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Minimizing Reconstruction Bias Hashing via Joint
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Abstract— Hashing, a widely studied solution to the approx-
imate nearest neighbor search, aims to map data points in
the high-dimensional Euclidean space to the low-dimensional
Hamming space while preserving the similarity between original
points. As directly learning binary codes can be NP-hard due
to discrete constraints, a two-stage scheme, namely, “projection
and quantization”, has already become a standard paradigm for
learning similarity-preserving hash codes. However, most existing
hashing methods typically separate these two stages and thus fail
to investigate complementary effects of both stages. In this paper,
we systematically study the relationship between “projection
and quantization”, and propose a novel minimal reconstruction
bias hashing (MRH) method to learn compact binary codes,
in which the projection learning and quantization optimizing
are jointly performed. By introducing a lower bound analysis,
we design an effective ternary search algorithm to solve the
corresponding optimization problem. Furthermore, we conduct
some insightful discussions on the proposed MRH approach,
including the theoretical proof, and computational complexity.
Distinct from previous works, the MRH can adaptively adjust the
projection dimensionality to balance the information loss between
the projection and quantization. The proposed framework not
only provides a unique perspective to view traditional hashing
methods, but also evokes some other researches, e.g., guiding
the design of the loss functions in deep networks. Extensive
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experiment results have shown that the proposed MRH signif-
icantly outperforms a variety of state-of-the-art methods over
eight widely used benchmarks.

Index Terms— Bias hashing, quantization error, joint optimiza-
tion, image retrieval.

I. INTRODUCTION

APPROXIMATE nearest neighbor (ANN) search is a
fundamental problem that appears in many applica-

tions in computer vision, machine learning and information
retrieval [1]–[3]. Its goal is to find some approximate nearest
neighbors for a query from a collection of data points by
encoding high-dimensional feature vectors to short binary
codes while preserving similarities between original data.
Using similarity preserving binary codes to represent original
data points can significantly reduce the memory storage cost
and boost similarity distance computing speed, hence is of
particular interest for the fast ANN search [4], especially when
dealing with large scale databases [5]–[7].

A common binary coding approach, often called hashing,
aims at learning similarity preserving hash functions for
mapping data points to a low-dimensional Hamming space.
As discussed in [4], directly learning the optimal binary codes
is equivalent to a graph partitioning problem which is typically
NP-hard. Therefore, existing hashing methods often adopt
a two-stage strategy: projection1 and quantization [8], [9].
Concretely, the original data points x ∈ R

d is first projected to
a low-dimensional space by discarding the discrete constraints,
given by

y = [ f1(x), f2(x), . . . , fk(x)] ∈ R
k,

where { fi (·)}k
i=1 are projection functions. Then each element

fi (x) in y is quantized into a single bit or multiple bits to
generate binary codes [10]. Most existing hashing methods
attempt to rectify a single stage and can be naturally classified
to either projection-centered or quantization-centered hashing.
Unfortunately, such an approximate solution often makes the
resulting hash functions less effective due to the accumulated
quantization error. In this paper, we concentrate on how to
elegantly connect the projection with the quantization, and
to maximize the positive complementary effects of two stages
instead of heavily relying on only one of them.

1The term “projection” is not restricted to linear mapping, non-linear
dimension reduction techniques are also applicable.
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Many research efforts have been devoted to the
projection stage, aiming at learning powerful projections to
maintain the similarity structure of the original data. Locality
Sensitive Hashing (LSH) [11] and its kernel version, i.e.,
Kernelized Locality Sensitive Hashing (KLSH) [12] adopt
random projections followed by simple thresholding to map
data points close in the Euclidean space to similar codes.
Although random projection based hashing methods are data
independent and flexible, long hash codes are often required
to meet the desired performance, which increases computation
and memory consumption [13]. To build up a more effective
projection which better captures the underlying geometry of
specific datasets, there has been increasing research efforts
devoted to data-dependent hashing methods. By fine-tuning
the projection mapping over the training data, data-dependent
methods typically outperform random projection based
methods with shorter codes [14]. Typical methods include
Spectral Hashing [4], Isotropic Hashing [9], and Harmonious
Hashing [15] etc. These methods preserve the similarity
between data points by keeping the points that are close in
the original Euclidean space as neighbors in the Hamming
space. It has also been shown that harnessing bilinear
projection [16]–[19], sparse projection [20], nonlinear
manifold embedding [14], [21]–[24], and deep nonlinear
projection [25], [26] will help produce neighborhood-
preserving binary codes.

Moreover, recent works have reported the significant impact
of quantization on hashing performance [8], [27]–[30]. Sin-
gle bit quantization in most hashing methods incurs lots of
quantization errors, which could seriously degrade the ANN
search performance [9]. Actually, it is unreasonable to suppose
that the projection dimensionality must be equal to the length
of targe codes [4]. If the data inherently lies in a low subspace,
we could further reduce the dimensionality to remove the
redundancy in data points, making the projection values more
discriminative. When we project the data point into lower
dimensions (e.g., � k

c �), we would have more bits (c bits)
to encode each projection value to reduce the quantization
error.

Fig.1 shows the results by using different projection dimen-
sionality to learn a binary code with 256 bits. In this scenario,
we employ c bits to encode each projection value and thus the
projection dimensionality will be � 256

c �. The blue line indicates
the retrieval performance of the projection values (prior to
quantization), and the red dashed line indicates the perfor-
mance after the quantization. When we project data points
to 256-D (c = 1), the performance dramatically degrades on
the quantization stage. A better way is to project data points
into 64-D and then use 4 bits to quantize each projection
value. Although the 64-D feature is not as discriminative as
the 256-D feature, but c = 4 bits coding could effectively
reduce the performance drops in single bit coding, and the
final results of c = 4 is better than others.

The aforementioned observation demonstrates that both the
projection and quantization stage can significantly contribute
to the quality of the learned hash codes in terms of ANN
search performance. However, the non-individual or joint
behaviors, as well as complementary effects of the projection

Fig. 1. The retrieval performance of mean Average Precision (mAP) on
different projection dimensionality to learn 256 bits binary code. The blue
line indicates the performance when data points are projected into subspace
� k

c � (without quantization). The dotted red line indicates the performance after
quantization stage with c bits coding for each projection value. Experiments
are evaluated on 1 million Fisher vector (FV) [31] feature extracted from
ImageNet1M [32].

and quantization stages has not been systematically analyzed
in the literatures, especially in the context where the pairwise
similarity of samples should be preserved. It is thus desirable
that the joint optimization of both stages should be established
for ANN search. That is, given a set of data points and
the target code length k, if the data points lie in a low
dimensional manifold, we may project the data points into a
lower-dimensional space (project more) while still maintaining
the geometry structure of the original data, and using more
bits to quantize each projected dimension instead of single bit
(quantization less). For instance, we may project the original
data points into space R

k
2 and assign 2 bits to quantize the

values of each projection element, while the target code length
remains to be k. Therefore, we should adaptively adjust the
projection dimensionality to better balance the information
loss between two stages and minimize the total loss over
the whole process of hashing. As a result, a natural question
arises here: given a target code length k, shall we project
more or quantize more?

To this end, designing a unified learning objective in line
with both quality assessments is crucial not only to establish a
concrete mathematical implementation for the expected joint
optimization model, but also to justify the widely applied two-
stage hashing paradigm by revealing the inherent relationship
between two stages. In this paper, we propose a novel hashing
method called Minimal Reconstruction-bias Hashing (MRH)
to tackle the problem of jointly optimizing projection and
quantization stages with a unified learning objective function.
Our contributions are three-fold:

• We present a novel approach to learning similarity pre-
serving binary codes which jointly optimizes both pro-
jection and quantization stages with adjustable projection
dimensionality. To the best of our knowledge, this is the
first work that systematically studies the interrelationship
between projection and quantization. Our practice of
jointly optimizing projection dimensionality, projection
matrix, as well as quantization functions, has achieved
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the state-of-the-art performance consistently over several
benchmarks.

• We come up with a unified learning objective func-
tion to resolve the joint optimization problem from the
perspective of minimal reconstruction bias of signals.
By introducing a lower bound analysis, we establish
the relationship between the information loss from both
projection and quantization, and the Hamming approxi-
mation errors, which to some extent justified the widely
adopted two-stage hashing paradigm theoretically.

• By analyzing the unimodal characteristics of the MRH
objective function with respect to projection dimension-
ality, we propose an effective ternary search algorithm to
solve the joint optimization problem of MRH. In particu-
lar, we have reduced the complexity of searching optimal
projection dimensionality from O(N) to O(log(N)).

This paper is an extended version of the work previously
published in [33]. Apart from the substantially extended intro-
duction, related work and in-depth discussion, this submission
differs from [33] in the following major aspects: (1) We
have further given the detailed exploration on the proposed
algorithm from different point of views including the rigorous
derivations, theoretical proof, convergence analysis, and com-
putational complexity. (2) More extensive experiments have
been conducted on eight benchmark datasets to demonstrate
the effectiveness of our method.

The remaining sections are organized as follows. Section II
gives a brief review of the ANN search. Section III, as the pre-
liminary, introduces the motivation of this paper. In Section IV,
we formulate the problem of optimal binary coding from the
perspective of minimizing the reconstruction bias of signals.
The detailed optimization of our formulation is introduced
in Section V. Section VI demonstrates that the distance
approximation error between the original distance and the root
mean squared Hamming distance is a lower bound of our
objective function. We conduct comprehensive experiments
to demonstrate the superiority of the proposed framework in
Section VII, and conclude the paper in Section VIII.

II. RELATED WORK

Nearest neighbor (NN) search is the optimization problem
of finding the point in a given set that is closest (or most
similar) to a given point, which is widely used in various appli-
cations, such as computer vision, multimedia, and machine
learning. Our work is related to approximate nearest neighbor
(ANN) search methods, which can be roughly grouped into
two categories: Vector Quantization based methods [34]–[41]
and Hashing based methods [11], [16], [17], [20], [23], [26],
[42]–[44]. Readers are referred to [45] and [46] for the
comprehensive review.

In this section, we mainly review the closely related work of
hashing. In general, hashing methods aim to map the original
data usually denoted by the high-dimensional floating point
number representations into the low-dimensional binary Ham-
ming space while preserving the similarities among original
data to some extent. It is well known that the binary constraints
imposed on the objective function make the optimization
problem NP-hard. A two-stage scheme, namely “projection

and quantization”, has already become a standard paradigm
for learning similarity-preserving hash codes.

A. Hashing on Projection

There are two categories of mainstream hashing approaches
based on the type of hashing functions, called data-
independent method and data-dependent method. Data-
independent methods do not rely on any training data, which
are flexible, but often require long codes to achieve satisfactory
performance. Local Sensitive Hashing [11] (LSH) adopts a
random projection which is independent of training data.
Similarly, Shift Invariant Kernel Hashing [47] (SIKH) chooses
the random projection and applies a shifted cosine function
to generate binary codes. The kernelized version of LSH,
Kernelized Locality-Sensitive Hashing (KLSH) [12], has also
been proposed for large-scale image retrieval. Theoretically,
the Hamming distance between hash codes can progressively
approximate the Euclidean distance between original features.
Nevertheless, fairly long hash codes (e.g., more than 1024 bits)
are often required to achieve satisfactory retrieval performance.

Different from data-independent methods, data-dependent
methods learn the hashing function from training data and
outperform data-independent methods. Weiss et al. [4] pro-
posed spectral hashing (SH) by using spectral partitioning
for the graph constructed from the data similarity relation-
ships. Kong and Li [9] proposed an isotropic hashing method
to learn projection functions with isotropic variances such
that larger-variance dimensions will carry more information.
Xia et al. [20] presented an effective sparse regularizer to
reduce the effective number of parameters involved in the
learned projection operator, which effectively decreases the
computational cost for computing long codes. Moreover, sev-
eral works are devoted to handling high-dimensional data by
the bilinear form of hash functions [16], [17]. Along this line,
Liu et al. [18] presented a binary projection bank method
which can effectively reduce the high-dimensional representa-
tions to medium-dimensional binary codes without sacrificing
accuracies. Yu et al. [19] employed a circulant matrix to
generate binary codes, in which the circulant structure enables
the use of Fast Fourier Transformation to speed up the
computation. In addition, many efforts are devoted to studying
the problem of learning hash functions in the context of multi-
modal data for cross-modal similarity search [48]–[50].

Notwithstanding the effectiveness of preserving data sim-
ilarity in the original space by the aforementioned hashing
methods, these methods may fail to preserve the non-linear
manifold structure of data due to the linear or bilinear pro-
jections employed by them. Accordingly, methods exploit-
ing non-linear projections have gained increasing popularity.
Liu et al. [14], [21] leveraged the anchor graph to approx-
imate the similarity matrix for efficient nearest neighbor
search. Through feature transformation, Jiang and Li [22]
effectively approximated the whole graph without explic-
itly computing the similarity graph matrix, and proposed a
sequential learning method to learn the hash functions in
a bit-wise manner. Shen et al. [24] proposed an Inductive
Manifold Hashing scheme which generates nonlinear coding
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functions by exploiting the non-parametric manifold learning
approach. Guo et al. [23] discovered that the low-dimensional
embedding of anchors has a significant impact on the hash
function, and resolved the optimized anchor embedding by
solving the orthogonality constrained maximization problem.
Liu et al. [51] proposed an unsupervised hashing approach
which exploits the ordinal information between data points,
and learns the optimal hashing functions with a graph-based
approximation to embed the ordinal relations.

It is noted that great success in deep neural networks for
representation learning has inspired deep hashing algorithms
[25], [26], [42], [43]. Xia et al. [52] computed hash codes
by minimizing the similarity difference where image repre-
sentation and hash function are jointly learnt through a deep
network. Dai et al. [53] proposed a novel generative approach
to learn hash functions, in which the discrete optimization is
replaced by the maximization over the negative Helmholtz
free energy. Distinct from most previous hashing methods
which seek a single linear or non-linear projection to map
each sample into a binary code, deep hashing can seek
multiple hierarchical non-linear transformations to learn binary
codes, so that the nonlinear relationship of samples is well
exploited [54]. However, deep neural networks often require
hundreds of megabytes of storage, which make them inconve-
nient to deploy in mobile applications or memory light-weight
hardware. In this paper, we focus on developing an effective
hashing algorithm in a hand-crafted but light-weight manner
to jointly optimize the projection distortions and quantization
errors. In addition, most deep hashing methods often employ
single bit quantization to encode the projected vector, which
results in the information loss to some extent. We may consider
to applying the projection distortion and quantization error as
learning objectives to facilitate the training of deep networks.

B. Hashing on Quantization
The methods mentioned above are restricted to the fixed pro-

jection dimensionality, i.e., the number of projection dimen-
sionality is equal to the target code size. Specifically, to learn k
bits length code, they would project a data point into k dimen-
sionality subspace, and then obtain the binary codes by taking
a sign function. This coding strategy can not maximally utilize
the allocated bits to encode the most valuable information. The
single bit coding for each projection value which may incur
lots of information loss, as a projection value can be any real
number but it becomes a single bit after quantization. Thus,
promising multiple bits quantization (MBQ) methods have
been proposed. Double bits quantization [8], [27] divides each
projection dimension into three regions and uses double bits
code to represent each element region. Overall, MBQ methods
do facilitate the reduction of information loss in quantization.
Recently, Since clustering is a powerful quantization method
to model the complex relationships of data points, several
hashing methods exploit the clustering structure among data
in the binary quantization, e.g., spherical hashing (SPH) [28],
K-means hashing (KMH) [29], and adaptive binary quantiza-
tion (ABQ) [30]. Experimental results have demonstrated the
functionality of high quality quantization in improving hashing
performance [8], [9], [27].

The two-stage scheme of “projection and quantization”
often makes the resulting hash functions less effective due to
the accumulated quantization error. Gong et al. [6] proposed
Iterative Quantization (ITQ) which figures out an orthogonal
rotation matrix to refine the initial projection matrix. Although
ITQ can decrease the quantization distortion, it learns orthog-
onal rotations over pre-computed mappings which usually
makes ITQ suboptimal. Wang et al. [27] introduced a hamming
compatible quantization method to minimize the distance error
function to preserve the capability of similarity metric between
the Euclidean space and Hamming space. Liu et al. [21]
developed a discrete graph hashing method to directly solve
the binary code without discarding discrete constraints. To
further obtain high-quality hash codes, Shen et al. [55] directly
handled the discrete constraints by using the discrete proximal
linearized minimization algorithm. Our method differs from
the closely related works [6], [27], [55]. We learn simi-
larity preserving binary codes which jointly optimizes both
projection and quantization stages with adjustable projection
dimensionality. In addition, a rigorous lower bound analysis of
the information loss between the projection and quantization
is introduced to support our model.

III. PRELIMINARIES

We first introduce the basic notations. Let matrix X =
[x1, x2, . . . , xn] ∈ R

d×n denote the samples of data points,
and k denote the length of target codes. The goal is to learn
a binary string bi ∈ {0, 1}k for each data point xi ∈ R

d that
maximizes similarity preservation in the Hamming space.

The proposed binary code learning approach involves both
projection and quantization stages. For the sake of clarity,
at the projection stage, we apply a linear projection to trans-
form xi ∈ R

d into a subspace

yi = T (xi ) ∈ R
k
c ,

where T (xi) = Rxi and R ∈ R
k
c ×d is an orthogonal matrix,

i.e., RR� = I, to make the elements at different projection
dimensions independent of each other. At the quantization
stage, we quantize the projected vector yi into

ŷi = Q(yi ) ∈ H k
c ,

where H is a set of quantization centroids, and each element
is quantized to a value in H. Finally, we use c bits to encode
each element of ŷi to obtain a binary string

bi = B(̂yi) ∈ {0, 1}k .

Note that we introduce a variable c to adjust the projection
dimensionality. If the given code length k is indivisible by c,
the target code length will round down to � k

c �× c bits. In this
paper, we will figure out an optimal c value to perform a joint
optimization of projection T (·) and quantization Q(·).

The range of Hamming distance is limited to the length of
binary codes. The maximum Hamming distance of c-bit codes
is only c. When we use c bits to encode 2c values, the distance
consistency in the Hamming space cannot be maintained. Let
us take the example of c = 2. We quantize the projection
values into 22 = 4 centroids with σ0 < σ1 < σ2 < σ3, namely,



DUAN et al.: MRH VIA JOINT PROJECTION LEARNING AND QUANTIZATION 3131

Fig. 2. Illustration of reconstruction bias from projection and quantization. Towards optimal binary coding, the aim is to minimize this bias. The red lines
indicate the reconstruction bias. This figure is best viewed in color version.

(00)2, (01)2, (10)2 and (11)2. We have �σ1 − σ2� < �σ1 −
σ3�, but dH (01, 10) > dH (01, 11) where dH (·) denotes the
Hamming distance.

To address the issue of inconsistent measurements, we may
resort to other distance measurements like Manhattan dis-
tance [56]. But it would seriously degrade the retrieval effi-
ciency [27]. In contrast, Hamming distance measurement is
extremely fast, and more than 109 operations can be done
per second [29] [4], so Hamming distance computing is still
the priority of the effective and efficient ANN search. In this
work, we employ an incomplete encoding strategy to keep the
distance consistency in Hamming space, in which we only
quantize projection values into c + 1 equidistant centroids
H = {σi }c

i=0, where σi − σi−1 = � for 1 ≤ i ≤ c. Then,
we apply a unary representation [57] to encode each centroid
B(σi ) = Uc(i) for σi ∈ H, where unary representation Uc(i)
is defined as a c-bit binary string with i ones followed by
c − i zeros, e.g., U2(1) = 10, U3(0) = 000, U4(2) = 1100.
With the unary representation, the Hamming distance between
binary codes is proportional to the distance of the centroids,

dH (B(σi ), B(σ j )) = �σi − σ j �/�.

Clearly, the unary representation is an incomplete encoding
strategy, as a c-bit code is capable of representing 2c states.
To make the Hamming distance consistent with the distance
between quantization centroids, we have to discard parts of
the coding space.

IV. MINIMAL RECONSTRUCTION BIAS HASHING

We formulate the problem of optimal binary coding (i.e.,
optimal hashing) from the perspective of minimizing the
reconstruction bias of signals. The relationship between min-
imal reconstruction bias and Hamming approximation errors
will be studied theoretically in Section VI.

A. Reconstruction Bias

The reconstructed data points are recovered from the com-
pressed codes. Given the hashing code bi of data point xi ,
we obtain the reconstructed data by first decoding bi to
quantization centroid(s) and then transforming the quantization
vector back to the original space (see Fig. 2). Specifically,
we first decode bi and get ŷi = B−1(bi ). B−1(·) denotes the
inverse quantization. It maps an integer quantization index bi

to the reconstruction value ŷi that is the output approximation
of the input value. Quantization function Q(·) is not invertible,
so yi can’t be recovered. Then we directly apply the inverse

projection transformation to ŷi and get

x̂i = T −1(B−1(bi )) = R�ŷi . (1)

Here, x̂i is called the reconstructed data of xi . The recon-
struction bias is defined as the distance between x̂i and xi

d (̂xi , xi ) = �xi − x̂i�2 = �xi − R�ŷi�2, (2)

where d(·, ·) denotes the Euclidean distance and � ·�2 denotes
the L2 norm of a vector.

B. Learning Objective

The reconstruction bias indicates the information loss
incurred by mapping the data points to the Hamming space.
To preserve the similarity structure of original data points,
we aim to minimize the reconstruction bias. Directly opti-
mizing the objective function in Eq. (2) is intractable due to
a large number of free parameters in ŷi and the orthogonal
constraint of R. Here, we can turn to minimize the square of
reconstruction bias in Eq. (2) according to the Theorem 1.

Theorem 1: The squared reconstruction bias function can
be decomposed into the sum of projection distortions and
quantization errors

�xi − R�ŷi�2
2 = �xi − R�yi�2

2 + �yi − ŷi�2
2. (3)

Proof: First we separate projection distrotion and quanti-
zation error terms inside the norm operator

�xi − R�ŷi�2
2 = �(xi − R�yi ) + R�(yi − ŷi)�2

2.

Notice that the quantization error vector R�(yi − ŷi ) lies in
the projection subspace spanned by row vectors of R, while
the projection error vector xi − R�yi is orthogonal to the
projection space, and hence orthogonal to the quantization
error vector. Using Pythagoras theorem gives us

�xi − R�ŷi�2
2 = �(xi − R�yi )�2

2 + �R�(yi − ŷi )�2
2. (4)

Finally, notice that R is orthogonal, we have that for any
a ∈ R

k
c

�R�a�2
2 = (R�a)�R�a = a�RR�a = �a�2

2.

Plugging it back to Eq. (4) finishes the proof.
Let Y = [y1, y2, . . . , yn] denote the projection matrix and

̂Y = Q(Y). To figure out the optimal binary coding, we for-
mulate the problem as joint minimization of the projection
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distortions and the quantization errors, in which the projec-
tion dimensionality c may be variable as well. Specifically,
the learning objective is formulated as

arg min
c,R,̂y

�X − R�Y�2
F + �Y − ̂Y�2

F .

s.t . 1 ≤ c ≤ k, R ∈ R
k
c ×d , RR� = I

Y = RX,̂Y ∈ H k
c ×n, �H� = c + 1. (5)

In Eq. (5), � · �F denotes the Frobenius norm. The first
term �X − R�Y�2

F denotes the sum of projection distortions,
indicating the information loss in the projection stage, and
the second term �Y − ̂Y�2

F denotes the sum of mean square
error (MSE), indicating the information loss in the quantization
stage. In particular, the variable c is to adjust the projection
dimensionality to adaptively balance the information loss
between the projection and quantization stages in a joint
optimization.

V. OPTIMIZATION

The goal is to minimize the objective of overall reconstruc-
tion errors defined in Eq. (5) with respect to c, R and ̂Y.

A. Update ̂Y and R

To resolve R and ̂Y, we first fix the variable c, which
means to fix the projection dimensionality over the course of
alternating optimization of R and ̂Y. The alternating fashion
works by updating R or ̂Y with the other fixed.

1) Update ̂Y: When updating ̂Y, the learning objective
reduces to the quantization error term �Y − ̂Y�2

F . In the theory
of the signal quantization, as an example, rounding a real
number to the nearest integer value forms a very basic type
of quantizer, i.e., a uniform one. We simply assume that the
data distribution is zero-centered. In this case, a typical (mid-
tread) uniform quantizer with a quantization step size � can
be applied, because the mid-tread quantizer has zero as one
of its quantized values. It is useful for situations where it is
necessary for the zero value to be represented.

Due to the midtreading of zero, the number of quantiz-
ing level is odd if a symmetric sample value range is to
be covered [58]. Assume that c is an odd number where
c = 2t + 1, the quantization centroid set H is represented
as H = {±�/2,±3�/2, . . . ,±(2t + 1)�/2}. We quantize
each element y ∈ Y to the nearest value in H

Q(y) = argmin
σ∈H

�σ − y�2.

The only variable in quantization function Q(·) is �. We solve
� by minimizing the sum of MSE �Y − ̂Y�2

F

�∗ = argmin
�

∑

y∈Y

�y − Q(y)�2,

s.t . Q(y) ∈ H, �σi − σi−1� = �. (6)

We observed that the function in Eq. (6) is a segmented
quadratic function of � which can be solved by separately
enumerating each quadratic segment. Let fy(�) denotes the

quantization error of the element y. fy(�) is a function of �
which is defined as

fy(�) = min
{

(y ± 1

2
�)2, . . . , (y ± 2t + 1

2
�)2

}

.

Optimizing Eq. (6) equals to minimize function
∑

fy(�) of �.
For any a ∈ R, based on the symmetry in the definition,

fa(·) is an even function where fa(�) = fa(−�). Consider
the function expression of fa(�) for � ∈ [0,∞). Let
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2
�)2 = (a − 3

2
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(a − 3

2
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2
�)2 ⇒ � = a

2

. . .

(a − 2t − 1

2
�)2 = (a − 2t + 1

2
�)2 ⇒ � = a

t .

fa(�) is a segmented function which is segmented by split
points { a

l }t
l=1 = {a, a

2 , . . . , a
t }. The function expression of

fa(�) can be written as

fa(�) =

⎧

⎪

⎪
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⎪
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⎪
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f t
a = (a − 2t + 1

2
�)2, 0 ≤ � ≤ a

t
. . .

f l
a = (a − 2l + 1

2
�)2,

a

l + 1
≤ � ≤ a

l
. . .

f0
a = (a − 1

2
�)2 a ≤ �.

where l = 1, 2, . . . , t − 1.
Let F = ∑

foi
y (�), where oi is the oi -th segment function

in fa(�). F is segmented by the split points in S = ⋃{ a
l }t

l=1
which has totally N = k

c nt split points. We first sort the
elements in S, i.e., s1 ≤ s2 ≤ ... ≤ sN , then enumerate
each segment one by one, started at � ∈ [0, s1) and ended
at � ∈ [sN ,∞). We initialize all μi to t . Once we are in
interval � ∈ [sl , sl+1), we update each μi by

oi = oi − 1, i f
y
oi

< sl and oi �= 0

and then we solve the minimal value in this interval. The
overall minimal value of all segments is selected as the
solution. Algorithm 1 shows the pseudo-code for solving
Eq. (6).

The other uniform quantizer does not have zero as one
of its quantized values, so is called midrise. Its number of
decision intervals is even if a symmetric sample value range
is to be covered. Assume that c is an even number where
c = 2t , the quantization centroid set H is represented as
H = {±�,±�, . . . ,±t�}. Let fy(�) denotes the quantiza-
tion error of the element y. fy(�) is a function of � which is
defined as

fy(�) = min
{

(y ± �)2, . . . , (y ± t�)2
}

.

Optimizing Eq. (6) equals to minimize function
∑

fy(�) of
�. The subsequent procedures are similar with the case of
c = 2t + 1, which will not be described in detail.
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Algorithm 1 The Algorithm to Optimize Eq. (6)

Fig. 3. Left: a convergence curve on the CIFAR10 dataset. Right: training
time cost of baseline methods on the ImageNet1M dataset.

2) Update R: Updating R is a typical optimization problem
with orthogonality constraints. We apply the optimization
procedure in [59] to update R. Let U be the partial derivative
of the objection function with respect to R. We have

U = ∂G

∂R
= ∂�X − R�

̂Y�2
F

∂R
= −2̂YX�. (7)

To preserve the orthogonality constraint on R, we first define
the skew-symmetric matrix [59]:

M = R�U − U�R. (8)

Then, we adopt Crank Nicolson like scheme [60] to update
the orthogonal matrix R:

R(t+1) = R(t) − τ

2

(

R(t+1) + R(t)
)

M, (9)

where τ denotes the step size. We empirically set τ = 0.5.
By solving Eq. (9), we can get

R(t+1) = R(t)M, (10)

and

M(t+1) = (

I + τ

2
M

)−1(I − τ

2
M

)

. (11)

We iteratively update R several times based on Eq. (10)
with the Barzilai-Borwein (BB) method [59] and alternatively
update ̂Y and R in several iterations until convergence. In prac-
tice, the algorithm usually converges within 50 iterations.
A typical behavior of the learning objective function Eq. (5)
is shown in Fig. 3.

B. Update c

Given a specified code length, setting c to a large value
can improve quantization quality but could degrade projec-
tion quality, and vice versa. To balance the information loss
between the projection and quantization, we aim to find the
optimal c to minimize the objective of overall reconstruction
bias. Since the value of c ranges from 1 to the target code
length k (say hundreds or thousands). Undoubtedly, the brute-
force enumeration method will be time-consuming.

Rather than the exhaustive search, we propose a fast
approach to search the optimal c, as our empirical findings
have shown that the objective function with respect to c
is unimodal.2 To explain this important findings, we derive
the following theorem by assuming a moderate distribution
function (i.e., uniform or Gaussian) of projection values.

Theorem 2: Function G(c) can be well-approximated by a
unimodal function, which only has a single local minimum
point c∗. G(c) is monotonically decreasing for c ≤ c∗ and
monotonically increasing for c > c∗.

Proof: According to the orthogonal constraint on R,
we have

�X − R�Y�2
F = tr

(

(X − R�Y)(X − R�Y)�
)

= tr
(

XX� − R�YX�−XY�R + R�YY�R
)

= tr
(

XX� − YY�)

= �X�2
F − �Y�2

F .

Let matrix E = Y − ̂Y. G(c) can be simplified as

G(c) = �X�2
F − �Y�2

F + �E�2
F .

The first term is independent of c. Each term of �Y�2
F or �E�2

F
contains n × � k

c � elements. The expression of G(c) depends
on the distribution of projection values. We adopt statistical
expectation for sample estimation. Without loss of generality,
assuming k is divisible by c, we have

�Y�2
F =

∑

y∈Y

y2 ≈ nk

c
E(y2),

�E�2
F =

∑

y∈Y

(y − Q(y))2 ≈ nk

c
E((y − Q(y))2).

When projection values Y are subject to a uniform distribution
on close interval [p1, p2], the probability density function is
given by

f (y) = 1/(p2 − p1), y ∈ [p1, p2], p1 < p2

Accordingly, we have [61]

E(y2) = (p2
1 + p2

2 + p2
1 p2

2)

3
, E((y − Q(y))2) = �2

12

In our method, step size � = (p2 − p1)/(c + 1). Then,

�Y�2
F = nk(p2

1 + p2
2 + p2

1 p2
2)

3c
,

2A function is said to be “unimodal” if it only has one local extremum.
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and

�E�2
F = nk(p2 − p1)

2

12c(c + 1)2 .

Let μ = nk(p2
1 + p2

2 + p2
1 p2

2)/3, λ = nk(p2 − p1)
2/12 and

η = �X�2
F ,G(c) can be represented as

G(c) = λ

c(c + 1)2 − μ

c
+ η.

Take the derivative of G with respect to c. We have

∂G

∂c
= −λ

3c2 + 4c + 1

c2(c + 1)4 + μ

c2 ,

and

∂G

∂c
= 0 ⇔ λ

μ
= (c + 1)4

3c2 + 4c + 1
= (c + 1)3

3c + 1
.

Let H (c) denote the funtion of right hand side in the above
equation. H (c) is monotonically increasing for c > 1. Assume
c∗ is the optimal point where G�(c∗) = 0 and H (c∗) = λ

μ .

Then, for c > c∗ we have H (c) > λ
μ and G�(c) > 0,and for

c < c∗ we have H (c) < λ
μ and G�(c) < 0. Thus G(c) is

indeed unimodal.
Likewise, for the Gaussian distribution,

f (y) = 1

σ
√

2π
exp(− (y − μ)2

2σ 2 ), y ∈ [μ − p, μ + p]

we can still derive the expression of G by computing the
expectation of y2 and (y − Q(y))2. We employ the second
order Taylors expansion to represent f (y) and calculate E(y2)
and E((y − Q(y))2) by computing the integral of the Taylors
expansion, followed by the derivative and monotonic analysis
for the proof.

C. A Ternary Search Algorithm

G(c) is defined in discrete domain c ∈ {1, 2, . . . , k}.
According to the unimodal property in Theorem. 2, we can
apply the ternary search to find out the optimal c∗. We have
the following theorem.

Theorem 3: Let c∗ denote the minimum point of the objec-
tive function G(c). Assume that we have already known c∗ ∈
[l, r ]. Let s = (r − l)/3, m1 = �l + s/3� and m2 = �l +2s/3�.
We have

• if G(m1) ≤ G(m2), then l ≤ c∗ ≤ m2.
• if G(m1) > G(m2), then m1 ≤ c∗ ≤ r .

Proof: Consider m1 �= m2. For G(m1) < G(m2), we have
c∗ ≤ m2. If not, then m1 < m2 < c∗. As the function G(c) is
monotonically decreasing for c < c∗, then G(m1) > G(m2).
This is contradictory with the assumption. Thus, c∗ ≤ m2 and
l ≤ c∗ ≤ m2. For G(m1) > G(m2), the same procedure can
be adopted to obtain m1 ≤ c∗ ≤ r . If m1 = m2, we have
l = r . Obviously, Theorem 3 still holds.

The ternary search algorithm works as follows. We initialize
l = 1 and r = k. For each iteration, we set c = m1 and c =
m2 respectively, and solve G(m1) and G(m2) by alternatively
updating R and ̂Y. If G(m1) ≤ G(m2), we update r = m2;
Otherwise, we update l = m1. The algorithm terminates when

Fig. 4. A toy example of using ternary search algorithm to update l and r
for an unimodal function.

Algorithm 2 The Algorithm for Optimizing Equation (5)

l = r . As we cut out 1/3 search scope after each iteration,
the run time order is

T (k) = T (2k/3) + 1 = O(log k) (12)

The reduced complexity benefits the fast search of c∗, espe-
cially when learning long binary codes. Fig. 4 shows an
example of ternary search.

D. Complexity Analysis

We need O(log k) recursions to find out the optimal c.
In each recursion, we iteratively update ̂Y and R. Let t1 denote
the number of iterations for the alternatively updating and
t2 the iteration number in Crank Nicolson like scheme [60].
It takes O(t1c2n) to update ̂Y and O(nl + d2 + t2ld) to
update R. The overall time complexity is O(log k(t1c2n +
nl + d2 + t2ld)). Algorithm 2 shows the pseudo-code of our
MRH algorithm.

VI. RELATIONSHIP BETWEEN OUR MODEL AND

HAMMING APPROXIMATION

Similarity preserving hashing methods aim to map close
data points to near binary codes [11], [57]. Conversely, if two
data points are far away in the original space, their binary
codes should produce a large Hamming distance. We will show
that the distance approximation error between the original
distance and the root mean square Hamming distance is a
lower bound of the learning objective in Eq. (5). Since the
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Hamming approximation quality, as a critical indicator, can
significantly impact the performance of ANN search [29], [62],
this lower bound analysis may justify the proposed learning
objective.

In hashing methods, the similarity of two data points xi

and x j is defined by the Hamming distance of their hashing
codes, dH (bk

i , bk
j ), where bk

i = B(̂yk
i ), bk

i and ŷk
i denote the

k-th element in vector bi and ŷi , respectively. Let l denote the
projection dimensionality, sk the Hamming distance of the k-th
hashing codes where sk = dH (bk

i , bk
j ). The root mean square

Hamming distance f (bi , b j ) of two binary strings bi and b j is

defined as f (bi , b j ) = (
∑l

i=1 s2
i / l)

1
2 . Consider the distance

approximation error between the original distance d(xi , x j )
and the root mean squared Hamming distance f (bi , b j ),
we have the theorem

Theorem 4: The distance approximation error between the
original distance and the root mean squared Hamming distance
is a lower bound of objective function G in Eq. (5),

∑

i, j

(

d(xi , x j ) − λ f (bi , b j )
)2 ≤ μG. (13)

where parameter λ = �
√

l and μ = 32n are constant factors.
Proof: According to the triangle inequality, we have

∑

i, j

|d(xi , x j ) − d (̂xi , x̂ j )|

≤
∑

i, j

|d(xi , x j ) − d(xi , x̂ j )| +
∑

i, j

|d(xi , x̂ j ) − d (̂xi , x̂ j )|

≤ 2
∑

j

d(x j , x̂ j ) + 2
∑

i

d(xi , x̂i ) = 4
∑

i

d(xi , x̂i ).

Relaxing the right side of the above inequality, according
to Cauchy-Schwarz Inequality, we have

∑

i d(xi , x̂i )

≤
∑

i

�x − R�yi�2 + �yi − ŷi�2

≤ (12 + · · · + 12)
1
2

(

∑

i

�xi − R�yi�2
2 + �yi − ŷi�2

2

) 1
2

= √
2n

(

�X − R�Y�2
F + �Y − ̂Y�2

F

) 1
2
.

Then, with the inequality transitive property, we obtain
∑

i, j

|d(xi , x j ) − d (̂xi , x̂ j )| ≤ 4
√

2nG
1
2 . (14)

On the other hand, as �R�a�2 = �a�2, we have

d (̂xi , x̂ j ) = �̂yi − ŷ j�2 =
√

∑

k

d2
H (bk

i , bk
j ) = �

√
l f (bi , b j ).

By substituting d (̂xi , x̂ j ) = �
√

l f (bi , b j ) to Eq. (14)
and squaring both sides of the inequality, we obtain
Theorem 4.

VII. EXPERIMENTS

In this section, extensive experiments are conducted to eval-
uate the proposed method in terms of ANN search accuracy

and recall rate. Our approach is implemented in Matlab 2016b.
The experiments are performed on an DELL desktop computer
with 3.40GHz Intel Core(TM) i7−6700 CPU and 16GB RAM.

A. Datasets

We evaluate and compare the state-of-the-art approaches
over eight benchmark datasets SIFT1M [34], GIST1M [34],
CIFAR10 [63], LableMe22K [5], MNIST [64], NUS-
WIDE [65], MPEG CDVS [7] and ImageNet1M [32].
SIFT1M and GIST1M are popular large-scale dataset to evalu-
ate hash models. They contain one million unlabeled data with
each data represented by a 128-dimensional SIFT feature vec-
tor and a 960-dimensional GIST feature vector, respectively.
The CIFAR10 dataset is a labeled subset of the 80M Tiny
Images collection [63]. It consists of 10 classes with each class
containing 6K 32×32 color images, leading to 60K images in
total. The LabelMe22K dataset contains 22, 019 images. In the
experiments, each image in CIFAR10 and LabelMe22K is
represented by a 512-dimensional GIST feature. The MNIST
dataset contains 70, 000 images of handwritten digits numbers
0 ∼ 9. Each image was resized to 28 × 28 by comput-
ing the center of mass of the pixels and vectorized into a
784 dimensional gray scale feature. NUS-WIDE is a web
image dataset including 269, 468 images along with six types
of low-level features extracted from these images. We use the
500 dimensional BOW (bag-of-visual-words) features based
on SIFT local descriptors. MPEG CDVS is a benchmark for
evaluating compact descriptors in visual search, containing
28, 590 images of five classes: graphics, paintings, frames,
landmarks and common objects. For each image, we extract
a 512 dimensional Nested Invariant Pooling (NIP), which is
adopted by MPEG CDVA standardization [66]. ImageNet1M
is a large-scale benchmark with 1 million images. For each
image, we extract a 4096 dimensional Fisher vector [31] to
evaluate the performance in a high dimensional space.

B. Configuration and Evaluation

To evaluate the effectiveness of our method, we perform
extensive comparisons with 8 methods: Locality sensitive
hashing (LSH) [11], Iterative quantization (ITQ) [6], Scal-
able graph hashing (ScGH) [22], Sparse projection hash-
ing (SP) [20] , Adaptive binary quantization (ABQ) [30],
Binary autoencoders (BA) [44], Ordinal constraint hashing
(OCH) [51], and Stochastic generative hashing (StGH) [53].
All the methods are run with released source codes in default
settings.

We follow most previous hashing works to adopt the
Hamming distance ranking for ANN search. Recall and mean
average precision (mAP) are widely employed to test the
accuracy of approximate nearest search. Specifically, recall@R
is a fraction of the true nearest neighbor (ground truth) is found
in the first R items. Average precision (AP) is the average
proportion that the K true nearest neighbors are retrieved
in the most relevant R samples considering the order of
samples. The mAP is the mean of the AP for all queries.
For each benchmark, we randomly select 1000 data points as
queries and leave the rest as database. For each query, the top
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Fig. 5. Results of recall rate of state-of-the-art hashing methods at code length 32, 64 and 128 bits on GIST1M.

Fig. 6. Results of recall rate of state-of-the-art hashing methods at code length 32, 64 and 128 bits on SIFT1M.

100 nearest data points in Euclidean distance are used as the
ground truth. We randomly select 10K data points from each
dataset for training. We empirically set t = 100, t1 = 50 and
t2 = 50. All baseline methods are run in a single thread.

C. Comparisons With Competing Methods

To comprehensively demonstrate the efficiency and effec-
tiveness of the proposed MRH, we further compare it with
several related hashing algorithms in terms of mAP and
recall. Fig. 5 and Fig. 6 show the results of recall rate of
baseline methods over the GIST1M and SIFT1M datasets. The
proposed MRH consistently outperforms the state-of-the-art
methods (only except the result on the SIFT1M 128 bits com-
pared with ABQ). The performance gains of MRH are with
2%, 5.7%, 6.4%, 2.5% recall rate when ranking 20, 000 on the
dataset GIST1M 32 bits, GIST1M 64 bits, SIFT1M 32 bits
and SIFT1M 64 bits, respectively. This is beneficial from our
joint optimization of “projection and quantization”. MRH can
learn an optimal quantization bit number c serving as the
resulting hashing codes. On the dataset GIST1M 128 bit and
SIFT1M 128 bit, MRH performs comparable with the ABQ
method.

Fig. 7 shows the mAP results of both MRH and baseline
methods. We report the results over the LabelMe22K ,
CIFAR10, MNIST, NUS-WIDE, MPEG CDVS and
ImageNet1M datasets. For each dataset, we evaluate all
methods at different bitrates, starting from 16 = 24 and
keep multiplying the current bitrate by 2 until it exceeds

the dimension of the original features. For example, for the
NUS-WIDE dataset where the dimensionality of original
features is 500, we evaluate at 16, 32, 64, 128 and 256 bits.
For the ImageNet1M dataset with 4096-D Fisher vector,
we evaluate up to 2048 bits. The results demonstrate
significant advantage of MRH over the baseline methods on
the most settings, even at short codes. As the code length
increases, the performance gap generally becomes more
significant. The MRH outperforms the competitive method
ITQ by 0.4%, 1.6%, 3.1%, 16.8% and 28.5% at the code
length from 16 bits to 256 bits over the LabelME22K dataset,
respectively. Considerable improvements are also obtained
on other datasets. Furthermore, the performance of MRH
on the different datasets are stable. As shown in Fig. 7,
the MRH always maintain a high performance over different
datasets with different bitrates, while other baseline methods
typically suffer from low performance on a few datasets due
to inapplicable data distribution. For example, ABQ works
badly on the MNIST dataset. SP, ITQ, BA and OCH have
poor performance on the NUS-WIDE dataset. StGH fails on
the MPEG CDVS dataset. In particular, several methods even
performs worse as the code length increases, such as the
ABQ on the CIFAR10 and LableMe22K datasets, the SP on
the NUS-WIDE dataset.

It is noted that on MPEG CDVS dataset, ITQ and SP
methods perform slightly better at small bitrates, but MRH
still has a clear advantage when the bitrate reaches 512 bits.
This is reasonable since it can be shown that the optimal
projection dimensionality always equals to the code length
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Fig. 7. Results of mAP of state-of-the-art hashing methods on various benchmark datasets (best viewed in high-resolution color display).

at low bitrates (as illustrated in Table I), in which the MRH
method degenerates into PCA plus sign hashing function, and
the complementary effects of quantization and projection is
inhibited. However, the optimal c at 512 bits was set to 2,
leading to a significant reduction of quantization error with
double bit hashing enhanced by MRH, and thus causing a
rapid performance growth from 256 to 512 bits. BA and StGH
outperform MRH at small bitrates on CIFAR10 dataset, but
their performances stops growing when the bitrate is greater
than 64. In contrast, MRH’s performance constantly increases
as the code length increases, and is comparable with BA and
StGH when the bitrate reaches 256 bits.

D. Discussion

1) The Rationale of the Learning Objective: Fig. 8 shows
the overall reconstruction error derived in Eq.(5) and the
corresponding mAP results for learning 256 bits codes on the
LabelMe22K dataset. Notice that the variation of search mAP
at different quantization bit number c is perfectly synchronized
with that of our learning objective. Thus it is reasonable to
claim that the reconstruction bias is indeed a good indicator
of actual ANN search performance, which further supported
the rationale of our objective function along with the lower-
bound analysis in Theorem 4.

2) The Impact of Projection Dimensionality: Fig. 9 shows
the impact of projection dimensionality for learning 512
and 1024 bits codes over ImageNet1M . Variable c produces
balancing effects on the projection and quantization stages.
Increasing c reduces the quantization error but incurs more
projection distortions, and vice versa. There does exist a trade-
off between projection and quantization. From Fig. 9, the best

Fig. 8. Results of reconstruction bias derived from (5) and the corresponding
mAP results when setting different c values. The experiment is conducted on
the LabelMe22K dataset at target code length of 256 bits. (a) Reconstruction
Bias. (b) Search mAP.

Fig. 9. Results of reconstruction bias derived from the learning objective
function Eq. (5) when setting different c values.

setting is c = 4 for 512 bits and c = 6 for 1024 bits. We notice
that the MRH tends to set c to a large value for long size
codes, which means that more bits are allowed for quantizing
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Fig. 10. The intermediate results of our MRH with the different coding level c for learning binary codes from 8 bits to 2048 bits on the ImageNet1M
dataset. The blue line indicates the performance when data points are projected into subspace � k

c � (prior to quantization). The dotted red line indicates the
performance after quantization stage with c bits coding for each projection value.

TABLE I

THE OPTIMAL VALUE OF c FOR LEARNING BINARY CODES WITH

DIFFERENT LENGTH ON THE CIFAR10, LABELME22K , MNIST,
NUS-WIDE, MNIST AND IMAGENET1M DATASETS

the values of each projection element. By adaptively adjusting
the projection dimensionality, the MRH obtains discriminative
codes with overall minimal information loss. Table I lists the
optimal settings of c on all six datasets.

To better visualize the impact of projection dimensionality,
we show the intermediate results of our MRH with the dif-
ferent coding level c on the ImageNet1M dataset, as depicted
in Fig. 10. We can see that single bit coding largely degrades
the performance and higher coding level can consistently
reduce the performance drop in the quantization stage. For
the short codes such as 8 bits, 16 bits and 32 bits, the MRH
achieves the best performance when c = 1. For relatively long
codes (b > 32), c = 1 is not the best choice. For example,
at code length 256 bits, when c = 1 the data points would be
projected to 256-D (with 0.791 mAP). After the quantization,
the performance drops down to 0.462. A better way is first
to project data points to 64-D and then use c = 4 bits to
quantize each projection. Our method can adaptively adjust the
projection dimensionality by balancing the information loss
during projection and quantization stage.

3) The Relationship Between Projection and Quantization:
To further analyze the characteristics of the proposed joint
optimization framework, we fix the projection dimension and

observe the mAP results on the challenging MPEG CDVS
dataset by setting different number of quantization bits c. The
results are shown in Table II. Note that when the projection
dimension is fixed, the search performance first increases
together with the variable c, but starts dropping beyond a
certain threshold c0 that becomes larger as projection dimen-
sion grows. In our experiments, c0 = 2, 3, 5, 6, 6 at projection
dimension range from 100 to 500. However, since the projec-
tion dimension is fixed, the quantization error always decreases
whenever c grows, which means the total reconstruction error
is also constantly decreasing.

A possible explanation to this abnormality could be that the
data suffers from severe distortions at low projection dimen-
sions, while, over the course of MRH optimization, the “over”
refinement of the quantization stage actually amplifies two
contradicting factors: the preservation of original information
and the aggravation of distortions. The observed threshold c0
can be interpreted as the “critical point” at which the marginal
influences of these two factors cancel out, and for any c > c0,
quantize the distorted data at c bits per dimension would lead
to negative impacts on the search accuracy with such “over-
quantized” codes.

Moreover, we argue that the projection and quantization
stages are inherently correlated regardless of the explicit
bitrate constraints (although the bitrate constraints lead to
nice unimodal property that aids fast ternary search), and
to simply optimize quantization stage alone can sometimes
leads to negative results as opposed to expectations. This
further justifies the proposed framework in which we seek
the balance between projection distortions and quantization
errors by adaptively adjusting the projection dimensionality
under different bitrate constraints. In addition, it should be
noted that the mutual relationship between projection and
quantization, and their impact on each other can provide a
new perspective to view traditional hashing methods but also
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TABLE II

RESULTS OF MAP ON MPEG CDVS DATASET UNDER DIFFERENT
PROJECTION DIMENSIONS AND QUANTIZATION BIT NUMBERS

open up research issues in hashing. For example, the joint
optimization framework or its idea of leveraging positive
complementary effects can be integrated into deep learning
based hashing methods, so that more robust loss functions
could be explored to better characterize and utilize these
inherent relationships.

VIII. CONCLUSION

In this paper, we have proposed a novel hashing method
called Minimal Reconstruction Bias Hashing (MRH) for
learning compact binary codes. We interpreted the problem
of maximizing similarity preservation of binary codes from
the perspective of minimizing the reconstruction error, and
presented a joint optimization framework to balance the trade-
off between projection and quantization stages with flexible
projection dimensionality. Moreover, we have introduced a
lower-bound analysis to establish the relationship between
the reconstruction bias and Hamming approximation error,
justifying the learning objective of our MRH method. By ana-
lyzing the unimodality of the objective function with respect to
projection dimensionality, a fast ternary search algorithm was
introduced to determine the optimal solution in the sub-linear
time. Extensive experimental results over eight benchmark
datasets demonstrate the superiority of our method against the
state-of-the-art methods in terms of ANN search accuracy.
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