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Abstract—This paper introduces a novel framework, HodgeRank
on Random Graphs, based on paired comparison, for subjective
video quality assessment. Two types of random graph models are
studied, i.e., Erdos—Rényi random graphs and random regular
graphs. Hodge decomposition of paired comparison data may
derive, from incomplete and imbalanced data, quality scores of
videos and inconsistency of participants’ judgments. We demon-
strate the effectiveness of the proposed framework on LIVE video
database. Both of the two random designs are promising sampling
methods without jeopardizing the accuracy of the results. In
particular, due to balanced sampling, random regular graphs
may achieve better performances when sampling rates are small.
However, when the number of videos is large or when sampling
rates are large, their performances are so close that Erdos—Rényi
random graphs, as the simplest independent and identically
distributed sampling scheme, could provide good approximations
to random regular graphs, as a dependent sampling scheme. In
contrast to the traditional deterministic incomplete block designs,
our random design is not only suitable for traditional laboratory
studies, but also for crowdsourcing experiments on Internet where
the raters are distributive and it is hard to control with fixed
designs.

Index Terms—Hodgerank, paired comparison, persistence ho-
mology, random graphs, video quality assessment (VQA).

I. INTRODUCTION

ITH the rapid development and wide applications of
digital media devices, the number of videos available
is growing at an explosive rate. The video quality assessment
(VQA) issue has drawn increasing attention from researchers
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during recent years, and now plays an important role in a broad
range of applications, e.g., video enhancement, reconstruction,
compression, communication, displaying, registration, printing,
watermarking, etc.

The existing methods of VQA can be divided into two cate-
gories: subjective assessment and objective assessment. In sub-
jective viewing tests, video sequences are shown to a group of
viewers, and then their opinions are recorded and averaged to
evaluate the quality of each video sequence. This process is
labor-intensive and time-consuming. Therefore, there has been
an increasing demand to build intelligent, objective quality mea-
surement models (see [1] for a survey) to predict perceived
video quality automatically. Subjective experiments are often
used to provide the ground-truth and verification for objective
models. In typical mean opinion score (MOS) test [2], individ-
uals are asked to give a rating from Bad to Excellent (Bad-1,
Poor-2, Fair-3, Good-4, and Excellent-5) to evaluate the quality
of a video. However, such a test may suffer from the following
problems [3]:

1) unable to concretely define the concept of scale;

2) dissimilar interpretations of the scale among users;
3) difficult to verify whether a participant gives false ratings
either intentionally or carelessly.

Therefore, to address the problems above, recent investiga-
tions turn to an alternative approach with paired comparison
[3]. In a paired comparison test, a participant is simply asked
to compare two videos simultaneously, and vote which one has
the better quality based on his/her perception. Therefore indi-
vidual decision process in paired comparison is simpler than in
the typical MOS test, as the five-scale rating is reduced to a di-
chotomous choice.

However, the paired comparison approach leaves a heavier
burden on participants with a larger number of comparisons. For
example, if we are given 15 distorted versions of one reference
video, by adopting the MOS, it only needs to perform 15 judg-
ments. However, itrequires ('Y ) = 120 comparisons if adopting
the complete design in direct paired comparison method. When
the number of videos to be judged is large, it may be practically
impossible, or at least unacceptable from the viewpoint of the
participants. In addition, if the test time for a single participant
lasts too long [4], participants may lose patience and thus may
input random decisions carelessly or intentionally. Therefore,
how to make paired comparison method efficient, reliable and
applicable in reality has become an urgent issue in the VQA
research.

A natural strategy to address this issue is to expose every par-
ticipant with only a fraction of all possible paired comparisons.
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Hence it raises a question: how to choose the pairs that will
be viewed by participants? There has been a large literature in
statistics on deterministic incomplete block design [5]. How-
ever, these designs may not be suitable for crowdsourcing on
Internet where raters are distributive over Internet with varied
backgrounds and it is hard to control with traditional experi-
mental designs. To meet this challenge, the work in [6] proposes
a randomized paired comparison method which randomly se-
lects small subsets of pairs for each assessor to view; the work
shows that randomization is effective in reducing costs of com-
plete design without losing the main effects. However it leaves
some open problems arising from randomization: (1) how to
systematically deal with the resulting imbalanced and incom-
plete data; (2) how many samples one needs to achieve certain
performance.

In this paper, we propose a general framework to analyze the
imbalanced and incomplete data in randomized paired compar-
ison experiments, HodgeRank on Random Graphs (HRRG). In
this framework, every item (e.g., video) in comparison is re-
garded as a graph node and an assessor collects random sam-
ples of node pairs or edges, independently and with an iden-
tical distribution (I.I.D.), or in a more complicated way. Two
particular random graph models are investigated in this paper:
(1) Erdés—Rényi random graphs which model the I.I.D. sam-
pling scheme; (2) random k-regular graphs which can be sam-
pled in a more complicated way but result in balanced paired
comparison data, i.e., every video receives the same number of
comparisons. Paired comparison data are then mapped to edge
flows on such random graphs. Equipped with a recent new de-
velopment of Hodge theoretical approach to statistical ranking
[7], we can infer a reliable global ranking from such data with a
much less sampling complexity than complete design. The pro-
posed methodology is not only suitable for traditional laboratory
studies, but also fits for crowdsourcing experiments. It provides
an answer to the two open problems above.

HodgeRank [7] is a general framework to decompose paired
comparison data on graphs, possibly imbalanced (where dif-
ferent video pairs may receive different number of comparisons)
and incomplete (where every participant may only give partial
comparisons), into three orthogonal components. In these com-
ponents HodgeRank not only provides us a mean to determine
a global ranking from paired comparison data under various
statistical models (e.g., Thurstone-Mosteller and Bradley-Terry
etc.), but also measures the inconsistency of the global ranking
obtained. The inconsistency shows the validity of the ranking
obtained and can be further studied in terms of its geometric
scale, namely whether inconsistency in the ranking data arises
locally or globally. Local inconsistency can be fully character-
ized by triangular cycles, while global inconsistency involves
cycles consisting nodes more than three, which may arise due
to data incompleteness and once presented with a large compo-
nent indicates some serious conflicts in ranking data. However
through random graphs, we can efficiently control global incon-
sistency.

Although HodgeRank can be applied to general graphs, two
particular random graph models are studied in this paper due to
their potential importance in crowdsourcing experiments. They
are Erdos—Rényi random graphs and random regular graphs.
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In Erdés—Rényi random graphs with n nodes, every edge
will be sampled with probability p in an L.I.D. way. For large
Erdos—Rényi random graphs, asymptotic theoretical results tell
us that it is necessary to have p = O(n~!logn) such that the
graph is connected and global ranking is thus possible; to avoid
global inconsistency, it suffices to have larger sampling rates
atp » O(n’l/ 2). Random k-regular graphs can be generated
in a more complicated way with dependent edge sampling
process. They are incomplete round-robin tournaments with
balanced paired comparisons. Such a balanced feature is im-
portant to HodgeRank as it leads to small condition numbers of
graph Laplacians, whence with stabler or faster solutions. For
sparse graphs where a small number of paired comparisons are
made, random regular graphs will lead to a better performance
than Erdos—Rényi random graphs; but for large graphs with
large &, random regular graphs will converge to Erdos—Rényi
random graphs asymptotically as observed in both theory and
experiments.

We further demonstrate the effectiveness and generality of
the proposed framework on LIVE video database [8], which in-
cludes 10 different reference videos and 15 distorted versions
of each reference, for a total of 160 videos. Experimental re-
sults show that the proposed framework is promising and has
potentially wide applications in subjective VQA.

The main contributions of our work include the following.

1) We propose a novel framework of HodgeRank with
random graphs to quantify the quality of video. Hodge
(Helmholtz) decomposition on graphs is introduced to
derive, from incomplete and imbalanced data, quality
scores of videos and the inconsistency of participants’
judgments. The rating procedure is efficient, labor-saving,
and more importantly, without jeopardizing the accuracy
of the results.

2) To conduct paired comparisons, two random design
schemes are proposed based on Erdds—Rényi random
graphs and random regular graphs with sampling com-
plexity studies. For large random graphs, O(nlogn)
distinct random edges are needed to guarantee graph
connectivity and thus to achieve any global ranking, but
O(n?/?) distinct random edges are sufficient to avoid global
inconsistency. For sparse random graphs, random regular
graphs may lead to better performance in HodgeRank than
Erdos—Rényi random graphs due to the balanced property.

This paper is an extension of our conference paper [9], which
only studies HodgeRank with Erd6s—Rényi random graphs. The
following distinctions are made in this paper: a minor one is to
show by an example how HodgeRank can be applied to select
assessors according to their inconsistency, while the major one
lies in a systematic treatment with two different but closely re-
lated types of random graphs, Erdos—Rényi random graphs and
random regular graphs. The reason to choose random regular
graphs lies in their balanced feature, i.e., every video is com-
pared with the same number of alternatives. Such graphs have
small condition numbers in their graph Laplacians and thus af-
fect stability of HodgeRank. The following outlines the main
results about HodgeRank of the two random graph models.

« Similar qualitative topological phase transitions are

observed for these two types of random graphs and it
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shows that random regular graphs are easier to satisfy
the loop-free condition than Erdés—Rényi random graphs
when adding the same number of distinct pairs;

e When random graphs are sparse (the number of edges
added is small), random k-regular graphs have better
performance in HodgeRank than Erdés—Rényi random
graphs in HodgeRank due to balanced nature;

* When £ is large or in an overall performance measure,
HodgeRank with Erdos—Rényi random graphs provides
good approximations to that with random regular graphs,
which meets the theoretical conjecture that as the number
of videos grows and edges are dense enough, Erdos—Rényi
random graphs asymptotically converge to random regular
graphs [10].

Therefore, both models are good candidates for researchers de-
pending on their specific applications.

The remainder of this paper is organized as follows. Section I1
contains a review of related works. Then Section III establishes
the Hodge decomposition theory, as well as the principles for
random sampling grounded in random graph theory. The de-
tailed experiments are demonstrated in Section IV. Section V
presents the conclusive remarks along with a discussion for fu-
ture work.

II. RELATED WORK

A. Paired Comparison

Paired comparison refers to any process of comparing en-
tities in pairs by raters to judge which entity in each pair is
preferred. The method of paired comparison has been widely
studied in social, psychological, statistical, and computer sci-
ence [5], [11]-[14]. It has also drawn increasing attention from
the machine learning community as it may be adapted to classi-
fication problems [15]-[17].

There have been studies on the design of subjective tests to
evaluate video quality in paired comparison method. One such
example is [3], which proposed a crowdsourceable framework
based on paired comparison. However, one major shortcoming
of [3] lies in that it makes a strong assumption that all paired
comparison data collected are complete which is impossible for
a large number of videos. For example, the way to evaluate tran-
sitivity satisfaction rate (TSR) depends on such complete design
assumption. To address this issue, the work in [6] suggests a
randomized pair comparison method in which a random subset
of all pairs are chosen for different participants to reduce the
number of comparisons. However, this work does not address
how to deal with the imbalanced and incomplete data arisen in
random sampling, and also leaves open the issue of how much
samples one needs.

In this paper, we present a new framework based on
HodgeRank [7] on random graphs, which deals with incom-
plete and imbalanced data distributed on random graphs and
further derives the constraints on sampling complexity in crowd-
sourcing experiment that the random selection must adhere to.

B. Crowdsourcing

Crowdsourcing is the act of outsourcing tasks, traditionally
performed by an employee or contractor, to an undefined, large
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group of people or community (a “crowd”), through an open call
[18]. The difference between crowdsourcing and ordinary out-
sourcing is that a task or problem is outsourced to an undefined
Internet public rather than a specific group of people.

With the growth of crowdsourcing platforms, such as
Amazon Mechanical Turk (MTurk) [19], it becomes more and
more popular to ask an Internet crowd to conduct experiments
on their personal computers. For example, researchers can seek
help from the Internet crowd to conduct user studies on image
annotation [20], [21], document relevance [22], and document
evaluation [19], etc.

C. Inconsistency Checking

After collecting the paired comparison data from the partic-
ipants, there is a need to assess the consistency of judgment as
not every participant is trustworthy. They may input random de-
cisions carelessly or intentionally. Like traditional social choice
theory with complete and balanced data, the method in [3] pro-
poses TSR to measure the consistency of a participant’s judg-
ments, which checks all the intransitive (circular) triangles such
that A > B > C > A where > indicates preference. The
TSR is defined as the number of transitive judgment triplets
divided by the total number of triplets where transitivity may
apply; thus, the value of the TSR is always between 0 and 1. Ifa
participant’s judgments are consistent throughout all the rounds
of an experiment, the TSR will be 1; otherwise it will be less
than 1.

However, TSR is only based on complete and balanced paired
comparison data. When the paired comparison data is incom-
plete with missing edges, it does not suffice to check triangular
cycles. In this case, Hodge decomposition on graphs will give us
a general treatment of inconsistency which considers not only
triangular cycles but also global cycles like A = B = C »
D= A

D. Random Graphs

In this paper, we consider a random graph as a graph gener-
ated by some random process [23], [24]. It starts with a set of
n vertices and adds edges between them at random. With such
models we aim at crowdsourcing experimental designs where
assessors may select video pairs at random. Different random
graph models produce different probability distributions on
graphs. The most commonly studied one is the Erdos—Rényi
random graph [25] which is a stochastic process that starts with
n vertices and no edges, and at each step adds one new edge
uniformly. Such models can be viewed as a sampling process of
video pairs or edges independently and identically distributed
(LL.D.). Another popular model, which is called random regular
graph, can be regarded by taking a graph uniformly at random
from the set of all simple regular graphs on n vertices [26].
There are various processes to generate random regular graphs,
among which the most popular approach is perhaps by random
matching[27]. In paired comparison methods, regular graphs
occur in the designs of incomplete round-robin-tournaments
where every competitor receives the same number of compar-
isons, often called balanced designs [5]. Such balanced designs
with incomplete blocks are believed to be important to create a
relatively fair scenario for all the participants without calling
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the complete game. In HodgeRank they are also important
because regular graphs have small condition numbers in graph
Laplacians which leads to stable solutions.

There are some other kinds of random models, such as prefer-
ential attachment random graph [28], small world random graph
[29], and geometric random graph [30], which may also play
important roles in HodgeRank under certain circumstances. The
general principle of HodgeRank can be applied to all these dif-
ferent models. However, in this paper we particularly focus on
the first two types of random graphs, Erdos—Rényi and regular
graphs, leaving other models for future studies.

IIT. HODGERANK ON RANDOM GRAPHS

In this section, we propose two new random design princi-
ples to conduct paired comparison and analyze data for a re-
liable global ranking and inconsistency. Our sampling mecha-
nism exploits the Erd6s—Rényi random graph and random reg-
ular graph, two different but closely related models. HodgeRank
is a particularly suitable tool to analyze paired comparison data
in such graphs by adapting to their topological structures. We
first explain how to develop a statistical ranking model based
on Hodge theory on general graphs, and then describe the prin-
ciples that the random selection must adhere to.

A. Hodgerank on Graphs

Let A={l,...,m} be a set of participants and
V ={1,...,n} be the set of videos to be ranked. Paired
comparison data is collected as a function on A X V' x V', which
is skew-symmetric for each participant «, ie., Y7 = —Y3
representing the degree that « prefers ¢ to j. The simplest
setting is the binary choice, where

« 17
Y;j = {_1

()é

In general, Y;§ can be used to represent paired comparison
grades, e.g., Y;7 > 0 refers to the degree that o prefers ¢ to j
and the vice versa Y7 = —Y,% < 0 measures the dispreference
degree [7]. This 1nc1udes the following additional scales often
used in VQA [6]: 1) 3-point Likert scale which contains a
neutral element in addition to a preference for ¢ or j; 2) 4-point
Likert scale which provides choices for weak and strong pref-
erence for either ¢ or j, without a neutral element; 3) 5-point
Likert scale which adds a neutral element into the 4-point likert
scale.

In this paper we shall focus on the binary choice, which is the
simplest setting and the data collected in this paper belongs to
this case. However the theory can be applied to the more general
case with multiple choices above.

Such paired comparison data can be represented by a directed
graph, or hypergraph, with » nodes, where each directed edge
between 7 and j refers the preference indicated by V7. Fig. 1
shows an illustration of such hypergraph.

A nonnegative weight functionw : A x V x V — [0, 00) is
defined as

o _J1

if & prefers i to j
otherwise.

)

if o« makes a comparison for {4, j }
otherwise.

2
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Fig. 1. Example of paired comparison hypergraph for five videos.

It may reflect the confidence level that a participant compares
{4, j} by taking different values, and this is however not pursued
in this paper.

Our statistical rank aggregation problem is to look for some
global ranking score s : V' — I? such that

Zw

which is equivalent to the following weighted-least-square
problem:

min

- Y5 3)
seRIVI

sg{i\%w wa‘(é‘i — 55— Yy;)? )
.7
where Yi; = (3, wi¥2)/ (X, we) and wi; = 3, we. For

the principles behind such a choice, readers may refer [7 ]

A graph structure arises naturally from ranking data as
follows. Let G = (V,E) be a paired ranking graph whose
vertex set is V', the set of videos to be ranked, and whose edge
setis 2, the set of video pairs which receive some comparisons,

ie.,
- {{i,j}e(g) > 0} - ®

A pairwise ranking is called complete if each participant «
in A gives a total judgment of all videos in V'; otherwise it is
called incomplete. 1t is called balanced if the paired compar-
ison graph is k-regular with equal weights w;; = > wis
for all {4,j} € F; otherwise it is called imbalanced. A com-
plete and balanced ranking induces a complete graph with equal
weights on all edges. The existing paired comparison methods
in VQA often assume complete and balanced data [3]. How-
ever, this is an unrealistic assumption for real world data, e.g.,
randomized experiments [6]. Moreover in crowdsourcing, raters
and videos come in an unspecified way and it is hard to control
the test process with precise experimental designs. Neverthe-
less, as to be shown below, it is efficient to utilize some random
sampling design based on random graph theory where for each
participant a fraction of video pairs are chosen randomly. The
HodgeRank approach adopted in this paper enables us a unified
scheme which can deal with incomplete and imbalanced data
emerged from random sampling in paired comparisons.

The minimization problem (4) can be generalized to a family
of linear models in paired comparison methods [5]. To see this,
we first rewrite (4) in another simpler form. Assume that for
each edge as video pair {4, 7}, the number of comparisons is
n;, among which a;; participants have a preference on ¢ over
J (ay; carries the opposite meaning). So a;; + aj = ny; if
no tie occurs. Therefore, for each edge {i,j} € E, we have a

=C
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preference probability estimated from data 7;; = a;; [ ;. With
this definition, the problem (4) can be rewritten as

Y nilsi-

{i,j el

sj — (2f;; — 1)) (6)

min
sCRIVI

since Y/LJ = ((J,ij - aﬁ)/nij = 27}”‘ — 1 due to (2).

General linear models, which are firstly formulated by G.
Noether [31], assume that the true preference probability can
be fully decided by a linear scaling function on V, i.e.,

mi; = Prob{i is preferred over j} = F(s —s7)  (7)
for some s* € R!VI. F can be chosen as any symmetric cumu-
lated distributed function. When only an empirical preference
probability 7;; is observed, we can map it to a skew-symmetric
function by the inverse of #

Yij = F H(#y) ®)
where YH = —f’ji. However, in this case, one can only expect
that

f/q = s7 — s*; + i 9)

where ¢;; accounts for the noise. The case in (6) takes a linear I

and is often called a uniform model. Below we summarize some

well known models which have been studied extensively in [5].
1) Uniform model:

Vij = 24 — 1. (10)
2) Bradley-Terry model:
Vi =log—9 . (11)
- 771‘]‘

3) Thurstone-Mosteller model:

Vij = F7 (#y)- (12)
where F' is essentially the Gauss error function
Pla) = —— /x eV g (13)
V2T J—a/l20% (1—p))/?

Note that constants ¢ and p will only contribute to a
rescaling of the solution of (4).
4) Angular transform model:

Vi; = arcsin(2#; — 1). (14)
This model is created for the so called variance stabilization
property: asymptotically ?Z, has variance only depending on
number of ratings on edge {7, j} or the weight w,;, but not on
the true probability p;;.

Different models will give different f/z-j from the same obser-
vation 7;;, followed by the same weighted least square problem

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 3, JUNE 2012

(4) for the solution. Therefore, a deeper analysis of problem (4)
will disclose more properties about the ranking problem.

HodgeRank on graph G = (V, E) provides us such a tool,
which characterizes the solution and residue of (4), adaptive
to topological structures of G. The following theorem adapted
from [7] describes a decomposition of Y, which can be visual-
ized as edge flows on graph G with direction  — j if fﬁl >0
and vice versa. Before the statement of the theorem, we first de-
fine the triangle set of G as all the 3-cliques in G

7= { a6 Gk b} as)

Equipped with 7', graph G becomes an abstract simplicial com-
plex, the clique complex x(G) = (V, E, T).

Theorem 1 (Hodge Decomposition of Paired Ranking): Let
Y;; be a paired comparison flow on graph G = (V, E), i.e.,
f’[, = —SA/'“ for {i,j} € E, and IA/L, = 0 otherwise. There is a
unique decomposition of 4 satisfying

V=Yo4Yh4ye (16)

where
ijj =4 — 4;, forsomescRY  (17)
571’]‘ =+ f/j}]';g + Y/ =0, foreach {i,j,k} €T (18)
Zwiji/i’;- =0, foreachi € V. (19)

jovi

The decomposition above is orthogonal under the following
inner product on RIZ!, (u,v) = (i e R Wijlij iy -
The following provides some remarks on the decomposition.
1) When G is connected, ij is a rank two skew-symmetric
matrix and gives a linear score function § € RY up to trans-
lations. We thus call Y a gradient flow since it is given by
the difference (discrete gradient) of the score function § on
graph nodes

~

Yg = ((30@)(1,]) = ‘3[ — ‘§J

iy (20)
where &y : RY — RF is a finite difference operator (ma-
trix) on (7. § can be chosen as any least square solution of
(4), where we often choose the minimal norm solution
§=Al8Y (21)
where 65 = 6W (W = diag(wi;)), Ao = & - & is
the unnormalized graph Laplacian defined by (Ay):; =
> jei wij and (Ag)i; = —wij, and ()1 is the Moore-Pen-
rose (pseudo) inverse. On a complete and balanced graph,
(21) is reduced to 8; = 1/n— 13, ,;Yi;, often called
Borda Count as the earliest preference aggregation rule in
social choice [7]. For expander graphs like regular graphs,
graph Laplacian A has small condition numbers and thus
the global ranking is stable against noise on data.
2) V" satisfies two conditions (18) and (19), which are called
curl-free and divergence-free conditions, respectively. The
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Inconsistent (divergence-free)

Vig Y

Gradient flows
(globally acyclic)

Curl flows
(locally cyclic)

Harmonic flows (]
(locally acyclic)

s>/

A S -7

Locally consistent (curl-free)

Fig. 2. Hodge decomposition (three orthogonal components) of paired rank-
ings [7].

former requires the triangular trace of Y to be zero, on
every 3-clique in graph G; while the later requires the total
sum (inflow minus outflow) to be zero on each node of G.
These two conditions characterize a linear subspace which
is called harmonic flows.

3) The residue ye actually satisfies (19) but not (18). In fact,
it measures the amount of intrinsic (local) inconsistancy in
Y characterized by the triangular trace. We often call this
component curl flow. In particular, the following relative
curl

- Yy + Vi + Vi
cur ijk == = ~
1Yii | + (Y5l + [Yiil
Y+ Y+ Y
1Yis] + [Yikl + [Yail

€[0,1] (22)

can be used to characterize triangular intransitivity;
curli;, = 1iff {4, 5, k} contains an intransitive triangle of
Y. Note that computing the percentage of curli;, = 1 is
equivalent to calculating the TSR in complete graphs.

Fig. 2 illustrates the Hodge decomposition for paired com-

parison flows and Algorithm 1 shows how to compute global
ranking and other components. The readers may refer to [7] for
the detail of theoretical development. Below we just make a few
comments on the application of HodgeRank in our setting.

1) To find a global ranking 5 in (21), the recent developments
of Spielman—Teng [32] and Koutis—Miller—Peng [33] sug-
gest fast (almost linear in | F|Poly(log |V])) algorithms for
this purpose.

2) Inconsistency of Y has two parts: global inconsistency
measured by harmonic flow Y" and local inconsistency
measured by curls in Y. Due to the orthogonal decompo-
sition, |[Y"||2/||Y|12 and ||[Y¢||2/||Y || provide percent-
ages of global and local inconsistencies, respectively.

3) A nontrivial harmonic component yh # 0 implies the
fixed tournament issue, i.e., for any candidate : € V', there
is a paired comparison design by removing some of the
edges in G = (V, E) such that ¢ is the overall winner.

4) One can control the harmonic component by controlling
the topology of clique complex x(G). In a loop-free clique
complex x(G) where 41 = 0, harmonic component van-
ishes. In this case, there are no cycles which traverse all the
nodes,e.g.,1 > 2 >3 >4 > --- > n > 1. All the in-
consistency will be summarized in those triangular cycles,
e.g,t > j =k >t

849

Algorithm 1 Procedure of Hodge Decomposition in MATLAB
Pseudocodes

Input: A paired comparison hypergraph GG provide by
assessors.

Output: Global score 5, gradient flow V9, curl flow Y¢, and
harmonic flow Y*.

1. Initialization:

Y (a numEdge-vector consisting Y; ; defined),

. W (a numEdge-vector consisting w;;).

. Step I:

. Compute 8y, 61; // 69 = gradicnt, 6 = curl
68 = 68 x diag(W); // the conjugate of &g

. Ag = 0f * 693 // Unnormalized Graph Laplacian

Ldiv = 6 * v,/ divergence operator

NeENe BN e . I~ VS B \9)

. § = lsqr(Ag, div); // global score

—_
(=]

. Step 2:

—
—_

. Compute st projection on gradient flow: V9 = 8y = &;

—_—
[\

. Step 3:
L6 = 6T x diag(1. /W),
. Al = 61 * 6?,

—_
A W

Leurl = 61 % f/;

—_ =
AN W

.z = lsqr(Ay, curl);

—_
3

. Compute 3rd projection on curl flow: Ve = 87 * z;
18. Step 4:

19. Compute 2nd projection on harmonic flow:
Yh=Y Y9 -Y°

Theorem 2: The linear space of harmonic flows has the
dimension equal to /3, i.e., the number of independent loops
in clique complex x((), which is called the first order Betti
number.

Fortunately, with the aid of some random sampling princi-
ples, it is not hard to obtain graphs whose [3; are zero.

B. Random Graphs

In this section, we first describe two classical random models:
Erdos—Rényi random graph and random regular graph; then we
investigate the relation between them.

1) Erdés—Rényi Random Graph: Erdds—Rényi random graph
G(n, p) starts from n vertices and draws its edges independently
according to a fixed probability p. Such random graph model is
chosen to meet the scenario that in crowdsourcing ranking raters
and videos come in an unspecified way. Among various models,
Erdds—Rényi random graph is the simplest one equivalent to
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L.LD. sampling. Therefore, such a model is to be systematically
studied in the paper.

However, to exploit Erdos—Rényi random graph in crowd-
sourcing experimental designs, one has to meet some conditions
depending on our purpose:

1) the resultant graph should be connected, if we hope to de-

rive global scores for all videos in comparison;

2) the resultant graph should be loop-free in its clique com-
plex, if we hope to get rid of the global inconsistency in
harmonic component.

The two conditions can be easily satisfied for large

Erd6s—Rényi random graph.

Theorem 3: Let G(n,p) be the set of Erdos—Rényi random
graphs with n nodes and edge appearance probability p. Then
the following holds as n — oo:

1) [Erdés—Rényi 1959] [25] if p > logn/n, then G(n,p) is
almost always connected; and if p < logn/n then G(n, p)
is almost always disconnected;

2) [Kahle 2009] [34] if p = O(n®*), with &« < -1 or
a > —1/2, then the expected 3 of the clique complex
x(G(n,p)) is almost always equal to zero,! i.e., loop-free.

These theories imply that when p is large enough,
Erd6s—Rényi random graph will meet the two conditions above
with high probability. In particular, almost linear O(n log )
edges suffice to derive a global ranking, and with O(n%/?)
edges harmonic-free condition is met.

Despite such an asymptotic theory for large random graphs, it
remains a question how to ensure that a given graph instance sat-
isfies the two conditions? Fortunately, the recent development
in computational topology provides us such a tool, persistent
homology, which will be illustrated in Section III-C.

2) Random Regular Graph: In data collection of paired com-
parisons, balance is often a desired property in the sense that
every video has the same number of comparisons against others.
This requires the graph to be regular. For example, round-robin
tournaments in sports are one of the most popular paired com-
parison method, which has balanced data in the sense that every
participant has an equal chance against all other participants.
This is the fairest way to determine a champion as the element
of luck is seen to be reduced compared to a knockout system.
A participant’s final record can represent his/her true athletics
level more accurately since it was generated by equal competi-
tion with all the participants.

However, complete round-robin tournaments needs (g)
paired comparisons, i.e., a complete paired comparison graph,
which is a heavy burden when # is large. To provide a reliable
result using fewer rounds than a complete round-robin, %-reg-
ular graphs are adopted in this paper, as incomplete designs of
round-robin tournaments with less amount but still balanced
data. In k-regular graphs, each node has the same number of
neighbors; i.e., every node has the same degree &, e.g., in Fig. 3.

To meet the stochastic situation in crowdsourcing ranking, we
exploit random regular graphs in this paper. A random matching
algorithm in [27] is used to generate random regular graphs.
Random regular graphs can thus be regarded as taking a graph

IForany € > 0, almost always 31 /| E| < € where /3, is the first Betti number
and | E/| is the number of edges.
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Barcode: Betti 1

Fig. 4. Persistence barcodes of Betti numbers.

uniformly at random from the set of all simple regular graphs on
vertices. Here, we use ((n, k) to denote the uniform probability
space of k-regular graphs on the » vertices {1,2,...,n}. When
k = m — 1, the graph generated is a complete and balanced
graph.

3) Connections Between Erdés—Rényi Random Graph and
Random Regular Graph: There are close connections between
Erd6s—Rényi random graphs and random regular graphs. An
easy observation is that when p > logn/n, G(n,p) has
all vertex degrees tightly concentrated around their mean
p(n — 1) ~ pn by Chernoff inequality for binomial random
variables. So Erdos—Rényi random graphs are expected to
behave like %-regular graphs asymptotically as 7 — oc and the
graph is dense enough. Although it is still an open question in
theory to precisely characterize such asymptotic equivalence,
some results can be found e.g., in [10]. However for small
or sparse graphs, their different influences on HodgeRank are
still unknown. In the next section we will introduce some
tools from computational topology to compute the number of
connected components and holes in clique complexes of finite
random graphs. From simulations we will see again the simi-
larity between two random graph models. However, due to the
balanced nature of random regular graphs, some performances
of HodgeRank will be improved in random regular graphs as
will be shown in the experimental section.
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Fig. 5. Average Betti numbers of clique complexes for random graphs (a) Erdos—Rényi random graphs (b) random regular graphs.

C. Persistence Homology Barcodes

Persistence homology is firstly introduced by [35] in compu-
tational topology, and later developed by [36] into an algebraic
theory. Roughly speaking, it provides us an online algorithm to
compute the Betti numbers when simplexes enter in a sequen-
tial way. For more details of persistent homology, readers may
refer to the surveys in [37], [38]. Here we just discuss in brief
the application of persistent homology to monitor the number
of connected components () and loops (/31 ).

To use persistent homology, we will put the nodes, edges and
triangles in x(G) (V,E,T) in a linear order, such that a
node appears no later than its associated edge and an edge no
later than its associated triangle. For example, in random graph
designs for video comparisons, we can assume that the videos
(nodes) come in a certain order (e.g., production time, or all cre-
ated in the same time), after that pairs of videos (edges) are pre-
sented to us one by one. A triangle {4, j, k} is created whenever
all the three associated edges appeared. Persistent homology
may return the evolution of the number of connected compo-
nents (3y) and the number of independent loops (/1) at each
time when a new node/edge/triangle is born.

Fig. 4 illustrates a birth process of clique complex and its
associated Betti numbers (3y and (1) that are computed and
plotted by JPlex [39]. At the first frame (say ¢ = 0), 6 videos as
nodes are collected, which corresponds to §p = 6 att = 0
in Barcode: Betti 0. On the second frame (¢ 1), an edge
connecting a pair of nodes is created which drops the number

of connected components from 6 to 5, i.e.,, 5y = batt = 1 in
Barcode: Betti 0. The same procedure follows and particularly at
the fifth frame ¢ = 4, it creates a loop and there are 3 connected
components in the graph, which can be read from 3y = 3 att =
4and B; = 1 att = 4, respectively. Note that after the thirteenth
frame £ = 12, there is only one connected component 3y = 1
left and no loop exists 3; = 0 as indicated by the Barcodes. For
more details on the algorithmic aspects of persistent homology,
readers may refer to [35].

With the aid of persistent homology, one can compute
the mean Betti numbers for random graphs. For example,
for Erdos—Rényi random graphs with 16, 32, and 64 nodes
(n = 16,32,64), the expected 3y and 51 (with 100 random
graphs) are plotted in Fig. 5(a). Note that with p > 0.7 with high
probability the expected 1 for G(16, p) equals to 0. This phase
transition probability will drop as the number of nodes increases,
and this can be seen from the cases of n = 32 (p > 0.5) and
n = 64 (p > 0.4), as plotted in Fig. 5(a). As [34] shows, this
probability asymptotically drops at the rate p ~ n=1/2.

Moreover, Fig. 5(b) shows the average (3 and f; (with
100 random graphs) of random k-regular graphs with
n = 16,32, 64. The phase transitions are qualitatively similar
to Erdos—Rényi random graphs with some subtle distinctions.
It can be seen from this figure that when £ > 9 with high
probability the expected 31 for ((16.%) equals to 0 which
corresponds to 16 x 9/2 72 distinct pairs. However, as
illustrated in Fig. 5(a), for Erd6s—Rényi random graph, it needs
p > 0.7 corresponding to 120 x 0.7 = 84 distinct pairs. This
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reflects that balanced data is easier to satisfy the loop-free
condition than imbalanced data when adding the same number
of distinct pairs.

IV. EXPERIMENTS

In this section, we systematically evaluate the effectiveness
of our proposed HRRG method for subjective VQA. First, the
dataset used for the experiments is briefly explained, followed
by the experimental design of obtaining paired comparison data.
Next, we first show how to apply the inconsistency measures
in Hodge decomposition to evaluate assessor reliability; then
build up a base-line with complete paired comparison design
with model selections. Finally, the results with incomplete data
are demonstrated with two random sampling schemes.

A. Dataset

We adopt the publicly-accessible database for VQA, LIVE
video database [8], which includes 10 different reference videos
and 15 distorted versions of each reference, for a total of 160
videos. In the subjective test, the observers are asked to provide
their opinion of video quality on a continuous scale. In other
words, the MOS is adopted to analyze the perceived quality of
each video. Note that we do not use the subjective scores in
LIVE [8], we only borrow the video sources it provides. Dif-
ferent from LIVE [8], we propose to assess video quality with
paired comparison.

B. Paired Comparison Data Collection

We now present our experiment design for collecting the set
of paired comparison data. The complete comparisons of this
video database will require 10 X (126) = 1200 decisions. Con-
sidering that the order of presentation may bias final results, we
need to balance them out at the design stage. A complete bal-
ancing-out would be achieved by repeating the whole experi-
ment with the order that each pair reversed. However, this is too
expensive and time-consuming. Therefore, our playlists will be
based on a random permutation of 1200 test pairs with a random
within-pair order. Moreover, we hope to avoid the situation with
successive pairs of test videos from the same reference, to avoid
contextual and memory effects in their judgments of quality. For
this purpose, after the playlist is constructed, our program would
go over the entire playlist to determine if adjacent pairs corre-
spond to the same reference. If such a case is detected, one of
the pairs would be swapped with another randomly chosen pair
in the playlist which does not suffer from the same problem.

A benefit of such a random presentation scheme is to make
it impossible for participants to cheat our system by inputting
“smart” answers. This is because the order of each pair and the
order within each pair are totally random in each experiment,
and the order is not disclosed to the participants before the test.

Before starting the experiment, each participant is briefed
about the goal of the experiment and given a short training ses-
sion to familiarize themselves with the testing procedure. In the
testing process, videos are displayed at their native resolutions
to prevent any distortions due to scaling operations performed
by software or hardware. As each comparison takes approxi-
mately 3040 seconds, the total time for each subjective exper-
iment will vary from 10 up to 14 hours. According to [4], the
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Fig. 6. Experimental results of 10 assessors’ reliability.

execution time of one experiment by each observer should not
exceed 30 minutes. Thus, we split the playlist into 30 sessions
where each session consists of 40 video pairs and thus will not
exceed a halfhour. Finally 209 random observers, each of whom
perform varied number of comparisons, provide 41 800 paired
comparisons in total. After discarding some inconsistent/invalid
data, 38400 paired comparisons (32 rounds complete data) are
treated as our experimental data.

The results of paired comparisons can be collectively summa-
rized by Y}, where for each reference video » = 1,...,10,
Y;;" follows the same definition in Section I-A with o =
1,...,32 for round (group) index. For each reference video,
such paired comparison data can be represented by a directed
graph (or hypergraph) with 16 nodes, and between every pair of
nodes there are 32 directed edges indicating the preferences.

Finally, we note that the data collection above suffices
to study approximations of global ranking from incomplete
random samples in this paper. However, it can not be used to
investigate the effects of single or multiple experimental design
variables. For the latter purpose, one has to collect samples
under various experimental controls which will be left for
future studies.

C. Experimental Results

1) Assessment of Assessor’s Reliability: We give a pre-
liminary example of HodgeRank on evaluating assessors’
reliability. The following shows how to pick out the volunteers
that are giving inaccurate/dishonest results. After receiving the
paired comparison results of each assessor, HodgeRank can be
used to derive the total inconsistency (Inc.Total), curl inconsis-
tency (Inc.Curl) and harmonic inconsistency (Inc.Harm). The
total inconsistency is measured by

R TP IC O
Inc. Total(Y) = s = = =
Y112 2 wij Y
ij

. N X))
which equals to the sum of Inc. Harm(Y) = [[Y[|2/||Y[|2 and
Inc.Curl(Y) = [|[Y¢2/IIY|I2. We also define the harmonic
percentage as the ratio

Y 12
Inc. Total(Y)

Fig. 6 shows the inconsistencies of 10 participants who pro-
vide their opinions for the 16 different quality videos in refl,

Percentage. Harm(Y) = (24)



XU et al.: HRRG FOR VQA

Ref1 Ref 2
6
5
3
o 4
g3H
B2\ =
> 14 /’L\\ f—
2 \ 3
% 0 \\‘ﬁ/’/_g\\\\"?/ \\/{ \
81 NN Nz '/
g -2 v
-3
'4~G—Jv-<\|mvlocor\noc»ovmm¢m
28000 DBO0De e
(s [SESHSNS]
ELC L Lol e
£cLfcccco
Ref 6
5 L]
2 2 41
o o 3
o o
»n »n %
z 2l
® ©
3 S -1
(] g -2
-3
-4
BoANTYERRFOTNOT®
= A T T
[ = o i o ]~ o ol
£cLfcccco
Ref 10
5
[ o 4 R
] & 31 N
Q o 92 | [
on (2] 1 \
2 20
© = ="/
2 g—1 \ /
@ &3 v
-4
-5

Thurstone-Mosteller

~4— Uniform

-@— Bradley-Terry ~»=Angular transform

853

Ref 3 Ref 4
6 L
B4 2
o 2 / 9
B N D8
e\ o~ N (2]
20 N/ N/ NI -
Sl VN £
S v/ [
a4 S
-6
BoARTRYRRFOoNOT D
CELPRLLLEETLTEL D
Sl COC OOl oS s te s
£cLccccoc
Ref 7
4
§31 2
320\ A ]
>'1 X %‘\\\\ /= \. [77]
% 0 N\ N~ e 2
EIRVAY 5
&7 WV \ Y 3
-3
-4
BoAYTRYRRFOTNOT 0
CELPLELLLELTOTEE D
S L C oL OO ot gy ot
£cLfcccc
0.45 -
S Uniform
> 04 Bradley-Terry
= Thurstone-Mosteller
2 035 ZzzZZ Angular transform
17}
7
c
o
o
=

Angular
0.1611

1 Model

Uniform
0.1742

’ Mean

Fig. 7. Global ranking scores and inconsistency distribution of 32 complete rounds on Live video database [8]. The Angular transform model has the smallest
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each one with incomplete data. It can be seen from this figure
that assessors 8 and 10 have extraordinarily large total inconsis-
tency. A closer inspection on the two assessor’s record shows
that the two assessors are careless or exposed to a larger noisy
environment. In this way, we can identify and discard some in-
consistent data provided by unreliable assessors. We note that
the example above is preliminary for illustration, and a sys-
tematic treatment of this topic needs a distribution model of
harmonic or curl flows under various experimental conditions,
which is left for future pursuit.

2) Complete Design With Model Selection: The purpose of
this paper is to show that with some random samplings, incom-
plete data could provide good approximation of the results from
the complete data. Therefore, results obtained from 32 rounds of
complete comparisons are treated as the baseline in our experi-
ment. HodgeRank with such a complete and balanced data will
be reduced to the Borda Count following (21). With complete
and balanced data, global/harmonic inconsistency vanishes ac-
cording to Section III-A.

Global ranking scores § for each reference and inconsis-
tency distribution are given in Fig. 7, where “ref” represents
10 different reference videos in Live video database [8] and
“hrc1-15” are 15 distorted versions of each reference. It can be
seen that Hodge decomposition with Angular transform model
has the smallest mean inconsistency and the uniform model is
the second best with a slightly worse inconsistency. Therefore,

we will adopt the Angular transform model in the following
experiments for incomplete data.

3) Results of Incomplete Data: In the following experiments,
we shall focus on the performance of incomplete data under dif-
ferent sampling complexity in two random graph designs, i.e.,
Erdds—Rényi random graphs and random regular graphs. In par-
ticular we will sample the complete data at different rates mea-
sured by the number of distinct edges in the graph and study
the following performance measurements: 1) Kendall’s 7 cor-
relation [40] of HodgeRank on sampled data versus the com-
plete data; 2) inconsistency measured by percentage of total in-
consistency and harmonic inconsistency; 3) statistical stability.
The first two experiments study Erdés—Rényi random graphs
and random regular graphs under different sampling ratios for
each of 10 groups, respectively. The third experiment compares
their overall performances on Live data [8].

4) Exp-I: Erdos—Rényi Random Sampling: As illustrated in
Section III-CFig. 5(a), for n = 16, if more than 25% random
edges are added, the resultant graph is connected with high prob-
ability; and with more than 70% edges, the resultant clique com-
plex is loop-free with high probability. Connectivity is neces-
sary if we would like to derive a global score on all videos.
The existence of harmonic ranking may jeopardize the global
score by incurring the fixed tournament issue. Here we use sam-
pling complexity (number of distinct edges in the paired com-
parison graph) to control the harmonic ranking component. By
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averaged over 10 reference videos with 100 bootstrapped samples.

the two phase transitions observed in the last section, the projec-
tion on harmonic ranking only exists when the number of dis-
tinct edges is in medium range. To illustrate this point, we design
this experiment. In this experiment, the sampling schemes are
the same for each r of the reference video. And we randomly
draw p% pairs from each round o € {1,...,32} of complete
comparisons. Note that we extract the same pairs from each of
the 32 groups. Then, HodgeRank (4) is applied to obtain quality
scores of each video from this incomplete dataset. To ensure
the statistical stability, we run the random sampling process 100
times. Blue curves in Fig. 8 shows the Kendall’s 7, total incon-
sistency, harmonic inconsistency, and percentage of harmonic
over total inconsistency, against the edge sampling rates ranging
from 20% to 100%. In this example, harmonic inconsistency ac-
counts for more than 50% total inconsistency before 25% edges,
and rapidly drops to zero after 70% edges (where Kendall’s 7
coefficient goes beyond 0.9 and total inconsistency stabilizes
below 0.2).

Therefore, to avoid the possible issue of harmonic ranking,
we can choose an upper bound for the thresholding probability
above, i.e., 75% (120 x 0.75 = 90) for n = 16 node graphs.
In this case, with high probability the total inconsistency will
be fully characterized by the local inconsistency. For general
large Erdos—Rényi graphs, we can choose any upper bound for
p = O(n~/?) with O(n?/?) edges. Note that such a choice
is only a sufficient condition to avoid harmonic ranking. In
the cases where harmonic inconsistency is small enough, one
can choose a much smaller thresholding probability, up to
p = O(n~!logn) with almost linear O(n log n) edges which
is the lower bound to guarantee connectivity.

5) Exp-II: Random Regular Sampling: As illustrated in
Section III-CFig. 5(b), for n = 16, when £ > 9, the resultant
clique complex is loop-free with high probability and thus we

can derive a reliable global ranking. To illustrate this point, we
first establish a random k-regular graph. Then, for each of the
10 reference videos, and for each of the 32 groups of complete
paired comparisons, the graph generated in the previous step is
used to sample pairs. Just the same as Exp-I, each group con-
tains the same pairs. Red curves in Fig. 8 shows the Kendall’s
7, total inconsistency, harmonic inconsistency, and percentage
of harmonic over total inconsistency, against the sampling rates
corresponding to the number of k£ ranging from 2 to 15.

Just the same as Erdds—Rényi random graph, in random
k-regular graphs, for general n, we can also choose an upper
bound for £, i.e., k = 9 for n = 16 node graphs. In this case,
with a high probability the resultant paired comparison graph
is connected and its associated clique complex is loop-free.
Therefore, the inconsistency is attributed to merely local in-
consistency where the global ranking will not suffer the global
inconsistency issue. Note that such a threshold varies with the
total number of videos.

The comparisons of two random sampling schemes in Fig. 8
also disclose the following: when sampling rates are small (say <
40%), random k-regular graphs will lead to better performances
in terms of higher Kendall’s correlation with the ground truth
and lower total inconsistency. This shows the benefit of balanced
sampling in regular graphs. However, due to structural proper-
ties of k-regular graphs with small k£, harmonic components will
contribute more for random regular graphs than Erdos—Rényi
random graphs in this range. We note that the distinction between
two sampling schemes rapidly decreases as sampling rates in-
crease. In order to make a comparative study of the performance
of these two random sampling schemes in a global manner, an
additional experiment is conducted in the following.

6) Exp-III: Erdés—Rényi Random Sampling Versus Random
Regular Sampling: This experiment shows the average perfor-
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TABLE I
KENDALL’S 7 AND INCONSISTENCY OF ERDOS-RENYI RANDOM SAMPLING

min mean max std

Kendall’s T 0.9350 0.9536 0.9750  0.0085

Harmonic Inconsistency 0 0 0 0

Total Inconsistency 0.1770  0.1895  0.2009  0.0048
TABLE II

KENDALL’S 7 AND INCONSISTENCY OF RANDOM Ak-REGULAR SAMPLING

min mean max std

Kendall’s 0.9333 09539 0.9667 0.0078

Harmonic Inconsistency 0 0 0 0

Total Inconsistency 0.1779  0.1891  0.1994  0.0047

mance of these two sampling schemes under arbitrary number of
samples. Specifically, for each reference, we randomly sample
32 k-regular graphs from 32 rounds independently. Meanwhile,
for Erdos—Rényi random sampling, we randomly sample the
same number of pairs from each reference in 32 rounds. To en-
sure the statistical stability, we run the random sampling process
100 times. Tables I and II show the mean Kendall’s 7 and incon-
sistency results of 100 times achieved by these two schemes.
Results are averaged over 10 reference videos. From these ex-
perimental results, we make the following comments.

First, it is shown that both of these two sampling approaches
could provide good approximate results of the complete data,
with an average Kendall’s 7 of 0.9539 £+ 0.0078 (random
k-regular) and 0.9536 + 0.0085 (Erdos—Rényi), respectively.
Although the gaps between their performances are small, there
is a slightly better overall performance in random regular graphs
than Erd6s—Rényi random sampling with higher Kendall’s 7-co-
efficients, lower total inconsistency (0.1891 £ 0.0047 versus
0.1895 + 0.0048), and better stability (std of Kendall’s 7 and
total inconsistency in random regular sampling are both smaller
than in Erdés—Rényi random sampling). We note that ignoring
the stochastic fluctuations, one may qualitatively conclude that
the two random graphs bear similar overall performances in
such an experiment.

Second, we observe that the harmonic inconsistency in both
of these two sampling is always 0. As mentioned above, as long
as the resultant clique complex is loop-free, the harmonic incon-
sistency will vanish. Due to the multiple comparisons between
a pair of videos, a natural question is raised that how many per-
centage of samples are needed to satisfy the loop-free condition?
Similar to Erd6s—Rényi random graph theory on simple graphs,
Fig. 9 draws percentage of samples versus median number of
edges (or distinct pairs) covered. As we can see, after 4% of
samples on this hypergraph, with high probability 75% distinct
pairs will be covered and thus can induce a loop-free complex.
That is to say, it is easy to meet this requirement and thus can
avoid the possible issue of harmonic inconsistency.

Third, in such an overall performance measure, Erdos—Rényi
random graphs are [.I.D. sampling on paired comparison ex-
periments, which provides reasonably good approximations
of random k-regular, a kind of dependent sampling scheme,
despite their distinctions when sampling rates are low in Exp-I1.
Therefore, both of these have their advantages and disadvan-
tages and are both promising sampling methods. So which one
to choose depends on specific application requirements. For
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of distinct pairs with [0.25, 0.75] confidence interval are plotted in the figure.

example, when raters need more flexibility to finish this task,
maybe Erdos—Rényi random sampling is a good choice. After
all, it does not jeopardize much the accuracy of the results.
However, when organizers require that each video should be
compared in a fair and equitable manner, i.e., every video has
the same number of paired comparisons with other videos,
random regular graphs can take up this mission.

V. CONCLUSIONS

In this paper, we have proposed an efficient approach called
HRRG towards subjective VQA. Our approach is based on
random graph theory and Hodge decomposition of paired
comparison data on graphs. In particular, we study two random
sampling schemes inspired by Erd6s—Rényi and random regular
graph theory, followed by HodgeRank to analyze the incom-
plete and imbalanced data collected in these experiments. In
these sampling schemes, participants only need to perform a
random fraction of all possible paired comparisons. But with a
sufficiency of coverage satisfied, HodgeRank may give reliable
results without jeopardizing the accuracy of the result. In con-
trast to the traditional deterministic incomplete block designs,
our random design is not only suitable for traditional laboratory
and focus-group studies, but also fit for crowdsourcing experi-
ments on Internet where the raters are distributive over Internet
and it is hard to control with traditional experimental designs.

There are both distinctions and similarities in the two random
graph models. Erdos—Rényi random graphs are the simplest
random sampling design bearing the L.I.D. property, while the
random regular graphs belong to a sort of dependent sam-
pling with balanced paired comparisons. The balanced nature
of random k-regular graphs makes it with better performance
when sampling rates are low in our experiments. However, such
a distinction rapidly vanishes when sampling rates are high or
measured in an overall way. In theory, for large n, Erdos—Rényi
random graphs may provide good asymptotic approximations
for random regular graphs. Therefore, one may choose suitable
models depending on the specific circumstances.

With the rapid advent of technologies on rich user interface,
in future, we plan to assess users’ experience in interactive ap-
plications with an online learning setting where random graph
models may take into account of sampling order (e.g., prefer-
ence attachment graphs). Besides, a dataset with more reference



videos, distorted videos, and statistically significant subjective
scores will be of great value to the VQA research community,
which will also be part of our future work.
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