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Abstract—Compressive sensing allows a signal to be sampled
at sub-Nyquist rate and still get recovered exactly, if the signal
is sparse in some domain. Block compressive sensing (BCS)
is advocated for practical image compressive sensing, since it
processes image at block level and significantly reduces the
memory requirement for storing projection matrix. However,
existing BCS methods process blocks separately, which breaks
the continuity between blocks and usually produces blocking
artifacts. This paper proposes a new image compressive sensing
scheme using overlapped-block projection and reconstruction
(OBPR), in which the sampling is performed on overlapped
blocks. During reconstruction, the sparsity constraint in trans-
form domain is also enforced on the overlapped blocks. An
augmented Lagrangian method is used to solve the optimization
problem efficiently. Experimental results show that the proposed
OBPR scheme achieves significantly better results than the
existing BCS schemes in reconstruction quality.

I. INTRODUCTION

Compressive sensing (CS) [1] [2] [3] theory is a new signal
processing theory, which allows a signal to be sampled at sub-
Nyquist rate via linear projection onto a random basis and still
get recovered exactly, if the signal is sparse in some domain.
More specifically, suppose that we want to recover signal x
with length N from its measurement y with length M (M ≤
N ), which is just the linear projection of x, i.e.

y = Φx, (1)

where Φ is an M ×N measurement matrix with the measure-
ment subrate being M/N . It is impossible to recover the signal
x ∈ RN from the observation y ∈ RM in general. However,
if x is sufficiently sparse in some domain, then exact recovery
is possible–this is the fundamental tenet of CS theory.

Obviously, the dimensionality of the CS sampling process
grows quickly as the size of x increases, which leads to huge
memory requirement for storing the sampling matrix Φ. Addi-
tionally, a large matrix brings heavy computational burden in
the reconstruction process. One approach to solve the above
issue is to break the image into small blocks and process each
block separately. One such block-based CS (BCS) approach
is proposed in [4]. However, since the blocks to be sampled
are non-overlapped, existing BCS methods usually produce
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blocking artifacts, which greatly degrade the quality of the
reconstructed image. In order to remove blocking artifacts,
the BCS coupled with smoothed projected Landweber recon-
struction (BCS-SPL) is proposed in [5]. BCS-SPL uses wiener
filter to smooth the reconstructed image and obtains better
performance than BCS [4]. However, wiener filter in BCS-SPL
inevitably removes the details of the reconstructed image.

In this paper, we propose a new image compressive sensing
scheme using overlapped block projection and reconstruction
(OBPR). Different from traditional BCS and BCS-SPL, the
sampling of image is applied on overlapped blocks. In process
of reconstruction, we enforce the image sparsity in discrete
cosine transform domain to improve the reconstruction quality.
Furthermore, an efficient augmented Lagrangian based tech-
nique is exploited to solve the proposed optimization problem.

The rest of this paper is organized as follows. Section II
describes the image compressive sensing method with over-
lapped block projection. Section III presents the corresponding
reconstruction method. Section IV reports the simulation re-
sults for natural images followed by the conclusion in Section
V.

II. IMAGE COMPRESSIVE SENSING WITH OVERLAPPED
BLOCK PROJECTION

In traditional BCS, the blocks to be sampled cover different
spatial position, that is to say, the blocks are non-overlapped.
This leads to the loss of the correlation between pixels
in different blocks, which may generate blocking artifacts
in the reconstructed images. Therefore, the quality of the
reconstructed image from BCS is usually unsatisfied. In order
to remove blocking artifacts, BCS-SPL introduces wiener
filter to smooth the reconstructed image and obtains better
performance than BCS. However, the strength of filter is hard
to determine. When the strength is small, the blocking artifacts
can not be removed. With high strength of filter, not only
the blocking artifacts but also the details of the reconstructed
image are removed.

This paper proposes a new image compressive sensing
scheme using overlapped block projection and reconstruction,
where the sampling of an image is applied on overlapped
blocks. Fig. 1 compares traditional non-overlapped block
projection with overlapped block projection.
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Fig. 1. Traditional block projection and overlapped block projection

In the sampling process of our proposed OBPR, we get
blocks by distance d (0<d<D, mod(D, d) = 0) periodically
as presented in Fig. 1. Suppose we have an image I (a two-
dimensional grid) of size H×W , where I(i, j) denotes a pixel,
and the indices i and j are the coordinates in the vertical and
the horizontal directions, respectively. Suppose that the size of
block is D ×D. Here, we use Bi,j to denote a block, whose
top left pixel is I(i, j) [6] [7]. The complete set of block
coordinates in image I is defined as:

Ω1 = {(i, j)|0 ≤ i ≤ H −D, 0 ≤ j ≤W −D}. (2)

Then, the complete set of blocks in image I is defined as:

B1 = {Bi,j |(i, j) ∈ Ω1}. (3)

In our OBPR sampling, the set of blocks is defined as:

Bd= {Bi,j |(i, j) ∈ Ωd}
Ωd={(i, j)| mod(i, d) = 0,mod(j, d) = 0}. (4)

Further, the set of blocks Bd can be divided into η sets, η
denotes overlap degree which is determined by d: η = (D/d)2.
In each set, the blocks are non-overlapped.

Bm,nd = {Bi,j |(i, j) ∈ Ωm,nd }
Ωm,nd = {(i, j)| mod(i,D) = md,mod(j,D) = nd}

where m = 0, 1, ...D/d, n = 0, 1, ...D/d. (5)

In traditional BCS sampling, when measurement subrate is
s, the size of measurement matrix is (s · D2) × D2. While
in OBCS sampling, since the blocks are overlapped, in order
to guarantee the same number of measurements, the size of
measurement matrix is (s ·D2/η)×D2.

Since the adjacent blocks have the similar information of
image, if their measurement matrices are the same, the mea-
surements will have many redundancies. In order to make the
information of measurements more meanful, the overlapped
blocks should have different measurement matrices. So, there
should be η different measurement matrices Φm,n for η sets
Bm,nd respectively.

The η measurement matrices Φm,n can be obtained using
the following steps. First, we generate a measurement matrix
of size (s·D2)×D2 using the same method as that used in BCS
and BCS-SPL. Then the matrix is divided into η submatrix of
size (s ·D2/η)×D2 . This process is shown in Fig. 2.

To be clear, we define an operator Ri,j which extracts the
block Bi,j from the input image x. According to the equations

Fig. 2. The process of obtaining measurement matrices Φm,n

m = mod(i,D)/d and n = mod(j,D)/d, we can find the
set Bm,nd which includes block Bi,j . So the corresponding
measurement matrix is Φm,n. The image compressive sensing
with overlapped block projection is described as below:

yi,j = Φm,nRi,jx, (6)

where (i, j) ∈ Ωd, yi,j is the measurement of block Bi,j .

III. IMAGE COMPRESSIVE SENSING WITH OVERLAPPED
BLOCK RECONSTRUCTION

In reconstruction, we enforce the sparsity of image blocks
in the complete set in discrete cosine transform domain. So
the reconstruction can be presented as:

min
x

∑
(p,q)∈Ω1

‖ΨRp,qx‖1
s.t. yi,j = Φm,nRi,jx, for all (i, j) ∈ Ωd, (7)

where Ψ is DCT matrix.
Optimization problem (7) is quite difficult to solve directly

due to the non-differentiability of sparsity item. Instead, mak-
ing use of variable splitting technique [8] [9] [10], the problem
becomes a constrained optimization:

min
x

∑
(p,q)∈Ω1

‖wp,q‖1
s.t.wp,q=ΨRp,qx,yi,j=Φm,nRi,jx, for all (i, j)∈Ωd (8)

We employ augmented Lagrangian method to solve the
function of (8):

LA(wp,q,x) =
∑

(p,q)∈Ω1

{‖wp,q‖1 − γTp,q(ΨRp,qx−wp,q)

+
β

2
‖ΨRp,qx−wp,q‖22}+

∑
(i,j)∈Ωd

{−λTi,j(Φm,nRi,jx−yi,j)

+
µ

2
‖Φm,nRi,jx− yi,j‖22}, (9)

where β and µ are regularization parameters associated with
quadratic penalty terms ‖ΨRp,qx−wp,q‖22 and ‖Φm,nRi,jx−
yi,j‖22 respectively. γp,q and λi,j are the Lagrangian multi-
pliers associated with the constraints ΨRp,qx = wp,q and
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Φm,nRi,j = yi,j respectively . The problem can be solved
by solving (10) and (11) iteratively:

(wk+1
p,q ,x

k+1) = arg min
wk

p,q,x
k
LA(wk

p,q,x
k), (10){

γk+1
p,q = γkp,q − β(ΨRp,qx

k −wk
p,q)

λk+1
i,j = λki,j − µ(Φm,nRi,jx

k − yi,j).
(11)

Here, k is iteration number. We use alternating direction
technique [7] [8] to decompose (10) into two sub-problems,
each of which can be solved efficiently.

A. The w sub-problem

Given x, the optimization problem associated with wp,q can
be expressed as:

min
wp,q

Q(wp,q) =
∑

(p,q)∈Ω1{‖wp,q‖1

−γTp,q(ΨRp,qx−wp,q)+ β
2 ‖ΨRp,qx−wp,q‖22}. (12)

The w sub-problem is separable with respect to:

min
wp,q

Q1(wp,q) = ‖wp,q‖1

−γTp,q(ΨRp,qx−wp,q)+ β
2 ‖ΨRp,qx−wp,q‖22. (13)

The solution of every separated problem is a simple shrink-
age operation [6]:

wp,q = max{|ΨRp,qx− γp,q
β | −

1
β , 0} ⊗

sgn(ΨRp,qx− γp,q
β ), (14)

where ⊗ stands for the element-wise product of two vectors.

B. The x sub-problem

With wp,q fixed, the x sub-problem can be rewritten as:

min
x
Q2(x) =

∑
(p,q)∈Ω1

{−γTp,q(ΨRp,qx−wp,q) +

β
2 ‖ΨRp,qx−wp,q‖22}+

∑
(i,j)∈Ωd

{−λTi,j(Φm,nRi,jx
−yi,j) + µ

2 ‖Φm,nRi,jx− yi,j‖22}. (15)

(15) can be further represented as:

min
x
Q2(x) =

∑
(p,q)∈Ω1{

β
2 ‖x− (ΨRp,q)

−1(wp,q

+
γp,q
β )‖22}+

∑
(i,j)∈Ωd{−λTi,j(Φm,nRi,jx− yi,j)

+µ
2 ‖Φm,nRi,jx− yi,j‖22}. (16)

We set x0 =
∑

(p,q)∈Ω1(ΨRp,q)
−1(wp,q +

γp,q
β ), the sub-

problem can be transformed to:

min
x
Q2(x) = β

2 ‖x− x0‖22 +∑
(i,j)∈Ωd{−λTi,j(Φm,nRi,jx− yi,j)

+µ
2 ‖Φm,nRi,jx− yi,j‖22}. (17)

Clearly, Q2(u) is a quadratic function and its gradient can
be expressed as:

g(x) = d(Q2(x))
dx =β(x−x0)+

∑
(i,j)∈Ωd

{µ(Φm,nRi,j)
T

(Φm,nRi,jx− yi,j)− (Φm,nRi)
Tλi,j)}. (18)
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Fig. 3. PSNR vs Measurement Subrate for image V essels

Setting g(x) = 0 gives us the exact minimizer of Problem
(15), that is:

x = {βI +
∑

(i,j)∈Ωd
µ(Φm,nRi,j)

TΦm,nRi,j}+

{βx0 +
∑

(i,j)∈Ωd
{µ(Φm,nRi,j)

Tyi,j

+(Φm,nRi,j)
Tλi,j}}, (19)

where M+ stands for the Moore-Penrose pseudoinverse of
matrix M+. Computing the inverse or pseudoinverse at each
iteration is too costly to implement. Here, the steepest descent
method with the optimal step is used to solve Problem (15)
iteratively by applying:

x̂ = x− εg(x), (20)

where ε = abs{(g(x)T g(x))/(g(x)TGg(x))} is the optimal
ε = βI +

∑
(i,j)∈Ωd

µ(Φm,nRi,j)
T (Φm,nRi,j), and I is the

identity matrix.

IV. EXPERIMENTAL RESULTS

In this section, OBPR is compared with two representative
CS recovery methods, BCS method and BCS-SPL method,
which deal with the image signal in DCT domain.

The curve of PSNR versus measurement subrate from 0.4
to 0.8 of image V essels (size=96×96, D=16, d=8) for the
three different approaches is plotted in Fig. 3. We can find the
performance of OBPR is consistently superior to the other two
methods. Additionally, some reconstructed images are shown
in Fig. 4 (measurement subrate=60%). We can see the blocking
artifacts of the image reconstructed by BCS. The reconstructed
image by OBPR is better than that of BCS-SPL.

Tables I lists more results of different images (D=16, d=8).
Results present the similar conclusion that the performance of
OBPR is better than that of BCS and BCS-SPL methods. In
addition, we can find OBPR has more prominent advantage at
higher measurement rate. Other reconstructed images are not
listed here due to limited space.

Further, considering the influence of overlap degree on
experiment result, we set different overlap degrees in the
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(1) BCS(24.47dB) (2) BCS-SPL(30.47dB) (3) OBPR(31.78dB)

(4) BCS(24.54dB) (5) BCS-SPL(30.33dB) (6) OBPR(32.16dB)

Fig. 4. Some images reconstructed by three different approaches

TABLE I
PSNR VS MEASUREMENT SUBRATE FOR IMAGE V essels, Barbara AND

Leaves

V essels(96 × 96)

Algorithm Measurement Subrate

0.4 0.5 0.6 0.7 0.8

BCS 19.12 21.57 24.47 28.61 32.10

BCS-SPL 25.55 28.09 30.47 32.83 36.09

OBCS 8 26.03 28.69 31.78 35.97 38.66

Barbara(256 × 256)

Algorithm Measurement Subrate

0.4 0.5 0.6 0.7 0.8

BCS 18.98 21.36 24.54 27.30 31.08

BCS-SPL 26.86 28.90 30.33 32.88 36.33

OBCS 8 26.94 29.19 32.16 35.29 38.18

Leaves(256 × 256)

Algorithm Measurement Subrate

0.4 0.5 0.6 0.7 0.8

BCS 15.42 17.91 21.32 23.96 27.29

BCS-SPL 24.54 26.40 28.42 30.78 33.17

OBCS 8 24.85 27.52 29.48 32.09 34.35

experiment (d=8, d=4). Tables II lists the results for image
V essels and Leaves. We can see that the reconstruction
quality is improved along with overlap degree increase.

V. CONCLUSION

In this paper, we propose a new image compressive sensing
scheme using overlapped block projection and reconstruction
(OBPR). Different from traditional methods, the sampling
of image is applied on overlapped blocks. In process of
reconstruction, an efficient augmented Lagrangian based tech-
nique is exploited to solve the proposed optimization problem.
Experimental results manifest that OBPR is able to provide a

TABLE II
PSNR VS MEASUREMENT SUBRATE FOR IMAGE V essels AND Leaves

V essels(96 × 96)

Algorithm Measurement Subrate

0.4 0.5 0.6 0.7 0.8

OBCS 8 26.03 28.69 31.78 35.97 38.66

OBCS 4 26.64 29.73 33.06 36.55 39.28

Leaves(256 × 256)

Algorithm Measurement Subrate

0.4 0.5 0.6 0.7 0.8

OBCS 8 24.85 27.52 29.48 32.09 34.35

OBCS 4 25.35 28.40 31.18 33.52 36.57

significant gain in reconstruction quality over BCS and BCS-
SPL.

There are many issues that future work should consider.
The sparsity degree of a signal in transform domain plays a
significant role in recovery while this paper simply chooses
discrete cosine transform. We can try to seek a domain in
which the signal has a higher degree of sparsity in future works
to achieve better performance, such as [11] [12].
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