∥dj − ν̃
∥∥
1
, (6)

where rir, r
j
r ∈ Rr. Then DA is defined as the differences between the two rankings,

which is quantified by the Spearman’s rank of correlation coefficient (SROCC),

DA � 1− SROCC(Ro,Rr) =
6
∑

(rio − rir)
2

K(K2 − 1)
. (7)

To derive the Lagrangian multiplier λ and λA, a training process is performed to
investigate its relationship with QPF [8,15]. Taking λA as instance, the QPF is varied
from 30 to 50 with a step of 2 and the descriptors are compressed using the proposed
methods with the corresponding QPF . As such, the optimal QPF can be obtained,
with which the cost function of Eqn. (4) is minimized. When λA ranges from 0 to
2, the corresponding optimal QPF can be derived in this way. The optimal QPF in
terms of λ and λA are plotted in Fig. 2(a) and Fig. 2(b), respectively. Both of them
are fitted as a logarithm function QPF (λ) = a× ln (λ+ b)+c. With this function, the
empirically optimal λ and λA can be calculated given QPF . It is also interesting to
note that the RAO curve converges more rapidly than the one from RDO, implying
that λA is less sensitive to the quantization levels.

To compare the two approaches, all the sequences in database are tested at five
different QPF values. The averaged results are illustrated in Fig. 3, revealing that
the proposed RAO method can effectively reduce the coding rate while maintaining
almost identical retrieval performance.
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Figure 3: Rate reduction by RAO comparing with the RDO approach, where the maximum
number of extracted features in each frame is limited by (a) 100 and (b) 200, respectively.

(a) chrisbrown (b) titanic (c) barrywhite (d) toystory

(e) janetjackson (f) privateryan (g) rascalflatts (h) wangbook

Figure 4: Examples of the test sequences in MAR database [19]. First row: sequences with
both camera and object motions; Second row: sequences with only camera motions.

4 Experimental Results

We evaluate the proposed framework of video descriptor compression in the pub-
lic Stanford streaming mobile augmented reality (MAR) dataset [19]. The dataset
consists of 23 different objects of interest. All the video sequences are captured by
mobile devices at 30 fps with VGA resolution (640 × 480), some of which are il-
lustrated in Fig. 4. The HEVC reference software HM-14.0 is used for compressing
the video frames with the main profile low-delay P (LDP) configuration. For fair
comparison, the pair-wise matching accuracy is adopted as the criterion for perfor-
mance evaluation. Specifically, the number of the matched descriptor via homograph
evaluation [20], i.e. Ninliers, is obtained for performance evaluation.

Firstly, we evaluate the performances by varying the value of QPF , which controls
the fidelity of descriptors. Fig. 5 gives the results, where the test video contains three
interest objects and they show up one after another. One can discern that the bits is
dramatically decreased with the increasing QPF while the matching performance (i.e.
Ninliers) is slightly influenced. For the case of QPF = 50, only 6.85 bits is required for
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Figure 5: Simulation results with the test sequence that contains three retrieval objects,
including polish, wangbook and monstersinc.
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Figure 6: Performance comparison with the Barrofio’s framework [8] under relative high
(QPF = 25) and low (QPF = 35) conditions.

each SIFT descriptor on average, reaching approximately 150:1 compression ratio.
Then we compare our work with Barrofio’s scheme [8], in which only Intra- and

Inter- predictions and the RDO in mode decision are employed. The experiments are
conducted on relatively high (QPF = 25) and low bitrate (QPF = 35) conditions,
as shown in Fig. 6(a) and 6(b), respectively. Both of the two sets consist of five
operating points that allows different number of extracted features. One can discern
that the proposed framework provides remarkable performance gains compared to the
Barrofio’s, especially for low bitrate cases.

5 Applications

5.1 Landmark Retrieval

In this subsection, we demonstrate the effectiveness of the proposed scheme in the
scenario of landmark retrieval. To evaluate the performance, the Rome landmark
database [21] is employed, where 10 video sequences of different landmarks are in-
volved as queries. Each query video corresponds to 9 database images on average
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(b) Precision at rank 5
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Figure 7: Landmark retrieval performances comparing with the Barrofio’s framework [8].
Horizontal axis: the number of compressed descriptors per frame. Vertical axes: (a) preci-
sion at rank 1, (b) precision at rank 5, and (c) mean average precision (mAP), respectively.

while the other 10K images serve as distracters.
For each sequence, the frames that contain the target object as well as the cor-

responding descriptors are compressed using the proposed approach. Retrieval is
performed at the receiver side by taking each frame as a query. The similarity cri-
terion between query and target is measured by the number of matched features.
The precision at rank k and mean average precision (mAP) are used to evaluate the
retrieval performance. The results are illustrated in Fig. 7, which confirm that the
proposed scheme outperforms the Barrofio’s approach. This further demonstrates
that the proposed scheme can be feasibly applied in practical applications.

5.2 Affine Motion Estimation

Local features have the invariance property for camera motion, illumination changing,
and viewpoint alternating, etc. In view of this, the compressed feature descriptors are
further employed to establish the affine motion model, which covers more complex
motions than the traditionally assumed translational moving. The advantages are
twofold. First, except the already compressed local features, no additional informa-
tion is required to transmit; Second, the local features can serve as a faithful source
that provides an accurate estimation of the affine motion parameters.

Specifically, the affine motion estimation strategy is implemented on H.265/HEVC
platform, where the affine prediction mode is performed for each prediction unit
(PU). With the compressed descriptors in video stream, the motion parameters can
be straightforwardly derived by feature matching and RANSAC verification. The
computed parameters are further refined by gradient descent method for minimizing
the differences between the current block and reference block [22]. The affine-merge
and affine-skip modes are further developed to allow current PU to derive affine
parameters from neighboring blocks for information sharing.

In the experiments, the QPF is set to be 48 and the maximum number of ex-
tracted features in each frame is limited by 100. Table 1 summarizes the BD-rate [23]
savings of Y component under LDP configuration. It can be observed that significant
bitrate savings can be achieved, even when the coding bits of descriptors are taken

414414414



into account. Moreover, the performance gain is highly dependent on the content
and video types. For example, the sequence that contains large motions or complex
textures will benefit more from the proposed affine motion estimation strategy.

Table 1: Y-component BD-rate reductions via affine motion prediction. Left sequences:
both camera and object motions. Right sequences: only camera motions. Two BD-rate
indices are applied, i.e. video rate only and total rate including both video and descriptor.

Moving obj. BD-rate (Y) Static obj. BD-rate (Y)
sequences video rate total rate sequences video rate total rate

chrisbrown -14.30% -12.34% janetjackson -4.50% -2.57%
titanic -12.95% -10.04% privateryan -6.76% -1.24%

barrywhite -7.65% -4.61% rascalflatts -17.82% -16.41%
toystory -11.47% -7.90% wangbook -20.69% -18.45%

6 Conclusion

We proposed a hybrid framework for compact representation of video feature descriptors.

The novelty of our approaches lies in efficiently removing the redundancies in video local

feature descriptors and optimizing the performance based on the retrieval performance.

The superior performance of the proposed scheme was demonstrated by incorporating it

into the video compression process, which offered significant rate reduction (approximately

150:1 compression ratio), while maintaining the state-of-the-art matching performance. Ap-

plications of such representation strategy for landmark retrieval and video compression were

further demonstrated to prove its effectiveness.
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