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Abstract—This paper proposes a new image denoising
algorithm based on adaptive signal modeling and regularization.
It improves the quality of images by regularizing each image
patch using bandwise distribution modeling in transform domain.
Instead of using a global model for all the patches in an
image, it employs content-dependent adaptive models to address
the non-stationarity of image signals and also the diversity
among different transform bands. The distribution model is
adaptively estimated for each patch individually. It varies from
one patch location to another and also varies for different bands.
In particular, we consider the estimated distribution to have
non-zero expectation. To estimate the expectation and variance
parameters for every band of a particular patch, we exploit the
nonlocal correlation in image to collect a set of highly similar
patches as the data samples to form the distribution. Irrelevant
patches are excluded so that such adaptively learned model
is more accurate than a global one. The image is ultimately
restored via bandwise adaptive soft-thresholding, based on a
Laplacian approximation of the distribution of similar-patch
group transform coefficients. Experimental results demonstrate
that the proposed scheme outperforms several state-of-the-art
denoising methods in both the objective and the perceptual
qualities.

Index  Terms—Image denoising, transform domain
modeling, bandwise modeling, adaptive regularization, adaptive
soft-thresholding, nonlocal similarity.

I. INTRODUCTION
ITH the development of imaging, computing and com-
munication technologies, there has been a rapid growth
in image and video applications in recent years. At the same
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time, there is an increasing demand for high image qualities.
However, the signal captured by camera is susceptible to noise
during the acquisition and transmission process. Therefore,
denoising remains to be an important problem in many image
processing tasks and has attracted much research interest in
the past decades [1]-[17].

In image denoising, we generally assume the original scene
x is degraded by some additive noise in the acquisition system,
as formulated by

y=x+n, (1

where n is the noise and y is the captured signal. The goal is
to restore the original signal x from its corrupted version y,
with the best quality we can possibly achieve.

Image denoising is a typical ill-posed inverse problem.
In order to obtain an estimate that is non-trivially better than y,
it is critical to exploit the prior knowledge we know about
the original image so that we can regularize the solution and
pick up a particular x that is more suitable than the others.
Many image prior models have been developed in literature
to characterize the statistical feature of natural images. Early
regularization approaches mainly consider the local correlation
among pixels, e.g. the spatial continuity and smoothness of
image signals. A well-known method of this kind is total
variation (TV) regularization [18], [19]. It formulates the
statistical fact that image gradient is close to zero at most
regions, and therefore it can be regarded as a kind of sparsity
in the image gradient domain.

Some other regularization approaches consider the
fact that most image signals can be sparsely represented
using decorrelation transforms, e.g. the discrete cosine
transform (DCT) or the discrete wavelet transform (DWT), so
that the signal can be well separated from the noise. Typical
schemes of this category include [20]-[25]. Yu and Sapiro
[20] divide image into small blocks and apply DCT transform
and a local thresholding on the coefficients. Donoho [21]
decomposes image into some wavelet subbands and then
applies soft-thresholding to the coefficients to reduce noise.
Portilla et al. [22] propose to model the wavelet coefficients
via mixture of Gaussians. Chang et al. [23] propose to employ
adaptive wavelet thresholding based on data-driven estimation
of the distribution parameters of each wavelet subband.
Besides the distribution of a single coefficient itself, some
works also consider inter-coefficient correlation. Sendur and
Selesnick [24] proposes several bivariate shrinkage functions
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to address inter-coefficient dependency. Luisier et al. [25]
introduce an inter-scale orthonormal wavelet thresholding
method.

Besides the methods that use fixed transform bases, some
more-advanced methods advocate to use transforms that are
adaptively learned from the image content [26]-[29]. For
example, Muresan and Parks [26] propose to utilize principal
component analysis (PCA) for signal decorrelation. Elad and
Aharon [27] use over-complete dictionary to represent image
patches and propose a K-SVD algorithm to learn optimal
dictionary based on a set of training patches so that the sparsity
of signal representation can be maximized.

Another well-known local denoising method is the bilateral
filtering [30]. It reduces noise by averaging a group of local
pixels according to the distances and the intensity similarity to
the current pixel. Non-local means (NLM) [31] can be seen as
a patch-based generalization of the bilateral filtering. It extends
the processing from a locality to the whole image, so as to
exploit the repetitive patterns in images. The potential of non-
local mean was further demonstrated by [32] and [33].

Since the invention of NLM, extensive research
efforts [34]-[52] have been devoted to exploit the non-
local similarity for image restoration. These non-local
methods have achieved superior performance, compared
with the previous local regularization approaches. Among
them, BM3D [34] is a well-recognized benchmark. It utilizes
non-local block matching and 3-D transform for signal
separation and uses coefficient thresholding to reduce the
noise. To be concrete, it stacks a set of similar patches of
a reference block into a three-dimensional (3D) data cubic,
on which a 3D transform is applied and a hard thresholding
(in the first stage) or a Wiener filtering (in the second stage) is
subsequently performed. Similar to BM3D, Zhang et al. [53]
proposed a two-stage denoising scheme (called LPG-PCA),
but adopted PCA instead of DCT for patch decorrelation. The
gathering of non-local similar patches via block matching is
also called structural clustering in some works.

Combining the ideas of structural clustering and dictionary
learning, K-LLD [35] advocates that similar patches should
share similar sub-dictionaries and utilizes the sub-dictionaries
for image modeling. LSSC [54] improves the performance of
K-SVD via nonlocal sparse model. CSR [55] attempts to unify
the local and nonlocal sparsity constraints. Dictionary learning
is large-scale and highly non-convex, and the coherence of
dictionaries results in instability and imprecise estimation in
the nonlinear sparse inverse problem [56]. To overcome such
issues, some works apply Gaussian mixture model (GMM)
to image patches since GMM leads to a combination of
linear estimations [57]-[59]. Chen et al. propose PCLR [60]
to jointly exploit external prior and internal prior of image
patches, using the GMMs learned from clean images to guide
patch clustering of the input noisy images.

In a recent line of research, some methods utilize low-rank
matrix approximation for image restoration. These methods
are generally based on similar structure grouping in nature.
Wang et al. [61] propose that a matrix consists of non-
local similar patches should be of low-rank and have
sparse singular values. Ji et al. [62] employ nuclear norm
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minimization (NNM) for video denoising. Gu et al. [40]
improve the NNM approach by regularizing the singular values
with different weights.

This paper proposes to denoise natural images via an
adaptive signal modeling and regularization framework. The
method regularizes every image patch using bandwise dis-
tribution modeling in transform domain. Instead of using a
global model, the scheme employs content adaptive models
that are estimated for each patch individually. In particular,
we consider the possibility of non-zero expectation for the
distribution of transform coefficient. To estimate the expec-
tation and variance for each coefficient, we exploit non-local
correlation and collect a set of similar patches as data samples
to form the distribution. We use PCA to determine the decorre-
lation transform, and treat different transform bands unequally
according to their statistical characteristics. To study the distri-
bution of data in non-local similar-patch group, we considered
generalized Gaussian distributions (GGD) and observed that
the coefficient distribution of non-local similar patches can
be approximated by Laplacian distribution. Bandwise adaptive
soft-thresholding (BAS) is ultimately conducted to regularize
the coefficient of each band, therefore we name the proposed
scheme as BAS denoising.

The remainder of this paper is organized as follows.
Section II briefly reviews both the local and nonlocal image
denoising methods. Section III explains the bandwise adaptive
modeling and regularization framework. Section IV describes
the details of the proposed BAS algorithm, including para-
meter estimation and numerical solution of the optimization
problem. Experimental results are reported in Section V and
Section VI concludes the paper.

II. REVIEW OF IMAGE DENOISING BACKGROUND

In Bayesian framework, optimum solution to the prob-
lem (1) is the maximum a posterior probability (MAP)
estimator

X = arg max Pr(x|y). (2)
X
According to the Bayes rule, this can be transformed to
- Pr(y|x) - Pr(x)
X — argmax —————
x Pr(y)
= argmax log Pr(y|x) + log Pr(x). 3)
X

The term logPr(y|x) indicates the likelihood of x, and
log Pr(x) reflects the prior knowledge we know about x.
In the case of additive white Gaussian noise (AWGN), the
MAP estimation problem can be generally formulated as

% = argmin [ly — x|3 + 2 ¥ (). )

Interpreted from the regularization point of view, ||y — X||% is
the data fidelity term indicating how an estimate x conforms
to the observation y, and W(x) is a function to regularize
the solution so that we may pick up a high quality estimate
with certain feature that we prefer. 1 is the regularization
parameter to control the trade-off between the data fidelity
and the regularity we desire.
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The topic of choosing a proper W(x) has been at the
foundation of image processing research since its early days
and there has been an evolution of choices for ¥ (x) through
the years [63]. It started with the very simple energy term
Y(x) = Ix||3 and then progressed to the smoothness term
¥ (x) = [|Lx]|5, with L being the Laplacian operator to extract
some kinds of derivatives or high-frequency components of
low energy. A further step was to adaptively demand this
low energy with ¥(x) = ||Lx||%4,, allowing the pixels at
edges to contain high energy in derivative, where W is a
diagonal matrix to assign different weights to different regions.
Another major step was the abandonment of the {;-norm
and adoption of robust statistics [63], generally formulated

as P(x) = p(Lx). One example is total variation prior,
Y(x) = ||Vx||;, where V is the gradient operator. Another
example is the wavelet sparsity prior ¥(x) = ||Wx||;, where

W is a wavelet transform.

Many recent image restoration methods are built upon the
observation that image signals can be sparsely represented in
some transform domains. They generally employ a regulariza-
tion function of the form

¥ (x) = [ ox]|}, (5)
where @ is a transform matrix that can decorrelate the signal.
Typical examples of the ||o||(;,—norm include ||.||%7 [I-1l; and |- [lo-

The £5-norm is essentially a Gaussian model for the transform
coefficients, in which case the problem (4) can be solved
by wiener filtering. The ¢;-norm corresponds to a Laplacian
model for the coefficients, in which case the problem (4) can
be solved by soft-thresholding. The solution to the £y-norm is
hard-thresholding.

In recent approaches, the modeling of image signals is usu-
ally conducted on the patch level instead of the whole image,
because the content in an image can be quite complicated, non-
stationary, and hard to describe as a whole using an explicit
and relatively simple formulation. For this reason, we usually
divide the image into a set of overlapping patches, and model
each image patch via a prior or a regularization function.
In this case, the W (x) can be expressed as

Y =D llDixilh (6)
l
where x; is a vectorized patch at location i, and ®; is the
transform matrix for the i™ patch x;, which may be adaptively
chosen for each patch.

III. REGULARIZATION VIA BANDWISE ADAPTIVE
MODELING

This paper introduces a new denoising method based on
bandwise adaptive modeling and regularization. The key ideas
of the proposed framework include: 1) The regularization
is performed based on distribution modeling in transform
domain. 2) Instead of using a global model that assumes the
same distribution for all transform coefficients, we employ
adaptive models that are estimated for each patch individually
and can vary for different locations and different transform
bands. 3) Both the expectation and the variance parameters
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of the distribution are adaptively estimated. In particular,
we consider the possibility of non-zero expectation. 4) To
model the distribution for a particular patch, we use a set
of non-locally searched similar patches as the data samples to
form the distribution. Dissimilar patches are excluded so that
the learned model is not affected by those irrelevant image
contents. 5) The adaptive regularization is ultimately imple-
mented by adaptive soft-thresholding. Overlapped patches are
aggregated and averaged to generate the final estimated image.
The ideas are explained in the following subsections.

A. Utilization of Decorrelation Transform

To pursue the best possible denoising performance, it is
crucial to exploit the correlation within the original image
signal. Taking advantage of the local correlation, a decor-
relation transforms is able to compact most of the signal
energy into only a few coefficients while making the other
coefficients almost empty, i.e. its value being close to zero.
On the contrary, the energy of a white noise will remain
equally distributed among its elements as long as the transform
is orthogonal. In this way, the image signal can be better
separated from the noise in the transform domain. Since the
signal in most coefficients are almost empty after the trans-
formation, it becomes feasible to remove the noise thoroughly
from these coefficients. Higher diversity in the signal energy
distribution will lead to better denoising performance, and
the energy diversity of the transform coefficients depends on
the strength of correlation within the signal. For decorrelation
transform, this paper adopts PCA, which is known for its virtue
of being signal adaptive and optimal for energy compaction.
The advantage of utilizing decorrelation transform has been
analyzed in [64].

B. Bandwise Adaptive Regularization

The most straightforward and simplest transform-domain
regularization approach is to minimize the total energy of all
coefficients, as expressed by

Y =D il (7

This method deals with all transform bands equally, enforcing
the same strength of regularization on the different coefficients
of each patch. In this paper, we call this method uniform
denoising. The regularization parameter in this formulation is
independent of the location i, meaning that all the patches in
the image share the same distribution model, we call it the
global model.

A more efficient way is to process each coefficient
unequally. This is because statistical characteristics of the
coefficients in different bands may vary dramatically. For
instance, the variance of coefficients in a low frequency band
is usually much more significant than that in a high frequency
band. Taking such statistical difference between coefficients
into consideration, we come up with band adaptive operation
that adaptively enforces an appropriate regularization strength
on different coefficients. The idea can be formulated by
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extending (7) with the variance information:

Yx) =D 1Py,
i
£ (0ix) Wi (@ixi), ®)
i
where the diagonal matrix W; = diag[wi,1, wi2, ..., ois]

consists of the parameters to control the regularization strength
for different coefficients of patch x;, and S = s x s is the size
of patch x;. The subscripts i of W; (or {w; ;}) imply that the
regularization parameter varies for different patches as well as
for different bands.

Interpreted in the Bayesian framework, the regularization
parameter matrix W; should be determined by the variance
(i.e. uncertainty) of each transform coefficient in x;. Following
the mathematical derivation in [65], the regularization parame-
ters in Eq. (4) and Eq. (8) should be

’ 1
A =20, Wij =55 9)
i)
where a,% is the variance of noise, whereas al.z. is the variance

of the j-th coefficient in the transformed p’atch ®;x;. Band
adaptive regularization in the transform domain is expected to
achieve significantly better performance than the band-uniform
regularization method. This will be verified by experiments in
the Section V-A.

C. Adaptive Expectation Modeling

The regularization approach formulated in Eq. (8) is actu-
ally assuming a zero-mean Gaussian distribution (with an
adaptively estimated variance) as the statistical model for the
transform coefficients of patches at all locations. From another
point of view, we are using zero as a prediction for the
coefficients. However, this model is not good enough. The
zero-mean assumption is indeed valid as a global model for
all the patches as a whole, since most regions of an image are
locally smooth. However, for an individual patch, this global
model can be misleading. For example, for regions with rich
textures or edges, the middle-frequency and high-frequency
coefficients may have significant values so that this zero-mean
distribution model is no longer suitable.

Therefore, in addition to exploiting the statistic of variance,
we further extend the regularization model (8) to incorporate
a more accurate statistic of coefficient expectation, as formu-
lated by

Y(x) = Z [ ®ixi — ||%;V,
i

2 (@ixi — p) Wi @ix; — ;) (10)

or equivalently

_ (®ijxi — #i,j)z
YO0 =33 (11)
i j i

>J

where w; = [, ti2,---, ,u,-,S]T, ui,j is the expectation of
the coefficient ®; ;x;, and @;; is the j-th row of ®;. The
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incorporation of the term u; would effectively reduce the mean
square prediction error of the coefficients and thus improve the
denoising performance.

The subscript i in Eq. (10) indicates that the regularization
is location adaptive. To be specific, the transform matrix
®; should be chosen adaptively based on the covariance
characteristics of the signal content at each patch location. The
matrix W; and the vector u; should be determined based on
the variance and expectation statistics at each patch location.
In this way, this framework addresses the non-stationarity of
image signals.

D. Distribution Modeling of Coefficients

In order to establish a content adaptive model for a particular
patch, say x;, a plausible way is to collect a set of patches from
the image that are similar to this patch and regard them as
the data sample of the unknown random vector x;. Irrelevant
patches should be excluded so as to guarantee the modeling
accuracy.

To find a proper distribution model for the coefficients in
a similar-patch group, we fit the empirical distribution by a
family of generalized Gaussian distribution (GGD), which is
commonly used in the field of image coding and processing.
The generalized Gaussian density has the following form:

Gu; B) = xp (—lul?), (12)

1 .
2 (1 + 3)
where I'(+) is the gamma function and f is the shape parameter
which controls the overall shape of the distribution. Particu-
larly, the G(u; ) is a Laplacian distribution when f = 1 and
is a Gaussian distribution when f = 2.

To study the actual distribution of image data in
similar-patch groups, we have extracted more than 6.5x10%
similar-patch groups from 9 natural images, with every group
consisting of 60 similar patches. We calculate the covariance
matrix of the patch vectors in each group and apply the corre-
sponding PCA transform to decorrelate each group. Suppose
X = [x1,X2,...,Xy] is the pixel matrix for a particular
similar-patch group, where x; is a reference patch and other
{xx} are similar patches; ® is the PCA transform matrix
produced by the covariance matrix of X. C = ®X is the
transform coefficient matrix of this similar-patch group, C%*)
(the k-th row of C) is the k-th coefficient band, ,u(k) and ¢®
are the mean value and standard deviation of that band. Then
we centralize and normalize the coefficient band C©) by

c® — (C(k> _ ﬂ(k>) Jo®).

After that, the centralized and variance-normalized coefficient
band C®) from all similar-patch groups are gathered together
as samples to form an overall distribution. This is shown in
Fig. 1. We can see that the centralized and variance-normalized
coefficients have very similar distribution for all bands.

To study this distribution, we have used generalized
Gaussian distribution to analyze it. To find a proper shape para-
meter f of GGD that can best fit the empirical distribution of
PCA transform coefficients, we employ Kullback-Leibler (KL)
divergence to measure the conformance, with § ranging from

13)
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Distribution of Coefficients in Band (6, 4)

0
Coffictient Value

The centralized and variance-normalized distribution of transform coefficient in similar-patch groups. The empirical distribution is approximated by

generalized Gaussian distribution (GGD). A 6 x 6 transform is used in this experiment and band (u, v) is the u-th and the v-th band in the vertical and the
horizontal directions, respectively.

Fig. 2. The Kullback-Leibler divergence between the empirical distribution
and its fitted GGD distribution with shape parameter f§ ranging from 0.5 to
2.5. The three curves correspond to three different bands. The optimal f is
within the interval [1, 1.5].

Algorithm 1 The BAS Algorithm

Data: the noisy image y

Result: the denoised image X

Initialization: X =y, y =y

while stop criteria unsatisfied do

Update y according to Eq. (30);

Update the noise variance o2;

fori=1 2 3,...K do
Calculate the distances of patches by Eq. (25);
Group similar patches of ¥; into Y;;
Calculate the covariance and PCA matrix for x;;
Apply PCA to the patches in Y;;
Calculate ;5 and o 5;
Perform the soft-thresholding operation Eq. (21);
Calculate X; by Eq. (23);

end

Aggregate the estimated patches to construct X by Eq. (24);

end

0.5 to 2.5 for every band, as displayed in Fig. 2. We can see
that the optimal § falls in the interval [1, 1.5] for all the bands.

We plot the GGD with the best matched f, the matched
Laplacian distribution (i.e. f = 1) as well as the matched
Gaussian distribution (i.e. f = 2) against the empirical distri-

1.2 . TABLE 1
o N ——Band (1, 1) PARAMETER SETTINGS
g —=—Band (4, 2)

1r I

% —> Band (6,4) Noise level [ P [ M s
A on < 20 0.12 80 7
5 0.8F 20 < o, <40 0.12 100 8
o 40 < o, < 80 0.12 135 9
ill’ 0.6- op > 80 0.12 150 10
™
2
= 0.4r
M

Fig. 3.

The test images used in the paper.

bution in Fig. 1. We can observe that Laplacian distribution can
be a good approximation of the empirical distribution. For the
convenience of numerical optimization, this paper adopt the
Laplacian approximation. The utilization of Laplacian prior
has also been suggested in previous works like [59], [61], and
[66]. In this way, the regularization function evolves to

Z | @ixi — wi HI,W,-
> s (@ — )],

Y(x) =

lI>

(14)

where W; = diag [a),',l, W2y, a),',g] and w; j = «/E/ai,j for
j=12,...,8.

IV. THE BAS DENOISING SCHEME
A. Overall Framework

The overall framework of the proposed denoising scheme is
grounded on the discussion in Section III. We adopt a patch-
based approach, where each patch is first denoised separately
and then the estimate of all patches are aggregated to form
the final estimate of the whole image. In the denoising stage,
each patch is adaptively regularized in transform domain.
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Fig. 4. PSNR comparison between the uniform denoising and the
band adaptive denoising. The standard deviation of noise, o, ranges
from 10 to 60.

The regularization is bandwise adaptive and varies from one
location to another.

We apply the content-adaptive PCA transform to each
patch, and utilize nonlocal similar patches in the image as
samples to model the distribution of current-patch coefficients.
The objective function of the proposed scheme is

X = argmin ly — x||% + A z ||(D,-x,- — K HLW’_ , (15
l
where x; is the vectorized image patch at location i and ®;
is the PCA transform for x;. The W; and u; are learned from
the group of similar patches associated with x;.

The regularization in (15) is applied to image patches, while
the data fidelity term is applied to the entire image, making
it difficult to solve the optimization problem (15) directly.
To tackle this problem, we consider the fact that the patches
are regularly extracted from the image so that the times that
a pixel appears in the overlapping patches are roughly equal.
Therefore, we have

ly = xII3 ~ 7 > llyi = xill3 (16)
i

where 7 is a constant. Thus Eq. (15) is converted to
% =argmin 3 Iy —xil3 +2- [0 il ) (D)
1

with A updated accordingly. Thus the whole problem can be
divided into a set of patch-level estimation sub-problems that
can be conquered separately.

B. Patch Based Solution

We separate the optimization problem (17) into patch-level
sub-problems

% = argmin|ly; - Xill3+ 4 | Pixi — i)y gy - (18)

This is essentially a £>-£1 minimization problem which can be
easily solved by very simple component-wise soft-thresholding
operations. To see this, let a; and B; be the transform domain
representation of x; and y; respectively, i.e. o; = @;x;,
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B; = ®;y;. Then based on the unitary property of ®;, we
have

lyi —xill3 = [®iyi — ©ixil3 = |B; —ei5. (19)
In this way the optimization problem (18) becomes
i, = argmin | B, — a2+ 2 e — ],
= argmin > (B — i) 40 - [ai — pigl. (20
J
This can be solved by a soft-thresholding operation [65]:
Gij = pi.; + soft (ﬁ,-,j — i ’IC‘;J) @)
with
soft(g, 7) £ sign(g) - max (|g| — 7, 0) . (22)
Then x; can be calculated by
% =0la;. (23)

After obtaining the estimate of all patches, we get the full
image x by putting the patches back to their original locations
and averaging the overlapped pixels. Suppose R; is the matrix
to extract x; from x at location i, i.e. X; = R;X, then the
least-square solution is [27]:

% = (Z,: RiTRi)_l > (RiTii) .

i

(24)
In this way, the estimate of full image is constructed.

C. Estimation of Model Parameters

In the proposed scheme, the last thing remains to solve is
the estimation of the distribution parameters u;; and o; ;
for each patch x;. To this end, we take advantage of the
nonlocal similarity within an image, using the nonlocal similar
patches as the data samples to form the distribution model of
a particular current patch x;. In addition, we need to learn the
signal-adaptive PCA transform ®;, which closely relates with
the covariance characteristic of the patch x;. The estimation
of these model parameters are conducted as follows.

For a particular current patch x; in x, we have y; from
the noisy input image y, and we search non-locally within y
for its similar patches. Theoretically, this searching should be
carried out on the clean image x so that we can find really-
matched patches, but in practice we can only do this on y or
a preliminarily denoised version of y instead, because the x is
unavailable. The dissimilarity between two patches x; and xj
is measured by the Euclidean distance:

di, k) =

L 2
lly: 2)'k”z . (25)
N

Then all the patches that has a distance lower than a certain
threshold 7 are considered to be “similar patches” of x; and
stacked into a group G;:

Gi = {yxld (i, k) < 7}, (26)
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TABLE II
PSNR COMPARISON OF BM3D [34], PID [67], WNNM [40], LINC [59], PLR [68], PCLR [60] AND THE PROPOSED BAS. (UNIT: dB)

on || 20 I 30
Schemes || BM3D | PID | WNNM | LINC | PLR | PCLR | BAS || BM3D | PID | WNNM | LINC | PLR | PCLR | BAS
Airplane || 32.71 | 32.83 | 32.98 |32.71 | 32.60 | 32.91 | 33.02 || 31.08 | 31.18 | 31.31 | 31.00 | 30.78 | 31.22 | 31.32
Barbara 31.24 | 30.96 | 31.66 | 31.68 | 31.40 | 31.03 | 31.61 || 29.02 | 28.97 | 29.53 | 29.42 | 29.23 | 28.79 | 29.50
C.man 30.41 | 30.65 | 30.68 | 30.32 | 30.05 | 30.72 | 30.86 || 28.65 |28.82 | 28.78 | 28.45| 28.14 | 28.77 | 29.00
Lena 31.51 | 31.51 | 31.77 | 31.76 | 31.46 | 31.69 | 31.88 || 29.45 | 29.53 | 29.72 | 29.69 | 29.41 | 29.66 | 29.82
Monarch || 30.42 | 30.68 | 31.19 | 30.70 | 30.11 | 31.13 | 31.19 || 28.37 | 28.68 | 28.96 | 28.57 | 28.09 | 28.92 | 29.07
R.R.Hood || 32.25 | 32.19 | 32.36 |32.19 | 32.09 | 32.07 | 32.50 || 30.73 | 30.69 | 30.89 | 30.60 | 30.45 | 30.53 | 31.00
Sailboats || 33.11 | 33.18 | 33.26 | 33.25|32.98 | 33.14 | 33.41 || 31.21 | 31.28 | 31.38 | 31.28 | 31.00 | 31.25 | 31.49
Window 3297 |33.13 | 33.35 |33.19 |32.70 | 33.15 | 33.52 || 30.81 | 31.03 | 31.21 | 30.97 | 30.46 | 30.98 | 31.39
Baboon 25.57 | 25.61 | 25.67 |25.59 | 25.70 | 25.72 | 25.75 || 23.77 | 23.87 | 23.96 | 23.86 | 23.99 | 23.90 | 23.99
Couple 30.69 | 30.64 | 30.75 | 30.60 | 30.36 | 30.68 | 30.90 || 28.80 | 28.74 | 28.92 | 28.74 | 28.42 | 28.84 | 29.01
F.boat 30.81 | 30.71 | 30.93 | 30.76 | 30.61 | 30.90 | 30.99 || 29.02 | 28.92 | 29.15 | 28.95]|28.74 | 29.15 | 29.18
House 33.78 | 33.61 | 34.06 | 33.85|33.42| 33.89 | 34.13 || 32.09 | 31.94 | 32.59 | 32.24 | 31.60 | 32.22 | 32.45
Peppers 31.30 | 31.47 | 31.57 | 3132|3097 | 31.57 | 31.78 || 29.30 | 29.53 | 29.52 | 29.34 | 29.02 | 29.58 | 29.77
straw 27.08 | 27.30 | 27.64 | 27.51 | 27.35 | 27.45 | 27.62 || 24.93 | 25.21 | 25.45 | 25.39 | 25.32 | 25.26 | 25.44
Average 30.99 | 31.03 | 31.28 | 31.10 | 30.84 | 31.15 | 31.37 || 29.09 | 29.17 | 29.38 | 29.18 | 28.90 | 29.22 | 29.46

on || 40 | 50
Schemes || BM3D | PID | WNNM | LINC | PLR | PCLR | BAS || BM3D | PID | WNNM | LINC | PLR | PCLR | BAS
Airplane || 29.79 | 30.02 | 30.13 |29.83 | 29.52 | 29.94 | 30.08 || 28.81 | 29.09 | 29.22 | 28.92 | 28.51 | 29.00 | 29.16
Barbara 27.14 | 27.54 | 27.75 | 27.75|27.63 | 27.03 | 27.96 || 26.24 | 26.41 | 26.72 | 26.43 | 26.36 | 25.97 | 26.81
C.man 2720 | 27.58 | 27.54 |27.24 | 26.85 | 27.57 | 27.75 || 26.12 | 26.60 | 26.44 | 26.31 | 25.83 | 26.58 | 26.73
Lena 27.87 | 28.17 | 28.29 | 28.25 | 27.97 | 28.24 | 28.43 || 26.94 | 27.10 | 27.33 | 27.14 | 26.81 | 27.18 | 27.41
Monarch 26.73 | 27.27 | 27.43 | 27.10 | 26.63 | 27.44 | 27.63 || 25.70 | 26.16 | 26.24 | 25.96 | 25.44 | 26.25 | 26.49
R.R.Hood || 29.62 | 29.71 | 29.80 |29.55 |29.35| 29.45 | 29.99 || 28.93 | 28.97 | 29.14 | 28.75 | 28.53 | 28.70 | 29.23
Sailboats || 29.81 |29.94 | 30.04 | 29.90 | 29.57 | 29.85 | 30.13 || 28.91 | 28.91 | 29.12 | 28.84 | 28.47 | 28.90 | 29.13
Window 2921 |29.51 | 29.65 |29.40 | 28.90 | 29.41 | 29.84 || 28.14 | 28.33 | 28.57 | 28.19 | 27.74 | 28.28 | 28.67
Baboon 2249 | 2276 | 2289 |22.76 | 22.91 | 22.79 | 22.87 || 21.83 | 21.93 | 22.15 | 21.91 | 22.09 | 22.05 | 22.11
Couple 2743 | 27.38 | 27.58 | 27.40 | 27.05 | 27.50 | 27.67 || 26.43 | 26.31 | 26.66 | 26.35 | 26.00 | 26.55 | 26.65
F.boat 27.63 | 27.64 | 27.83 |27.64 | 27.38 | 27.86 | 27.87 || 26.67 | 26.66 | 26.84 | 26.63 | 26.34 | 26.91 | 26.89
House 30.68 | 30.70 | 31.42 | 30.99 | 30.15 | 30.85 | 31.19 || 29.70 | 29.58 | 30.46 | 29.93 | 28.98 | 29.81 | 30.15
Peppers 27.70 | 28.09 | 28.09 |27.91 |27.57 | 28.16 | 28.32 || 26.66 | 26.93 | 26.99 | 26.76 | 26.41 | 27.02 | 27.16
straw 23.18 | 23.69 | 23.90 | 23.87 | 23.85 | 23.74 | 23.90 || 22.34 | 22.49 | 22.87 | 22.62 | 22.68 | 22.73 | 22.81
Average 27.61 | 27.86 | 28.02 | 27.83 | 27.52 | 27.85 | 28.12 || 26.67 | 26.82 | 27.05 | 26.77 | 26.44 | 26.85 | 27.10

and the corresponding locations are recorded in a set L;: where afj is the variance calculated based on y. Suppose
L; = (k|d(, k) < 7). 27) ,Blkj = ®; jyi, k € LL;, then afj is calculated by
. 1 2
Alternatively, we may choose to group a fixed number (,—iz.g_ Z (ﬁ?‘ D= j) , (29)
. . »J i :
(e.g. M) of most similar patches into G;. M kel

Once the set of similar patches is obtained, we can cal-
culate the covariance matrix of X; and then train the PCA
transform ®;. Suppose pl.l, piz, .. .plN are the vectorized rep-
resentation of all the similar patches in G;, and let matrix
P = [p},pl.z, .. .plN]. We calculate mean of the columns in
P; and subtract it from P;. The covariance matrix of x; is
estimated by P; PiT. The PCA transform matrix @; is then
obtained via eigen value decomposition (EVD).

Using the transform ®;, the patches in G; is converted into
PCA domain. The expectation x; ; is estimated by the median
value of the j-th coefficient band of group G;, because we
assumed a Laplacian approximation. The advantage of such
estimation is to exclude the influence of outliers. Furthermore,
since the noise and the image signal are independent, the
variance of coefficients in the j-th band is estimated by

(28)

=2 _ 2 2
i _max<ai,j —0,,,0),

where M is the number of similar patches in the group G;.

D. Extension to Iterative Regularization

Although the above described is already a complete denois-
ing algorithm, we further explore the idea of iterative denois-
ing as introduced in previous works [55], [69] to pursue better
results.

In every iteration, after obtaining an estimation X, we
calculate a new noisy observation

y =X+ p(y—%X) (30)

and use it as the noisy image to be further denoised in the next
iteration. To get a better understanding of such calculation, we
rewrite Eq. (30) as

Y=y+(0-pA (31
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TABLE III
SSIM COMPARISON OF BM3D [34], PID [67], WNNM [40], LINC [59], PLR [68], PCLR [60] AND THE PROPOSED BAS

on || 20 | 30
Schemes || BM3D | PID | WNNM | LINC | PLR | PCLR | BAS || BM3D| PID | WNNM | LINC | PLR | PCLR | BAS
Airplane || 0.8871 | 0.8885 | 0.8862 | 0.8845 | 0.8868 | 0.8893 | 0.8871 || 0.8591 | 0.8578 | 0.8551 | 0.8525 | 0.8502 | 0.8592 | 0.8531
Barbara || 0.9098 | 0.9084 | 0.9150 | 0.9174 | 0.9137 | 0.9049 | 0.9150 || 0.8605 | 0.8659 | 0.8732 | 0.8730 | 0.8688 | 0.8558 | 0.8743
C.man 0.8736 | 0.8813 | 0.8778 | 0.8759 | 0.8737 | 0.8805 | 0.8805 || 0.8358 | 0.8403 | 0.8411 | 0.8325 | 0.8279 | 0.8424 | 0.8433
Lena 0.8969 | 0.8997 | 0.9015 | 0.9041 | 0.8974 | 0.8966 | 0.9026 || 0.8558 | 0.8603 | 0.8633 | 0.8657 | 0.8547 | 0.8613 | 0.8627
Monarch || 0.9212 | 0.9245 | 0.9272 | 0.9252 | 0.9118 | 0.9265 | 0.9294 || 0.8849 | 0.8931 | 0.8951 | 0.8915 | 0.8761 | 0.8969 | 0.8984
R.R.Hood || 0.8275 | 0.8240 | 0.8289 | 0.8204 | 0.8262 | 0.8222 | 0.8317 || 0.7836 | 0.7788 | 0.7869 | 0.7728 | 0.7766 | 0.7787 | 0.7878
Sailboats || 0.8916 | 0.8946 | 0.8922 | 0.8951 | 0.8935 | 0.8895 | 0.8926 || 0.8584 | 0.8612 | 0.8594 | 0.8606 | 0.8580 | 0.8587 | 0.8576
Window || 0.9188 | 0.9228 | 0.9224 | 0.9237 | 0.9154 | 0.9194 | 0.9250 || 0.8826 | 0.8903 | 0.8909 | 0.8902 | 0.8766 | 0.8882 | 0.8929
Baboon || 0.7217 | 0.7416 | 0.7305 | 0.7377 | 0.7522 | 0.7382 | 0.7379 || 0.6209 | 0.6313 | 0.6387 | 0.6304 | 0.6493 | 0.6314 | 0.6394
Couple 0.8441 | 0.8380 | 0.8418 | 0.8358 | 0.8334 | 0.8377 | 0.8451 || 0.7902 | 0.7814 | 0.7928 | 0.7828 | 0.7733 | 0.7869 | 0.7921
Fboat || 0.8245 | 0.8194 | 0.8251 | 0.8188 | 0.8211 | 0.8233 | 0.8259 || 0.7766 | 0.7667 | 0.7775 | 0.7678 | 0.7665 | 0.7764 | 0.7752
House 0.8744 | 0.8736 | 0.8730 | 0.8687 | 0.8704 | 0.8730 | 0.8801 || 0.8492 | 0.8494 | 0.8527 | 0.8480 | 0.8422 | 0.8496 | 0.8518
Peppers || 0.8873 | 0.8910 | 0.8908 | 0.8884 | 0.8817 | 0.8906 | 0.8942 || 0.8516 | 0.8596 | 0.8560 | 0.8548 | 0.8460 | 0.8606 | 0.8620
straw 0.8973 | 0.9097 | 0.9106 | 0.9129 | 0.9114 | 0.9053 | 0.9095 || 0.8275 | 0.8491 | 0.8521 | 0.8551 | 0.8568 | 0.8425 | 0.8498
Average || 0.8697 | 0.8726 | 0.8731 | 0.8720 | 0.8706 | 0.8712 | 0.8755 || 0.8240 | 0.8275 | 0.8311 | 0.8270 | 0.8231 | 0.8278 | 0.8315
on || 40 | 50
Schemes || BM3D | PID | WNNM | LINC | PLR | PCLR | BAS | BM3D| PID | WNNM | LINC | PLR | PCLR | BAS
Airplane || 0.8376 | 0.8387 | 0.8283 | 0.8323 | 0.8247 | 0.8297 | 0.8246 || 0.8226 | 0.8236 | 0.8158 | 0.8163 | 0.8022 | 0.8109 | 0.8077
Barbara || 0.8024 | 0.8217 | 0.8204 | 0.8249 | 0.8209 | 0.7969 | 0.8301 || 0.7624 | 0.7760 | 0.7858 | 0.7736 | 0.7698 | 0.7537 | 0.7895
C.man || 0.8055 | 0.8142 | 0.8111 | 0.8056 | 0.7950 | 0.8176 | 0.8138 || 0.7836 | 0.7950 | 0.7911 | 0.7846 | 0.7683 | 0.7971 | 0.7927
Lena 0.8165 | 0.8269 | 0.8284 | 0.8321 | 0.8172 | 0.8286 | 0.8287 || 0.7893 | 0.7969 | 0.8060 | 0.8028 | 0.7815 | 0.8030 | 0.8013
Monarch || 0.8477 | 0.8629 | 0.8612 | 0.8597 | 0.8412 | 0.8657 | 0.8674 || 0.8197 | 0.8336 | 0.8354 | 0.8311 | 0.8061 | 0.8396 | 0.8401
R.R.Hood || 0.7490 | 0.7497 | 0.7521 | 0.7417 | 0.7411 | 0.7449 | 0.7547 || 0.7271 | 0.7292 | 0.7339 | 0.7198 | 0.7144 | 0.7242 | 0.7311
Sailboats || 0.8278 | 0.8320 | 0.8266 | 0.8301 | 0.8237 | 0.8253 | 0.8240 (| 0.8093 | 0.8074 | 0.8097 | 0.8040 | 0.7923 | 0.8039 | 0.7994
Window || 0.8475 | 0.8603 | 0.8586 | 0.8592 | 0.8409 | 0.8555 | 0.8612 || 0.8235 | 0.8331 | 0.8382 | 0.8311 | 0.8083 | 0.8293 | 0.8354
Baboon || 0.5377 | 0.5438 | 0.5645 | 0.5472 | 0.5690 | 0.5538 | 0.5621 || 0.4701 | 0.4682 | 0.5083 | 0.4728 | 0.4983 | 0.5000 | 0.5039
Couple 0.7424 | 0.7322 | 0.7471 | 0.7362 | 0.7228 | 0.7405 | 0.7460 || 0.7043 | 0.6885 | 0.7144 | 0.6948 | 0.6779 | 0.7053 | 0.7056
F.boat 0.7329 | 0.7236 | 0.7350 | 0.7253 | 0.7200 | 0.7356 | 0.7315 || 0.6991 | 0.6891 | 0.7029 | 0.6900 | 0.6808 | 0.7043 | 0.6971
House 0.8270 | 0.8323 | 0.8352 | 0.8320 | 0.8188 | 0.8327 | 0.8312 || 0.8149 | 0.8151 | 0.8248 | 0.8170 | 0.7958 | 0.8190 | 0.8161
Peppers || 0.8158 | 0.8310 | 0.8238 | 0.8246 | 0.8114 | 0.8316 | 0.8321 || 0.7891 | 0.8033 | 0.7996 | 0.7961 | 0.7793 | 0.8058 | 0.8045
straw 0.7436 | 0.7768 | 0.7848 | 0.7854 | 0.7929 | 0.7730 | 0.7821 || 0.6812 | 0.6964 | 0.7310 | 0.7035 | 0.7214 | 0.7194 | 0.7205
Average || 0.7809 | 0.7890 | 0.7912 | 0.7883 | 0.7814 | 0.7880 | 0.7921 || 0.7497 | 0.7540 | 0.7641 | 0.7527 | 0.7426 | 0.7582 | 0.7603
TABLE IV thresholding, working on the patches extracted from the

COMPUTATIONAL TIME COMPARISON OF BM3D [34], PID [67], WNNM
[40], LINC [59], PLR [68], PCLR [60] AND THE PROPOSED BAS.
UNIT: MINUTE(S)

Image size | BM3D | PID | WNNM [ LINC [ PLR | PCLR | BAS

256256 0.06 | 10.77 17.74 18.18 | 0.14 | 596 | 11.34
512x512 0.18 | 40.79 | 71.58 | 66.45 | 0.73 | 38.76 | 45.06
768x512 0.25 | 56.01 | 109.66 | 95.26 | 0.76 | 53.83 | 67.85

with A = X —y. A is the change that is supposed to be
applied on y by the basic denoising scheme of one step. Using
Eq. (31), we only apply a small fraction of the change. The
motivation is to break the “optimal” estimation into multiple
stages of weaker denoising. Another way to interpret (30) is
to reformulate it as

y =1 —p)x+py, (32)

i.e. the new “noisy” image y’ is a combination of the old
noisy image y and the estimate X. That means the estimate is
partially used.

In the subsequent iterations, we repeat the procedures of
transform coefficient modeling and bandwise adaptive soft-

updated noisy image y’, and produce the next version of
estimate X by Eq. (24). It is worth noting the value of noise
variance a,% also changes in each iteration. Such technique has
appeared in previous works [55], [69].

Now we have described the complete denoising scheme, as
summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS

This section evaluates the effectiveness of the proposed
method. We divide this section into two parts. In the first
part, we verify the conjecture that the band-adaptive denoising
performs better than the so-called band-uniform denoising
scheme. In the second part, we compare the proposed approach
with several benchmark denoising algorithms.

We evaluate the performance of different denoising schemes
via peak signal-to-noise ratio (PSNR) and structural similar-
ity (SSIM) [70]. Given a ground truth image x, the PSNR of
a denoised image X is defined by

2552

PSNR(X, i) =10- loglo .
Ix —xI3

(33)



XIONG et al.: IMAGE DENOISING VIA BANDWISE ADAPTIVE MODELING AND REGULARIZATION EXPLOITING NONLOCAL SIMILARITY

5801

Fig. 5. Restoration results for Red Riding Hood. From left to right: (a) Noisy image (6, = 20); (b) BM3D (PSNR = 32.25dB); (c) PID (PSNR = 32.19dB);
(d) WNNM (PSNR = 32.36dB); (e) LINC (PSNR = 32.19dB); (f) PLR (PSNR = 32.09dB); (g) PCLR (PSNR = 32.07dB); (h) The proposed BAS

(PSNR = 32.50dB). Please enlarge the figure for better comparison.

Given an image patch u from x and the corresponding patch v
from X, the local SSIM index is calculated by:

Cuups + C1) 2oy + C2)
(12 + u2+Ci) (62 + 02+ C2)’

where u, and o, are the mean intensity and standard deviation
of u respectively, g, represents the cross correlation between
u and v, and C1, C; are two constants used to avoid instability.
The SSIM value of the whole image is obtained by averaging
the local SSIM indices using a sliding window [70].

SSIM(u, v) = (34)

A. Band Adaptive Denoising vs. Band Uniform Denoising

We have explained why band adaptive denoising performs
better in Section III. This section experimentally demonstrates
the advantage of band adaptive denoising over band-uniform
denoising.

In order to make fair comparison for the denoising results of
Eq. (7) and Eq. (8), which respectively represent band adaptive
approach and uniform denoising, we let both techniques follow
exactly the same patch-based denoising procedure except for
the calculation and utilization of regularization parameters,
which are decided by variance of coefficients as indicated
in Eq. (9). For band adaptive denoising, after the patches
are transformed, coefficients in different bands are separately
gathered and used as data samples to estimate the variance
values of .. For band-uniform denoising, all the coefficients, no
matter which band they belong to, are gathered to calculate the
variance 2. As a result, in band-adaptive denoising, the noisy
coefficients in different bands are adaptively filtered according

to their individual variance; while in band-uniform denoising,
all the coefficients are processed with the same filter.

We have tested the denoising performance on Lena and
Peppers, with the standard deviation of noise ¢, ranging from
10 to 60, as shown in Fig. 4. Others images produce similar
results. It is evident that band adaptive regularization leads to
better denoising performance.

B. Performance Comparison With the State-of-the-Art
Methods

This section compares the proposed approach with six
recent denoising schemes, including BM3D [34], PID [67],
WNNM [40], LINC [59], PLR [68], and PCLR [60]. The
proposed algorithm is implemented in MATLAB, and the six
anchor schemes are tested using the executables or source
codes provided by the authors of these methods. In our
implementation, we have used the PID [67] method to produce
a preliminary result, which is used for block matching and
covariance matrix estimation in the first iteration of our
algorithm. Parameters used in the proposed algorithm are
empirically chosen according to the noise levels. The setting
of three parameters are shown in Table I, including the patch
size s, the number M of similar patches in a group, and the
iterative regularization parameter p used in (30). The denoising
schemes are tested on 14 typical natural images with a wide
range of noise levels. The test images are displayed in Fig 3.

As shown in Table II, the proposed scheme outperforms the
other six methods in most cases in terms of PSNR. The average
PSNR of the proposed method is about 0.4dB higher than
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Fig. 6. Restoration results for Barbara. From left to right: (a) Noisy image (o, = 40); (b) BM3D (PSNR = 27.14dB); (c) PID (PSNR = 27.54dB); (d) WNNM
(PSNR = 27.75dB); (e) LINC (PSNR = 27.75dB); (f) PLR (PSNR = 27.63dB); (g) PCLR (PSNR = 27.03dB); (h) The proposed BAS (PSNR = 27.96dB).

Fig. 7. Restoration results for Window. From left to right: (a) Noisy image (o, = 50); (b) BM3D (PSNR = 28.14dB); (c) PID (PSNR = 28.33dB); (d) WNNM
(PSNR = 28.57dB); (e) LINC (PSNR = 28.19dB); (f) PLR (PSNR = 27.74dB); (g) PCLR (PSNR = 28.28dB); (h) The proposed BAS (PSNR = 28.67dB).

Please enlarge the figure for better comparison.

BM3D, 0.3dB higher than PID, 0.1dB higher than WNNM,
0.3dB higher than LINC, 0.6dB higher than PLR, and 0.25dB
higher than PCLR. The SSIM result of BAS is also highly
competitive against the other anchors, as displayed in Table III.
Besides, we show the computational time of each method in
Table IV. Note that the BM3D is implemented in C while

the others are implemented in MATLAB. In practice, the
computation efficiency may be further improved via imple-
mentation optimization or parallel computing techniques.
Since the processed images are to be viewed by human
eyes, the goal is to achieve better perceptual quality.
Fig. 5, 6, 7 and 8 demonstrate the improvement of the
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Fig. 8.

Restoration results for Monarch. From left to right: (a) Noisy image (o, = 30); (b) BM3D (PSNR = 28.37dB); (c) PID (PSNR = 28.68dB);

(d) WNNM (PSNR = 28.96dB); (e) LINC (PSNR = 28.57dB); (f) PLR (PSNR = 28.09dB); (g) PCLR (PSNR = 28.92dB); (h) The proposed BAS

(PSNR = 29.07dB). Please enlarge the figure for better comparison.

proposed scheme in visual quality at different noise levels.
It is evident that the images produced by the proposed BAS
scheme exhibit less noise and artifacts (e.g. in the face area in
Fig. 5), and better preserve the details and textures (e.g. the
textures on the left side of Barbara in Fig. 6, and the pattern
on the bottom of Window in Fig. 7). Compared with the six
anchor schemes, the output of the BAS scheme is visually
more pleasant.

VI. CONCLUSIONS

This paper develops an new image denoising scheme based
on bandwise adaptive regularization. The proposed method
adaptively models the actual transform-domain distribution of
every patch, using a set of nonlocal similar patches as data
samples to form the empirical distribution. Since irrelevant
patches are excluded, the proposed model is more accurate
than a globally learned model. The regularization is imple-
mented via bandwise adaptive soft-thresholding, based on a
Laplacian approximation of the adaptively learned coefficient
distribution. Experimental results demonstrate that the pro-
posed denoising scheme outperforms several state-of-the-art
methods in terms of both objective quality and perceptual
quality.

In this paper, we studied the empirical distribution of the
transform coefficients in a similar-patch group, and used a
generalized Gaussian distribution (GGD) model to analyze
it. We note that the actual distribution is not generalized
Gaussian exactly. The reason why we adopt a Laplacian model
in the paper is that it is a good approximation with elegant
formulation so that the optimization problem can be easily
solved. In fact, the actual coefficient distribution is more like
a combination of Laplacian (in the middle) and Gaussian (on
the two sides). This aspect may be investigated in future works.
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