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a b s t r a c t

In this paper, we propose a novel learning-based image restoration scheme for

compressed images by suppressing compression artifacts and recovering high fre-

quency (HF) components based upon the priors learnt from a training set of natural

images. The JPEG compression process is simulated by a degradation model, repre-

sented by the signal attenuation and the Gaussian noise addition process. Based on the

degradation model, the input image is locally filtered to remove Gaussian noise.

Subsequently, the learning-based restoration algorithm reproduces the HF component

to handle the attenuation process. Specifically, a Markov-chain based mapping strategy

is employed to generate the HF primitives based on the learnt codebook. Finally, a

quantization constraint algorithm regularizes the reconstructed image coefficients

within a reasonable range, to prevent possible over-smoothing and thus ameliorate

the image quality. Experimental results have demonstrated that the proposed scheme

can reproduce higher quality images in terms of both objective and subjective quality.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In order to accommodate with the bandwidth of the
Internet and the storage space, image and video compres-
sion schemes are highly demanded. In most image and
video coding standards, block-based discrete cosine trans-
form (BDCT) coding has prevailed, which aims at reducing
the inter-pixel statistical redundancy. However, for the
sake of achieving higher compression ratio, BDCT together
with the coarse quantization gives rise to the discontinu-
ity of intensities between adjacent blocks which is named
as blocking artifacts. Truncating the high frequency (HF)
BDCT coefficients would also result in ringing artifacts
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around the edges. Consequently, the subjective quality of
the compressed image is unpleasant and image restora-
tion for ameliorating the image quality is necessary.

The compression artifacts can be suppressed in trans-
form domain (e.g. DCT [1–3], overcomplete wavelet repre-
sentation (OWR) [4–6]), spatial domain [7–10,12–14], or the
combinations [15–21]. For DCT domain deblocking, direct
manipulations on DCT coefficients can alleviate the artifacts
before the images are fully decoded, which results in lower
computations. In particular, Zeng [1] models the blocking
artifact as 2-D step edge and suppresses it by applying the
zero-masking scheme. A signal adaptive filtering scheme for
reducing the blocking artifacts is proposed in Ref. [2], which
considers the masking effect of HVS, adaptive weighting
mechanism and quantization constraint. Liu and Bovik [3]
propose to change a step edge into a slop one through
modifying certain DCT coefficients to alleviate the block-
ing artifacts. Moreover, OWR is employed for deblocking. In
Ref. [4], blocking artifacts are removed in wavelet domain
by exploiting cross-scale correlations among wavelet coeffi-
cients and protecting the edge information. Liew et al. [5]
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propose to suppress blocking and ringing artifacts by
analyzing statistical characteristic of block discontinuities
as well as behavior of wavelet coefficients across scales for
different image features.

Deblocking in spatial domain is proposed by applying
spatial-adaptive filtration [7–10]. Apostolopoulos and
Jayant [7] propose filtering pixel-by-pixel along the block
boundaries to identify and reduce both the blocking and
mosquito noise. Kim et al. [8] select two separate filtering
modes to process the pixel around the block boundary
according to its behavior. In Ref. [9], 1-D horizontal and
vertical low-pass filtering for suppressing blocking arti-
facts and 2-D signal-adaptive filtering for removing ring-
ing artifacts are utilized for postprocessing low bit-rate
compressed videos. Based on the non-local denoising
algorithms [11], postfiltering in shifted widows (PSW) of
image blocks is proposed in Refs. [12–14], which sup-
presses blocking artifacts by averaging coefficients of
neighboring image blocks in the shifted windows.

On the other hand, many researches regarded image
compression as a distortion process and put forward
iterative algorithms for restoring the original images.
The projection onto convex sets (POCS) algorithms
[15,20,22–25] represent the prior information of the
original as convex sets, and they converge in the inter-
section of all the sets through iterating projections. The
most commonly used convex sets are quantization con-
straint sets (QCS) and smoothness constraint sets (SCS). In
Ref. [15], the deblocking algorithm presents the iterative
procedure based on QCS and SCS to restore the coded
image to its original artifact-free form. Yang et al.
[20,23,24] propose to recover images by incorporating
local statistical properties, human perceptual character-
istics, and new family of directional SCS based on lineally
modeling of image edge structure. Park and Kim [25]
narrow down QCS to form the narrow quantization
constraint sets (NQCS) for restoring images of higher
quality.

However, all of the above traditional postprocessing or
restoration algorithms may not recover the HF components
[28], which have been discarded during the quantization
step of compression. Recently, learning-based image
restoration schemes have been proposed to reconstruct a
high-quality image by introducing the learned HF informa-
tion from pre-designed codebooks into the degraded low-
quality image. Sheppard et al. [26] introduce nonlinear
interpolative vector quantization (NLIVQ) into image
restoration. It performs nonlinear restoration of diffrac-
tion-limited images concurrently with quantization. Based
on NLIVQ, a blind image restoration method [27] is pro-
posed by estimating the HF information of a given blurred
image from its low-frequency (LF) information based on the
designed multiple codebooks. Liaw et al. [28] propose to
restore the image based on the classified vector quantiza-
tion (CVQ), which employs a codebook to transform the
compressed image into a set of indices, and decodes the
indices to enhance the compressed image based upon
another corresponding codebook. Actually, all of these
existed learning-based image restoration schemes share
the same assumption as image super-resolution [29,30],
which is that the degraded image patch can be employed as
the index of the proper HF image patch in the learnt
codebook for restoring the image. However, it is an ill-posed
problem. Since the number of the degraded image patches is
always of smaller amount, whereas the number of HF image
patches is of larger amount, one degraded image patch will
be mapped to more than one HF patches. This situation
often occurs in the quantization step of image/video com-
pression. Many original image/video patches will be quan-
tized into the same degraded patches. Consequently, one
degraded image patch can be mapped to many original
patches.

Several approaches have been proposed to solve
this problem for image super-resolution and restoration.
Freeman et al. [29,30] model the LF and HF patches as a
Markov network and employ Bayesian belief propagation
to find a local maximum of the posterior probability. Liu
et al. [31] propose a two-step statistical modeling
approach that integrates both a global parametric model
and a local non-parametric one. Based on the locally
linear embedding (LLE) [32], image super-resolution
[34,35] and image restoration for compressed images
[38] has been proposed by considering the local geometry
during the mapping.

Inspired by image hallucination [33–38], a novel learn-
ing-based image restoration scheme is proposed. JPEG com-
pression process is simulated by a degradation model, which
comprises signal attenuation and additive Gaussian noise
model. First, local filtering process is analyzed and employed
to remove the additive Gaussian noise. Second, in order to
strengthen the mapping relationship while synthesizing the
HF component, a differential image enhancement algorithm
is proposed to enforce consistency between primitives to
meet the contour smoothness constraint. Third, a Markov-
chain model is employed to handle the attenuation process
of the degradation model by modeling the relationship
between the existent HF primitives in the learnt codebook
and the enhanced ones. Finally the quantization constraint
algorithm regularizes the DCT coefficients of the restored
image within a reasonable range.

The rest of the paper is organized as follows. In Section
2, we firstly introduce the degradation model for simulat-
ing JPEG compression process. Subsequently, based on the
degradation model, learning-based image restoration
scheme is proposed. Detailed information of learning
and synthesizing strategy is introduced in Section 3.
Experimental results are demonstrated in Section 4.
Finally, Section 5 concludes the paper.

2. Proposed image restoration framework

2.1. Image degradation model

As many high-quality images could generate the same
degraded images, restoring the original image from the
single degraded image is an under-constrained problem.
However, if the degradation process could be modeled
accurately, image restoration will appear much easier.

Geman et al. [16] proposed a simple yet efficient image
degradation model, which have been widely used for image
restoration [16,17] and image quality evaluation [18,19].
The degradation model could be viewed as a simple signal
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attenuation and additive Gaussian noise model, which is
defined by

D¼ G�RþN: ð1Þ

Considering the degradation model at pixel or block
level, it could be regarded as the processes on the
corresponding random fields (RFs), which could be
expressed as

D¼ fGi�RiþNi : i 2 Ig, ð2Þ

where R¼ fRi,i 2 Ig denotes RF of the original signal,
D¼ fDi,i 2 Ig denotes RF of the corresponding degraded
signal, G¼ fGi,i 2 Ig is a deterministic scalar attenuation
field, N¼ fNi,i 2 Ig is a stationary additive zero-mean
Gaussian noise RF, and I denotes the set of spatial indices
(such as pixel/block position) for the corresponding RFs.
Additionally, it is assumed that N is white and indepen-
dent of R. It is also constrained that the filed G varies
slowly [18,19], which means that the neighboring
attenuation RF appears nearly the same. From Ref. [19],
it has been demonstrated that most of the distortion types
appeared in real world systems could be roughly
described locally by the combination of the attenuation
and additive Gaussian noise RFs.

Based on the image degradation model, we would like
to restore the artifact-free image from the degraded
image, especially the JPEG coded image, which means to
generate R from D by removing the additive noise N and
reversing the attenuation G.

2.2. Proposed image restoration scheme

The framework of the proposed image restoration
scheme is illustrated in Fig. 1, which consists of three
steps. The left is the proposed LOcal Filtering (LOF), which
is firstly employed to remove the additive Gaussian noise.
The proposed Learning-based Synthesis (LS) is followed
to capture the property of the attenuation, and try to
recover the lost HF component. The right is Quantization
Constraint (QC), which is utilized to model the error
introduced by quantization of JPEG compression and
II. PROPOSED IMAGE RES
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Fig. 1. The proposed image r
constrain the restored image within the range of quanti-
zation errors.

In LOF step, each pixel in the degraded image is
generated by Eq. (2). For one pixel Dm (m indicates the
pixel location), its neighboring pixels could be denoted as:
fDn,n 2 OðmÞg, O(m) is the spatial neighborhood of Dm.
Therefore, we can generate the pixel value by removing
the additive Gaussian noise by

DLOF
m ¼

X
n2OðmÞ

$ðm,nÞDn, ð3Þ

where the family of weights f$ðm,nÞ,n 2 OðmÞg depends
on the similarity between the neighborhoods of Dm and
Dn, and satisfy the usual conditions 0r$ðm,nÞr1 andP

n2OðmÞ$ðm,nÞ ¼ 1. The Euclidean distance is employed to
depict the neighborhood similarity to obtain the weights,
which are defined by

$ðm,nÞ ¼ ðe�ð99uðmÞ�uðnÞ99
2
2Þ=hÞ=ZðmÞ, ð4Þ

where u(m) is the values of the Dm neighboring pixels, h is
a parameter that acts as a degree of filtering, which is
simply set as 600. Z(m) is the normalizing constant

ZðmÞ ¼
X

n2OðmÞ
e�ð99uðmÞ�uðnÞ99

2
2Þ=h: ð5Þ

Each degraded image pixel Dn in Eq. (3) can be
expressed by the degradation model according to Eq. (2)

DLOF
m ¼

X
n2OðmÞ

$ðm,nÞfGn�RnþNng: ð6Þ

Although the attenuation intensity varies over differ-
ent image regions, it has been assumed that the neighbor-
ing attenuation RF appears very similar [18,19], which we
can regard the attenuation intensities fGn,n 2 OðmÞg are of
the same value, denoted as G0n. Therefore, DLOF

m can be
expressed as

DLOF
m ¼

X
n2OðmÞ

$ðm,nÞfG0n�RnþNng: ð7Þ

In Ref. [11], it has been claimed that under stationary
assumptions, for a pixel i, the LOF algorithm can converge
to the conditional expectation of i once observed a
neighborhood of i. In this case, the stationary conditions
TORATION FRAMWORK
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Quantization
Costraint IR
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estoration framework.
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amount to say that as the size of the image grows we can
find many similar blocks for all the details of the image.
And according to the general framework in Ref. [51], in
the case that an additive white noise model is assumed, it
can be shown that the conditional expectation is the
function of DðOðiÞ\figÞ that minimizes the mean square
error with the image. DðOðiÞ\figÞ denote the pixel values in
the neighborhood of pixel i.

Let V, U, N be random fields such that V¼UþN, where
N is a signal independent white noise. Then the following
statements are held:
a)
 E½VðiÞ9DðOðiÞ\figÞ ¼ vx� ¼ E½UðiÞ9DðOðiÞ\figÞ ¼ vx�
b)
 The expected random variable E½VðiÞ9DðOðiÞ\figÞ� is the
function of DðOðiÞ\figÞ that minimizes the mean square
error: min

f
E½UðiÞ�f ðDðOðiÞ\figÞÞ�2.

Detailed information about the hypothesis of the
theorem and its proof can be found in Refs. [51,11].
In our LOF step, the JPEG coded image Dn can be viewed
as V. Nn has been assumed as independent and identically
distributed (i.i.d) random variables. Then the original
image Rn after the attenuation filter G0n is regarded as U.
With the two aforementioned statements, the proposed
LOF is regarded as the approximated function of DðOðiÞ\figÞ
to minimize the restoration error. Then after the LOF
process, the additive Gaussian noise can be removed. DLOF

m

in Eq. (7) is simplified as

DLOF
m ¼ G0n�

X
n2OðmÞ

$ðm,nÞRn: ð8Þ

Then the filtered pixels Dm
LOF

compose an image ILOF

with Gaussian noise removed. However, n could not be set
infinity. The first reason is that the image resolution is
finite and the attenuation intensity varies greatly in
different local regions. The most important reason is that
blurring artifacts will be introduced to ILOF. Therefore, in
this paper, the pixels in the 5�5 window centered at
pixel m are employed for LOF. By subtracting ILOF from IJ, a
differential image ID is obtained, which comprises most of
the additive Gaussian noise. Although LOF is constrained
within a local 5�5 window, the weighting process on Rn

will still lead to HF information loss. Therefore, there
exists some detailed HF components in ID, which will be
helpful for reconstructing HF components in LS step.

For Eq. (8), the LOF on the original image R could be
viewed as a convolution process, which could be simpli-
fied as

DLOF
m ¼ G0n�fG$ðm,nÞ�Rng: ð9Þ

where G$ðm,nÞ is a convolution filter to approximate LOF.
As to the whole image, Eq. (9) could be derived as

ILOF ¼ G0�fG$�Rg ¼ ~G�R, ð10Þ

where ~G could be viewed as the combination of the two
attenuation filters G0 and G$.

In LS step, the aim is to restore the original image R,
given the attenuated image ILOF as well as ID. During the
image hallucination process, the downsampled image
could be obtained by blurring and decimation [36], which
could also be modeled by Eq. (10). Inspired by recent
progresses on image hallucination [33–38], the learning-
based synthesis is proposed to restore the HF information
truncated during quantization of JPEG compression, with
the assistance of learnt codebook and the differential
image ID. In order to strengthen the mapping relationship
between the degraded image patches and the original
ones, an enhanced differential image IE¼ IDþ IP is obtained
by blending one predictive HF component IP with ID to
preserve the local consistency of the contours. Then a
Markov-chain based inference is employed to replace the
image patch in IE with the existent image patch in the
learnt codebook. The synthesized image Irs can be inferred
by maximizing posterior probability pr(H9IE), with pr(H)
as the priors

Irs ¼ argmaxðprðH9IEÞÞ: ð11Þ

Detailed information about how to learn the priors
pr(H) and how to synthesize the image Irs will be pre-
sented in Section. 3.

By blending Irs with ILOF, a high-quality image Ih is
generated. However, similar with learning-based image
hallucination, irregularities will be introduced to Ih [38],
because of the weak mapping relationship between low-
dimensional degraded primitive and the high-dimen-
sional original one. In order to overcome the problem,
during the QC step, the property of quantization error is
described and DCT coefficients of the constructed image
are regularized within a reasonable range.

During JPEG compression process, coefficients are
quantized after BDCT, which introduces the blocking
and ringing artifacts. Let BR denotes DCT coefficients of
the original 8�8 image block, BD is the corresponding
coefficients after quantization, Q is the quantization
matrix, and Brs is the restored coefficients after LS step.
Therefore, the quantization error QEB of the block could be
obtained by

QEBði,jÞ ¼ BRði,jÞ�BDði,jÞ

¼ BRði,jÞ�round
BRði,jÞ

Q ði,jÞ

� �
� Q ði,jÞ, ð12Þ

where (i,j) denotes the DCT subband, and round operator
converts its parameter into an integer. Eq. (12) implies
that the true value of the original image block lies in the
well-defined range, namely the quantization constraint
set (QCS) SQC(i,j) [23–25]

SQCði,jÞ ¼ fB̂Rði,jÞ : B̂Rði,jÞ�BDði,jÞ
��� ���rQ ði,jÞ=2g: ð13Þ

The upper and lower bounds of SQC(i,j) for the com-
pressed image block can be expressed as

B̂
up

R ði,jÞ ¼ BDði,jÞþxUQ ði,jÞ=2

B̂
low

R ði,jÞ ¼ BDði,jÞ�xUQ ði,jÞ=2

8<
: ð14Þ

Normally, x is set equal to 1. However, as the narrow
property of the QCS has been researched in Ref. [25],
x¼0.6 is recommended by Refs. [12,13] for improving the
performance.

In order to remove the irregularities introduced and
restore the true original image block, the restored block Brs

in Irs after LS should satisfy: Brsði,jÞ 2 SQCði,jÞ. Then the
resulting restored image IR could be generated by projecting
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Brs onto the pre-defined QCS according to

Brsði,jÞ ¼

B̂
up

R ði,jÞ, if Brsði,jÞ4 B̂
up

R ði,jÞ

B̂
low

R ði,jÞ, if Brsði,jÞo B̂
low

R ði,jÞ

Brsði,jÞ, otherwise

:

8>><
>>:

ð15Þ

3. Learning and synthesizing strategy

What we learned as the priors for image restoration
are the image primitives (image patches lying on image
contours [33]). They are the elements which describe the
intensity variations in images and their local geometries
in Marr’s vision [39]. The flowchart of learning and
synthesizing strategy is illustrated in Fig. 2. In learning
phase, the primitives extracted from the HF component of
the image are normalized and trained to build the code-
book. In the synthesizing phase, the degraded image
primitives are firstly enhanced to strengthen the mapping
relationship. Then, S best matched primitives are
retrieved from the codebook for each enhanced one.
Finally, the Markov-chain based inference is employed
to synthesize the target HF components.

3.1. Learning phase

From Mumford’s pattern theory [40], the extracted
image primitive P can be derived from the latent pattern L

with several global geometric and photometric transfor-
mations, i.e. scaling, orientation, translation and illumina-
tion, which can be formulated as

P¼ cDtDsDoLþd, ð16Þ

where c denotes the contrast, d is the bias for illumina-
tion, and Ds, Do and Dt are scaling, orientation and
translation transformation matrices, respectively. And
the latent pattern L consists of the local transformation
information of the primitive, such as the curvature and
the intensity variations.
Therefore, with the assumption that the relationship
between primitives is independent of contrast and bias
transformation, the dimensionality of primitives could be
reduced. And as each primitive extracted lies on the contour,
the translation matrix Dt can be approximated by the
identity matrix. With the independent ingredients removed,
the extracted primitive P can be normalized as P 0

P0 ¼
1

c
D�1

t ðP�dÞ ¼DsDoL: ð17Þ

Therefore, what we need to learn is the latent pattern L

with scaling and orientation transformations. Compared
with non-primitive image patches, the normalization
eliminates the effects of illumination and translation,
which greatly reduces the dimensionality. Consequently,
the normalized primitives are easier for clustering [41]
and more representative for mapping. Furthermore, the
enhanced LBG (ELBG) algorithm [42] is proposed for
clustering the normalized primitives to discard the noisy
or unimportant primitive patterns. Some examples of the
clustered primitives are illustrated in Fig. 3.

In order to evaluate the representative ability of the
normalized primitives, The Receiver Operating Character-
istics (ROC) curve [33] is used to demonstrate the rela-
tionship between hit rate and match error. Given a match
error e, the hit rate hr denotes the percentage of the test
data whose match errors are less than e. The match error
Er(s) of the given sample s is defined by the metric ErðsÞ ¼

:s�s0:2

2=:s:2

2 between s and the nearest sample s0 in the
trained codebook. Therefore, the higher the hit rate, the
better the training codebook.
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Table 1
ARMS error comparison of typical images for enhancement.

Image Number of image

patches

Enhancement

ARMS

Non-

enhancing

ARMS

LENA

(0.307 bpp)

17,254 7.19 7.58

BOAT

(0.460 bpp)

22,716 8.52 8.95

PEPPERS

(0.309 bpp)

14,764 7.24 7.70

BABOON

(0.342 bpp)

38,783 8.77 9.09

BARBARA

(0.444 bpp)

27,907 10.36 11.01
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The ROC curves of primitives and non-primitives,
which are selected randomly from the image, are pre-
sented in Fig. 4 based upon the mapping accuracy of 104

test data over the trained codebook with size of 105. It can
be observed that primitives lead to higher hit rate than
non-primitives under the same match error. Therefore,
the primitives are lower-dimensional and more represen-
tative than non-primitives, which make the mapping of
primitives more reasonable and reliable.

3.2. Synthesizing phase

The mapping relationship between the degraded pri-
mitive and the original ones has been weakened, due to
the compression. Therefore, the differential image ID is
firstly enhanced to obtain the HF enhanced component in
Fig. 2. Then after normalization, the Markov-chain model
is utilized for synthesizing the target HF component based
on the retrieved S best matched primitives.

3.2.1. Differential image enhancement

Fig. 5 illustrates the proposed enhancement algorithm
to enforce the local consistency along the contours of the
differential image ID. Similar to Refs. [43,45], control
function [44] is employed to depict the local activities of
the image ILOF and generate the predictive HF component
IP. Consequently, the enhanced HF image IE is obtained by

IE ¼ IDþ IP ¼ IDþCIO, ð18Þ

where C is the control map which is obtained by perform-
ing the control function Cf on ILOF, IO is the HF component
of ILOF. Control function Cf is defined according to

Cf ðx,yÞ ¼
LAðx,yÞþa

kðLAðx,yÞÞ2þ l

a¼
C0LA0

2ð1�C0Þ
, l¼

LA0

2ð1�C0Þ
, k¼

1

2LA0
, ð19Þ

where (x,y) indicates the pixel position of the image,
LA(x,y) is the local activity descriptor, with LA0 and C0

denoting the two parameters to adjust the control
function. With careful definitions of the two parameters,
only some selected detailed information which relates
to the contour regions is enhanced, whereas the other
regions remain unaffected. By combining IP together
with ID, enhanced HF image IE is constructed with local
compatibilities between primitives enforced, which
greatly resembles the HF information of the original
image. As to the local activity LA(x,y), the magnitude
of Sobel operator is employed to reflect the intensity
variance over local regions.

Furthermore, average root mean square (ARMS) error
is employed to demonstrate the efficiency of the proposed
enhancement scheme. Given an underlying image primi-
tive in enhanced HF image IE or non-enhanced HF image
ID, ARMS error between the given primitive and the best
matched one which is retrieved from the codebook is
calculated. Some typical images coded by JPEG with
different compression ratios (in terms of bpp) are utilized
to show the ARMS errors. As depicted in Table 1, with the
proposed enhancement, HF image primitives of lower
average ARMS errors in the same codebook could be
retrieved, in comparison with the ones inferred from the
non-enhancing HF image. Therefore, the proposed
enhancement method could help reconstruct more faith-
ful HF component.

3.2.2. Markov-chain based inference

Based on the enhanced HF component, the Markov-chain
based algorithm is employed to synthesize the target HF
component, which considers the mapping accuracy g from
the enhanced image primitive to the existent one in the
learnt codebook, and the neighbor compatibility j between
the neighboring primitives in the synthesized image Irs.

Based upon the learnt codebook, Irs could be inferred
by a linear sum of a number of N learned primitives
{Pn, n¼1,y,N}. The underlying enhanced differential
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primitives in IE are {Pn
E
, n¼1,y,N}. In order to maintain

the consistency along the contour, primitives are first
grouped into M contours Ec¼{Ecm, m¼1,y,M}. The joint
posterior pr(H9IE) in Eq. (11) can be approximated by the
results of each contour

prðH9IEÞ ¼ prðEc9IEÞ �
Y
m

prðECm9IEÞ: ð20Þ

The synthesis process of each contour Ecm can be
viewed as a first-order Markov-chain model

prðEcm9IEÞp
Ynm

i

gðPi,P
E
i Þ
Ynm�1

i

jðPi,Piþ1Þ, ð21Þ

where Pi
E

is the ith enhanced differential primitive on the
contour Ecm, Pi is the primitive to be inferred from the
learnt codebook and nm is the total number of primitives
on Ecm.

Given an enhanced differential primitive Pi
E
, normal-

ization is first performed to obtain the normalized version
P0 i

E
and its contrast information ci

E
. Then S best match

normalized primitives {P0i(s), s¼1,y,S} together with
their contrast information {ci(s), s¼1,y,S} are retrieved
from the codebook. The scaling factors ci

E
/ci(s) compensate

the contrast differences between P0 i
E

and P0 i(s). Therefore,
the S best match primitives with contrast correction are
{Pi(S)¼(ci

E
/ci(s)) � P0i(s), s¼1,y,S}. With the S best matched

primitives, the Markov-chain based inference will recon-
struct the expected HF component.

In the proposed scheme, the mapping accuracy func-
tion g is defined by the Euclidean distance, whereas
neighbor compatibility function j is defined by

jðPi,Piþ1Þ ¼ expð�dðPi,Piþ1Þ=s
2
dÞ, ð22Þ

where d(Pi,Piþ1) is the Sum Squared Difference (SSD) of
the overlapped region between Pi and Piþ1, sd is a tuning
variance. The optimal MAP solution of Eq. (22) can be
obtained by performing the Belief Propagation (BP) [46]
algorithm. The fact that BP converged to a solution of the
Markov-chain very quickly led us to believe that simpler
operations may suffice. Freeman et al. [30] proposed a
one-pass algorithm, in which only the compatibilities for
neighboring primitives are computed, which are already
selected, typically from above and to the left, in raster-
scan order processing. Therefore, with the properly pre-
structure the trained codebook, we only need to search
the nearest neighbor codeword to the given input primi-
tives in the learned codebook.

4. Experimental results

The proposed scheme is tested on various images
compressed by the JPEG standard [48]. Several typical
images, namely, LENA, PEPPERS, BARBARA and BABOON
(512�512) are utilized for testing. The images can be
categorized into two groups. LENA and PEPPERS, which
are smooth images, mostly concentrate on LF DCT coeffi-
cients, whereas BARBARA and BABOON contain more
detailed information such as texture, which results in
high percentage of HF DCT coefficients.

The learnt codebook is built by extracting the primi-
tives from a training set of 24 Kodak images [47]. As we



Fig. 6. Subjective quality comparison on LENA at 0.244 bpp. Top row from left to right: part of original LENA; JPEG-coded LENA (30.41 dB); Xiong et al.’s

result (31.05 dB); Yang et al.’s result (31.02 dB). Bottom row from left to right: Chen et al.’s result (31.16 dB); Zhai et al.’s result (31.25 dB); Liew et al.

result (31.44 dB); the proposed result (31.66 dB).
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only pay attention to the luminance component of the
image, which is more sensitive to human vision system
than the chromatic components, the primitives are
extracted from the luminance component of the natural
image. Each primitive is represented by a 7�7 image
patch with the central pixel on the contour. And after the
ELBG clustering process, the total number of the learnt
primitives in the codebook is about 60,000.

The objective quality of the restoration image is
evaluated by the Peak Signal-to-Noise Ratio (PSNR).
The higher the PSNR is, the smaller the difference
between the restored image and the original image. We
have compared the proposed scheme with several other
well known image deblocking methods. Chen et al.’s
algorithm [2] is based on the idea of modifying DCT
coefficients to reduce blocking artifacts. Xiong et al.’s [4]
and Liew et al.’s [5] methods are based on OWE and
modification on wavelet coefficients. Yang et al. [24]
utilize POCS algorithm (with 5 iterations in the test). Zhai
et al. [12] employs PSW for deblocking. The PSNR perfor-
mance comparison is depicted in Table 2. The highest two
PSNR results for each column are emphasized by italiciz-
ing the values. We can observe that the proposed scheme
performs the best among all the tabulated methods.
Greater improvements can be obtained for both smooth
and texture images. For LENA compressed at bpp¼0.244,
and BARBARA coded at bpp¼0.537, about 1.2 dB gain is
obtained compared with the JPEG coded images.
Parts of the restored LENA image (0.244 bpp)
obtained from different methods are illustrated in Fig. 6.
The deblocked result of Xiong et al.’s is a little blurry,
while the blocking artifacts could still be perceived in the
results of Yang et al.’s, Xiong et al.’s and Zhai et al.’s
results. For the deblocked results from Chen et al.’s and
Liew et al.’s method, although the blocking artifacts have
been alleviated, the ringing artifacts still exist, especially
the region of LENA’s hat brims. This is the visual results of
the Gibbs effect, which is caused by the loss of HF
information. However in our restored image, the HF
information truncated during quantization is recovered
with the learnt codebook. Therefore, the visual ringing
artifacts are removed and the blocking artifacts are
alleviated. Furthermore, Fig. 7 has demonstrated the
efficiencies of the different steps in the proposed method.
The first column is JPEG coded image, the second column
is the process image after LOF, the third column is the
processed image after LS, while the last column is the
processed image after QC regularization. It can be
observed that each process can help to improve the image
quality in terms of PSNR. Meanwhile the proposed
scheme can generate images with high visual qualities.
For the QC regularization step, images with different
contents present different improvements of image quali-
ties. For example, QC regularization improved PSNR by
0.6 dB for the BARBARA at 0.537 bpp, while only 0.05 and
0.2 dB improvement is obtained for the PEPPERS at



Fig. 7. Restored images by the proposed scheme. Top row: BARBARA at 0.537 bpp; middle row: PEPPERS at 0.248 bpp; bottom row: BOAT at 0.291 bpp.

The first column is the JPEG coded image; the second column is the processed image after LOF; the third column is the processed image after LS; and the

last column is the resulting restored image after QC regularization.
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0.248 bpp and the BOAT at 0.291 bpp, respectively. The
reason may be that BARBARA contains more HF compo-
nents compared with BOAT and PEPPERS. And the QC
regularization can help to reconstruct more faithful HF
components after the projection.

Furthermore, we have provided the restoration results
of the images/frames downloaded from the Internet,
which are real webcam quality images. The experimental
results are demonstrated in Fig. 8. For the first two rows,
the images are coded by JPEG, which are processed by the
LOF, the LS, and the QC step. For the following four rows,
the video frames of the video clips are downloaded from
the YOUTUBE [52]. As we cannot easily obtain the
information about the video codec and quantization
parameter, only the first two steps, namely the LOF and
LS, are employed for restoring the video frames. Since the
original images of the real webcam quality ones are not
available, the corresponding PSNR values cannot be
provided. However, it can be observed that the visual
quality can be significantly improved, even with only the
first two steps of the proposed method. In the future, the
authors will focus on the integration of the QC step into
the video restoration scheme. Detailed information about
the experimental results can be referred to Fig. 8.

There are several aspects for further investigation.
Recently, classified vector quantization (CVQ) has been
introduced into learning-based image restoration [28].
With proposed CVQ, the codebooks are divided into
sub-classes, according to the illumination, type and orien-
tation. Better performance can be expected when the pre-
learned codebooks are carefully designed and structured
considering the local activities, i.e. edge directions. Moreover,
recent progresses in sparse representation of images have
been achieved, particularly in image super-resolution [49].
If we approach the restoration problem from the perspective
of compressed sensing [50], sparse representations can be



Fig. 8. Restored images/frames by the proposed scheme. Left column is the coded image/frame; right column is the restored image/frame by the

proposed method. The top two rows are the images downloaded from the Internet; the bottom four rows are the frames of the video clips, which are

downloaded from the YOUTUBE [52].
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correctly recovered from the degraded signal under mild
conditions. Therefore, higher-quality restored images could
be generated because of the precisely description of the
discarded HF component.

5. Conclusions

In this paper, a novel learning-based image restoration
method for compressed images is proposed. Image primi-
tives are extracted to construct the codebook for restora-
tion, due to its high representative and significant
sensitivity to HVS. Based upon our approach, blocking
artifacts are alleviated and ringing artifacts are removed,
meanwhile the HF components are recovered. The experi-
mental results have demonstrated that our proposed
scheme outperforms the other deblocking methods in
terms of subjective and objective quality. With further
incorporating with CVQ or new sparse representation
methods, greater performances are expected, which can
be utilized to suppress the compression artifacts in still
images and video sequences.
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