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Abstract—In recent years, the dramatic development of cloud
computing, referring to as the applications and services im-
plemented over Internet, has been witnessed and draws many
attentions from both academia and industry. Objective image
quality assessment (IQA) is fundamental to a broad range
of applications throughout the fields of image processing and
computer vision. There is a huge desire in exploiting new design
of IQA model which is not only accurate but also efficient for
fitting the requirement under the background of big data. Many
successful models have been built for accurate prediction of the
perceptual visual quality, where some typical characteristics of
human visual system (HVS) are utilized and incorporated in
IQA systems. The well-known foveation effect assumes that the
regions around the fixation points are much more attractive to
human eyes, thus the quality of these regions would significantly
influence the overall visual quality. In this paper, we analyze the
correlations between the fixation point and quality assessment
by integrating several state-of-the-art interest point detection
algorithms into IQAs. Experimental results on public database
demonstrate that the addictive information of interest point is
helpful for improving accuracy of popular IQA models, and
meanwhile dramatically reducing the computational complexity.
Furthermore, the parameter impacts on IQA performance are
thoroughly analyzed showing that the parameters should be
carefully designed for different IQA models as well as viewing
conditions.

I. INTRODUCTION

Objective image quality assessment (IQA) aiming at accu-
rately estimating the subjective feeling of natural scenes has
been studied for decades. It is an essential controller in many
image/video processing applications such as transmission,
coding, restoration, denoising, detection and recognition. The
simplest IQA method is the mean square error (MSE) or peak
signal-to-noise ratio (PSNR) and is successfully applied in
many real-time applications due to its efficiency. MSE is fast
and effective in measuring the signal difference, but cannot
correlate well with the perceptual experience [1]. Thus modern
IQA models always take advantages of the HVS features
for obtaining more accurate metrics, including the contrast
sensitivity function, contrast masking, luminance masking etc.
Structure similarity (SSIM) [2] and its variant Multi-scale
SSIM [3] schemes have shown better correlation with visual
perception and demonstrate its power in many applications
such as perceptual video coding [4], [5]. It is assumed that
the natural scene is highly structured and human eyes are
much adaptive with the structure content. For the arrival of
the age of big data, the IQA model meets the big challenge
of achieving a good tradeoff between accuracy and efficiency.

(a) Original image (b) Foveated image

Fig. 1. Tllustration of the foveation effect in visual perception. The white
area in green lawn is assumed as the fixation point. The pixels around fixation
point are perceived by high resolution while others are blurred.

In this paper, we aim at killing two birds with one stone:
high accuracy prediction with low complexity calculation. The
feature descriptors are usually stored off-line in the cloud,
which facilitate the application of the proposed algorithm
in cloud based image processing such as transcoding. The
localized quality from the feature descriptors can be directly
employed to reflect the quality of the overall image. This is
also in accordance with the philosophy when HVS perceives
the image quality. Previous works [6]-[8] have attempted to
utilize the performance of feature extraction to estimate the
subjective perception.

The motivation of this paper is from the fact that the
response (or sensitivity of HVS) on different image regions
is absolutely distinct, as the human eyes always focus on
some interest regions. It can be accounted by the well-known
foveation effect in visual perception, where the resolution in
the retina rapidly decreases with the increasing distance to
the fixation centra. When one fixates at a point in an image,
the region around it is sampled with the highest resolution,
while the remote region would be felt like blurred as shown
in Fig. 1. It is because of the nonuniform distributions of cone
receptors and ganglion cells in the retina [9]. Therefore it can
be inferred that regions should be associated with different
weighting factors according to its visual importance.

The weighting process in IQA is also referred to as pooling,
where the local quality map is merged as one single score
that represents the overall quality of the image. It is known
that the pooling strategy is crucial to the IQA performance.
A general way assumes that the regions with severe distortion
contribute a lot to the ultimate quality. It is called distortion-
guided pooling strategy. In [10], the local scores are weighted
by the information content and the IQA performance has been



improved. In this paper, we propose a weighting strategy that
mimics the foveation effect of HVS. First a visual saliency
map is generated by the extracted interest points, then this
map performs as the weighting factors in pooling stage.
Several state-of-the-art algorithms of interest point detection
are integrated in IQA models to verify the effectiveness of
this method. The interest point detection techniques can be
categorized into corner based methods and blob based meth-
ods. A corner can be defined as the intersection of two edges
and always considered as an fixation point that will attract
human attention. A blob region in an image typically contains
different properties, such as brightness or color, compared to
the surrounding areas.

The contribution of this paper is twofold. First we build the
connection between the interest point detection and the image
quality assessment, and several state-of-the-art algorithms of
interest point detection are integrated and compared in this
work. We have found that both the accuracy and efficiency of
IQAs can be improved by the guidance of the interest point
detection. Second the parameter impacts on IQA performance
are deeply analyzed showing that the optimal parameter set-
tings of different IQA models are distinct.

The remaining of this paper is organized as follows. In Sec-
tion II we introduce some state-of-the-art techniques of interest
point detection, then the quality assessment algorithms are
modified by incorporating the interest points. The experimental
results of IQA performance improvements and parameter
impacts are given in Section III. Section IV concludes this

paper.

II. INTEREST POINT GUIDED IMAGE QUALITY
ASSESSMENT

A. Interest Point Detection

In this subsection, we will give an overview of the interest
point detection technique and several typical methods will be
briefly introduced.

An interest point is a clear, well-defined, mathematically
well-founded position in an image space and can be detected
robustly with illuminance variations as well as geometrical
changes including translation, rotation, scaling etc. We divide
the interest point detection algorithms into two categories,
corner based methods and blob based methods.

1) Corner Methods: A corner can be defined as the in-
tersection of two edges or a point for which there are two
dominant and different edge directions in a local neighbour-
hood of the point. In practice, most so-called corner detection
methods detect interest points in general, rather than corners
in particular. Without loss of generality, let I denote the given
image. Considering a local patch (u,v) and a corresponding
patch with a small shifting by (x,y). The weighted sum of
squared difference between the two patches can be written as
follows,

S(z,y) = ZZw(u,v)(](qu z,v+1y) — I(u,v)% (1)

Fig. 2. Illustration of the 16 pixels around a candidate point p in FAST [13].

I(u+ z,v+y) — I(u,v) can be approximated by a Taylor
expansion. Such that Eqn. (1) can be rewritten as,

S(xy) = YN wlu,v) (L (u,v)z + I(u,v)y)?, ()

where I, and I, are the partial derivatives of image I.
Alternatively Eqn. (2) can be represented in matrix form,

ﬂa@w(my)A(j). 3)

A is the structure tensor defined by,
I:f 1,1,
A=) w(uw) { LI, I? }
“4)

where the notation (e) denotes the summation operator over u
and v. A corner could be characterized by a large variation of
S in all directions of the vector. By analyzing the eigenvalues
of A, this characterization can be expressed in a mathematical
way that A should have two “large” eigenvalues for an
interest point. In [11], corner is detected by computing the
min(A1, A2), where Ay and A are two eigenvalues of A. To
avoid the computational expenses in solving the eigenvalue,
famous Harris Corner method [12] is proposed by using the
following function M, for simplification,

-l & |

M, = My — (A + \2)? = det(A) — k- trace?(A), (5)

where the computing of eigenvalue is replaced by evaluating
the determinant and trace of the matrix A.

Features from accelerated segment test (FAST) [13] is a
high-efficiency corner detection method, which is faster than
many other well-known feature extraction methods and suit-
able for real-time image/video processing applications. FAST
corner detector uses a circle of 16 pixels (a Bresenham circle
of radius 3) to classify whether a candidate point p is actually a
corner as shown in Fig. 2. If a set of NV contiguous pixels in the
circle are all brighter or darker than the intensity of candidate
pixel p (denoted by I,) plus a threshold value ¢, then p is
classified as corner. More recently, the robust BRIEF [14],
BRISK [15] and ORB [16] descriptors are proposed as the
extensions of the FAST version for faster and more accurate
performance in feature detection.
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Fig. 3. Illustration of the Difference of Gaussian (DoG) [17].

2) Blob Methods: In the field of computer vision, blob
detection refers to mathematical methods aiming at detecting
regions in an image that differ in properties, such as brightness
or color, compared to areas surrounding those regions. And
blob detection has been applied in many feature detection
techniques including Scale Invariant Feature Transform (SIFT)
[17] and Speeded Up Robust Features (SURF) [18].

Laplacian of Gaussian (LoG) is one of the most common
blob detectors. Given an input image f(z,y), this image is
convolved by a Gaussian kernel as follows,

1
9(z,y,t) = e 2t (6)
( ) V2rt?
where ¢ is the scale parameter. Thus the Gaussian blurred
image can be obtained by,

L(z,y,t) = g(x,y,t) * f(z,y). (7

Then the Laplacian operator is applied to the blurred image,
and the extreme points with maximum or minimum values are
detected in the multi-scale LoG space. The LoG operator is
effective and efficient in extracting the feature points because
the Laplacian method is helpful for detecting corner and
boundary points, and the Gaussian blurring can reduce the
errors caused by noises.

However the LoG has a disadvantage of big computational
complexity induced by the second derivative in Laplacian
operator. To overcome this, an approximation method called
Difference of Gaussian (DoG) is proposed by computing the
difference between two adjacent Gaussian smoothed images
in scale space as follows,

D(x,y,t) = L(z,y,t+1)— L(z,y,t)

= (g(w7y7t + 1) - g(m,y, t)) * f(xvy)

This process, which is applied in the famous SIFT descriptor,
is schematically illustrated in Fig. 3.

For SURF descriptor, the Determinant of Hessian (DoH)
operator is used for extracting the feature points. The Hessian
Matrix of a given image is defined as,

®)

Lo, L
HL=| ™ 7 ] ; )

thus the DoH can be calculated as follows,

DoH (z,y,t) = det HL(z,y,t) = Lya Ly, — L2,.  (10)

Maximally Stable Extremal Regions (MSER) [19] is an-
other method of blob detection in images by finding corre-
spondences between image elements from two images with
different viewpoints. This method of extracting a comprehen-
sive number of corresponding image elements contributes to
the wide-baseline matching, and it has led to better stereo
matching and object recognition algorithms.

B. Interest Point Guided Image Quality Assessment

The basic motivation of this paper is to gain some insights
into the relationship between the interest points and the quality
assessment metrics. It is known that the foveation effect will
naturally happens behind human physiological system when
perceiving visual elements from outside world, and it has sig-
nificant impact on the ultimate visual experience. Intuitively,
we assume that the regions around detected feature points
will attract most of the attentions from human eyes and these
regions are very important to the image quality assessment
algorithms. This approach can be regarded as a kind of low-
level “saliency” based pooling method where the “saliency” is
a general term indicating the local image feature points are of
perceptual significance. The high-level saliency method, also
called object-based pooling method, should be associated with
some semantic information such as face recognition etc.

Generally, let point p be a marked interest point, the saliency
value of another common point p’ is dependent to the distance
between them. The farther the distance is, the saliency will be
weaker. We utilize the normalized Gaussian function to build
this model as follows,

1 _dw.p)?

Ui(p/|p)= %@ 207,

an

where the vi(p'|p) indicates the visual saliency value of the
point p’ given point p. The distance d(p,p’) represents the
Euclidean distance between two points. The parameter o is the
variance of the Gaussian distribution that controls the change
rate of visual saliency around the fixation point. Based on
Eqn. (11), the visual saliency map (VSM) can be obtained
given the position of the interest points. To alleviate the
mistakes caused by some wrong detected noise points, the
VSM is calculated in a simpler but more robust way. Let P, ,
be a map indicating whether a point at position (x,y) is an
interest point or not,

L,
Px,y = { 0’

Then a Gaussian kernel with the variance ¢ and window size
w is defined and convolved with the map P, ,, which finally
create the VSM V,, .. Examples of original image with interest
points and generated VSM are demonstrated in Fig. 4. The
darker regions in the VSM indicate lower significance and
vice versa. It can be seen from the figure that the regions
containing more interest points have higher importance values.

point at (z,y) is an interest point;

otherwise. a2



Fig. 4.
The original images with red feature points are shown at the left column, and
the corresponding visual saliency maps are shown at the right column. The
feature points are detected by SURF algorithm [18]. The parameters o and
w of the Gaussian kernel are set to be 30 and 200 respectively.

Generation of visual saliency map by the extracted interest points.

It accords well with the perceptual feelings as these areas are
more attractive to human eyes. Meanwhile the noise points in
the uninterested regions such as the lawn are eliminated by
the Gaussian operator.

Finally, we utilize the generated VSM to guide the im-
age quality assessment algorithm. The general IQA scheme
consists of two-stage process: local quality measurement and
pooling. Let @), be the calculated local quality map using
different IQA methods. The simplest and typical way of pool-
ing for getting the ultimate quality score is by averaging the
quality map without using any prior knowledge. VSM is such
a good indicator which represents the relative significance of
each pixel. Thus incorporating the VSM, the average pooling
can be replaced by weighted average of the local quality map

as follows,
Zz,y Qz,sz,y
Zaz,y Vx»y 7

where the Scoreyy is the quality score weighted by VSM.

Scorey = (13)

III. EXPERIMENTS AND ANALYSIS

Extensive simulations are conducted to evaluate the perfor-
mance gain in IQAs guided by interest points. The interest
points are detected using different algorithms including Harris
[12], FAST [13], ORB [16], BRISK [15], SIFT [17], SURF
[18] and MSER [19]. Note that the first four methods are
corner based and the last three methods are blob based.

Each algorithm of interest point detection has its own
parameters that control the number of detected points. It is
unfair if different methods generate distinct number of point
when comparing the performance. To solve this problem, we
introduce a ranking strategy to make sure every methods are
with the same ability of extracting feature points from image.

All the detected points are reordered by response value, which
indicates the significance level of a point. And the first K
points with maximum response value are drawn out for further
evaluation. We demonstrate some examples of visual saliency
map (VSM) generated by different interest point models in
Fig. 5, where the images are chosen from the Bruce’ database
[20]. The number of extracted points K is fixed to 100 for
illustration.

A. Accuracy Improvement of Image Quality Assessment

The simulations for IQA are conducted in public LIVE
database [21]. The LIVE database contains 29 reference im-
ages and 779 distorted images, undergone 5 different distor-
tion types including JPEG2000, JPEG, white noise, Gaussian
blur, and fast fading channel distortion. Three criteria are
employed in evaluating the performance of IQAs, which are
Pearson linear correlation coefficient (PLCC), Spearman rank-
order correlation coefficient (SROCC) and Kendall rank-order
correlation coefficient (KROCC).

In order to quantify the accuracy of predicted quality, we
use a five-parameter logistic function for non-linear mapping
before calculating the PLCC criterion:

1 1 ,
p(o) =B (5 - m) + fao + s, 14)

where o and p represent the objective score and predicted
subjective score respectively.

Suppose the original IQA model is X, and the correspond-
ing correlation coefficients between subjective and objective
scores are PLCC'x, SROCCx and K ROCCx respectively.
The weighted IQA model by interest points is denoted as X,,,
and the correlation coefficients are PLCCx,,, SROCCx,,
and KROCCY,, respectively. Such that the performance
improvements Aprccx, Asroccox and Axgroccx are
given by,

Aprocx = PLCCx,, — PLCCx,
Asroccx = SROCCx,, — SROCCy,
Axroccx = KROCCx,, — KROCCx,

15)

Three popular IQAs, including PSNR, SSIM [2] and Multi-
scale SSIM (MS-SSIM) [3], are involved as evaluation meth-
ods. Note that the VSM should be downsampled for fitting
different scales in MS-SSIM algorithm. The performance
results in terms of PLCC, SROCC and KROCC metrics under
different interest point models are listed in Tab. I, where the
number of extracted points K is set to be 500, and the param-
eters of Gaussian blur ¢ and w are 60 and 400 respectively. It
has been shown that all the methods of interest point detection
have positive influence to the IQA performance and verifies
the hypothesis that the regions around the interest points are
with stronger correlation to visual quality. Comparing the
average performance gain over different methods, it can be
concluded that the blob based methods outperform the corner
based methods in the IQA improvement.
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Results of visual saliency map generated by different interest point models. The original images are given in the leftmost column, and the visual

saliency maps generated by Harris, FAST, ORB, BRISK, SIFT, SURF and MSER algorithms are shown subsequently from left to right column respectively.

TABLE 1
PERFORMANCE IMPROVEMENTS OF IQAS IN TERMS OF PLCC, SROCC AND KROCC METRICS
UNDER DIFFERENT INTEREST POINT MODELS.

Aprcc Asrocc AgRrocc Average
PSNR SSIM MS-SSIM PSNR SSIM MS-SSIM PSNR SSIM MS-SSIM PSNR SSIM MS-SSIM
Harris 0.01374 | 0.00716 0.00492 0.01526 | 0.00844 0.00727 0.01989 | 0.01883 0.01733 0.01630 | 0.01148 0.00984
FAST 0.01346 | 0.00710 0.00507 0.01520 | 0.00869 0.00772 0.01991 | 0.01919 0.01851 0.01619 | 0.01166 0.01043
ORB | 0.01321 | 0.00686 | 0.00484 | 0.01489 | 0.00847 | 0.00744 | 0.01957 | 0.01870 | 0.01787 | 0.01589 | 0.01134 | 0.01005
BRISK | 0.01483 | 0.00459 0.00262 0.01679 | 0.00599 0.00470 0.02152 | 0.01389 0.01172 0.01772 | 0.00815 0.00635
SIFT 0.01418 | 0.00795 0.00571 0.01633 | 0.00954 0.00833 0.02096 | 0.02025 0.01906 0.01716 | 0.01258 0.01104
SURF 0.01566 | 0.00857 0.00642 0.01789 | 0.01032 0.00903 0.02201 | 0.02215 0.02061 0.01852 | 0.01368 0.01202
MSER 0.01662 | 0.00677 0.00503 0.01871 | 0.00826 0.00736 0.02389 | 0.01807 0.01711 0.01974 | 0.01103 0.00983
Average | 0.01453 | 0.00700 0.00494 0.01644 | 0.00853 0.00741 0.02111 | 0.01873 0.01746 0.01736 | 0.01142 0.00994
B. Computation Reduction of Image Quality Assessment Asroccox and Aggrocc x respectively as follows,
The proposed scheme not .only improve .the IQA accuracy Arrocy = Tw Arrocy, 7
but al_so reduce_ the computational c.omple)_uty. The_ weighting A _ Zw AN ROCCy a7
technique provides a clue that the pixels with low significance SROCCX = AN oee
have almost no impact on visual quality, thus the computation Agrocox = =W,

over these regions is redundant and can be further eliminated.
In this subsection, we provide the results of the relationship
between the computational reduction and the IQA performance
changes.

In this simulation, given the visual saliency map V; ,, the
r x 100% data with least saliency value is dropped out by
setting the corresponding V), , to zero as follows,

0,
Va{,y - { VI Yy

where th is a threshold associated with the ratio r satisfying
that the r x 100% data in V. ,, is smaller than th. The V , is
the modified VSM and is applied in following pooling stage
as aforementioned in Eqn. (13).

Subsequently, we evaluate the average performance gain
of IQAs with changing values of . Given an IQA model
X, the average performance gain is denoted by Aprccy,

Ve,y <th

otherwise ’ (16)

where N = 7 is the number of interest point detection method
in this paper. These average metrics will be frequently used in
the remaining part of the paper for evaluating the parameter
impact on the IQA models.

The performance change in terms of r is illustrated in Fig. 6,
where r denotes the ratio of computation reduction and the
vertical axis represents the performance variance of IQAs. It
is noted that the performance gain of PSNR keeps stable even
when the 90% data has been discarded (r = 0.9), while the
SSIM and MS-SSIM are relatively sensitive to the amount of
processed data. The performance gain of SSIM and MS-SSIM
becomes negative till r reaches about 0.7.

Therefore, we can imply that the computational quantity
can be significantly reduced by about 70% while keeping the
IQA accuracy unchanged. Even more data can be removed
and only a bit amount of data is required for PSNR method.
This is because of the fact that most of the significant data has
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been reserved by the guidance of interest points. The results
also indicate that the interest point guided scheme is effective
in predicting the perceptual importance of natural images.

C. Parameter Impact on IQA Performance

1) The Number of Interest Point I{: The number of extract-
ed points, i.e. K, will influence the VSM and consequently the
IQA performance. We evaluate the average performance gain
of IQAs under different values of K. Fig. 7 gives the curves
of the Aprocox, Asrocox and Axgrocce x in terms of K
which ranges from 100 to 1000. The IQA models X are PSNR,
SSIM and MS-SSIM respectively. The curves of SSIM and
MS-SSIM methods have the similar tendency that gradually
increase with the value of K, indicating more interest points
involved in the IQA models lead to higher performance. But
the performance gain of PSNR method with increasing K is
not as remarkable as that of SSIM and MS-SSIM.

2) Parameters of Gaussian Blur — o and w: The Gaussian
blur process is also critical in generating the VSM. In this
subsection we analyze the impact of the two parameters in
Gaussian blur, i.e. o and w. In these experiments, the number
of feature points K is fixed to be 500 while the o ranges from
30 to 120 and w from 200 to 500 respectively. The perfor-
mance improvements on three IQAs (PSNR, SSIM and MS-
SSIM) in terms of three measuring metrics (PLCC, SROCC
and KROCC) under different parameter sets are illustrated as
3D plots in Fig. 8. It is found that the performance impact
on different IQA methods is distinct. The smaller value of o
leads to better performance for PSNR but on the contrary for
SSIM and MS-SSIM. The larger value of w has the similar
impact on different IQAs that leading to higher performance.

Therefore the parameters should be specifically designed in
terms of different IQA models as well as the viewing condi-
tions. For instance good parameters o and w will account for
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the actual foveation effect in visual perception, and this effect
would be significantly influenced by the viewing conditions
such as viewing distance and image size.

IV. CONCLUSION

In this paper, we explore the relationship between the
interest point and the image quality assessment by mimicking
the foveation effect of HVS. First the visual saliency map
is generated by the extracted interest points and then the
importance map performs as the weighting factors in pooling
stage of IQAs. Seven popular algorithms of interest point
detection are involved and compared in this work. Extensive



experiments have been conducted and the results have shown
that the performance of IQAs (including accuracy as well as
efficiency) can be improved by introducing the interest point
detection techniques. Furthermore parameter impacts on IQA
performance are analyzed, which shows that the parameters
should be carefully designed for different IQA models as well
as viewing conditions.
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