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TASC: A Transformation-Aware Soft Cascading Approach
for Multimodal Video Copy Detection

YONGHONG TIAN, MENGREN QIAN, and TIEJUN HUANG, Peking University

How to precisely and efficiently detect near-duplicate copies with complicated audiovisual transformations
from a large-scale video database is a challenging task. To cope with this challenge, this article proposes a
transformation-aware soft cascading (TASC) approach for multimodal video copy detection. Basically, our
approach divides query videos into some categories and then for each category designs a transformation-
aware chain to organize several detectors in a cascade structure. In each chain, efficient but simple detectors
are placed in the forepart, whereas effective but complex detectors are located in the rear. To judge whether
two videos are near-duplicates, a Detection-on-Copy-Units mechanism is introduced in the TASC, which
makes the decision of copy detection depending on the similarity between their most similar fractions, called
copy units (CUs), rather than the video-level similarity. Following this, we propose a CU search algorithm
to find a pair of CUs from two videos and a CU-based localization algorithm to find the precise locations of
their copy segments that are with the asserted CUs as the center. Moreover, to address the problem that
the copies and noncopies are possibly linearly inseparable in the feature space, the TASC also introduces a
flexible strategy, called soft decision boundary, to replace the single threshold strategy for each detector. Its
basic idea is to automatically learn two thresholds for each detector to examine the easy-to-judge copies and
noncopies, respectively, and meanwhile to train a nonlinear classifier to further check those hard-to-judge
ones. Extensive experiments on three benchmark datasets showed that the TASC can achieve excellent copy
detection accuracy and localization precision with a very high processing efficiency.
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1. INTRODUCTION

The past decade saw an explosive growth of video data on the Internet. A recent
report by Cisco shows that consumer Internet video traffic accounted for 57% of all
consumer Internet traffic in 2012 and is projected to be 69% in 2017. On YouTube, for
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example, a staggering 100 hours of video were uploaded to the site every minute in
July 2013. Among the huge volumes of online videos, there exist a noticeable amount
of copies or near-duplicate videos. This fact imposes an urgent demand on video copy
detection because it is crucial to many video-related applications [Huang et al. 2010;
Liu et al. 2013b]. For example, by detecting and then eliminating the semantically and
visually identical duplicates, Web-scale video search engines can return results with
semantically coherent but visually diversified content [Wu et al. 2009b]. Similarly, to
fend off the severe critics for failing to ensure that the uploaded videos comply with the
law of copyright, social media sites such as YouTube and Youku can use copy detection
systems to prevent users from uploading copyrighted material.

Basically, the primary idea of video copy detection is to automatically analyze a
query video’s content to determine whether it contains a copy from a given database
of reference videos and, if so, from where in the database the copy comes [Over et al.
2010]. Here, a copy is a segment of video derived from another reference video (a.k.a.
the origin). Often, copies share the exactly same semantics and the similar scenes with
an origin, typically with different visual/audio presentations. A tightly related task
is near-duplicate video retrieval (NDVR), which aims to find a ranking list of near-
duplicate videos for a given query video from a database [Liu et al. 2013b]. Clearly,
video copy detection and NDVR share similar principles, and numerous techniques can
be applied to both tasks.

In most cases, video copies are generated from the origins by means of audiovisual
transformations. To make things worse, the content of many copies may be significantly
changed from their origins. For instance, video content is notably modified after spatial
or temporal content-altering operations such as cropping or pattern insertion. Thus, for
robust copy detection, invariant features (called videoprints [Huang et al. 2010] or video
signatures [Liu et al. 2013b]) should be extracted from the video as its representation.
However, the challenge mainly comes from the fact that there exists no such one-for-all
signature that remains robust on all of these transformations. In other words, if we
utilize a set of audiovisual features to construct several copy detectors, some of them
may be robust against certain types of transformations but vulnerable to other types;
other detectors may be the other way around.

Thus, a natural solution is to combine several video signatures, or detectors based
on multiple features, to enhance the robustness of a copy detection system. For exam-
ple, detection results using several audio and visual features separately are fused by
selecting video matches with the highest similarity score [Saracoğlu et al. 2009; Liu
et al. 2010], or queries asserted as copies by any two of four detectors are accepted as
copies [Tian et al. 2012; Mou et al. 2013]. Similar approaches have been successfully
used in the TRECVID content-based copy detection (CBCD) task, where most of the
participating systems obtain the final result by fusing several detection results [Kraaij
and Awad 2011]. In Jiang et al. [2012] and Tian et al. [2013], we proposed a copy detec-
tion approach with a cascade of multimodal features. In this approach, detectors based
on several complementary audiovisual features are organized in a cascade structure
such that efficient but simple detectors are placed in the forepart, whereas effective
but complex detectors are located in the rear. To avoid the burdensome manual tuning
of thresholds, a soft threshold learning algorithm was further proposed in Tian et al.
[2013] to estimate the optimal decision threshold for each detector in the chain.

However, one potential problem of the approach in [Jiang et al. 2012; Tian et al. 2013]
is that all query videos, whichever transformations they are subject to, are processed
by the same chain of detectors. Clearly, this is only a suboptimal solution since query
videos with different transformations may exhibit significantly distinct audiovisual
properties. To address this problem, a transformation-aware soft cascading (TASC)
approach is proposed. Our basic idea is to divide query videos into some categories
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and then for each category design a transformation-aware chain to organize several
detectors in a cascade structure. Given a query video, the TASC first recognizes its
category and then hands it over to the corresponding detector chain. We also develop
one efficient implementation by utilizing three commonly used multimodal features
(i.e., audio fingerprints (AFPs) [Haitsma and Kalke 2012], DCT [Mou et al. 2013], and
SIFT Bag-of-Words (BoW) descriptor [Douze et al. 2010]) to construct four different
chains. In this four-chain implementation, both the transformation recognition module
and different detectors are easy to implement and computationally efficient.

Legally or technologically, only videos in which the length of identical or similar
content is more than a predefined minimum value (e.g., 3 to 10 seconds) can be treated
as duplicates or near-duplicates. Thus, a Detection-on-Copy-Units mechanism is intro-
duced into the TASC to judge whether two videos are near-duplicates. In other words,
given two videos, the decision of copy detection depends on the similarity between their
most similar fractions, called copy units (CUs), rather than the video-level similarity.
Following this, we propose a CU search algorithm to find a pair of CUs from two videos
and a CU-based copy localization algorithm to find the precise locations of their copy
segments that are with the asserted CUs as the center.

Furthermore, most of existing methods, including our previous works [Tian et al.
2011; Jiang et al. 2012; Tian et al. 2013], are to empirically set or experimentally train
a single decision threshold for each detector. In the real-world applications, however,
it is difficult to use only one threshold to perfectly divide the copies and noncopies, as
they possibly are linearly inseparable in the feature space. To address this problem,
the TASC introduces a more flexible strategy, called soft decision boundary, by learning
two thresholds for each detector and meanwhile training a nonlinear classifier for each
chain. Among the two thresholds, the upper one is used to determine whether a query
video is a copy, whereas the lower one is used to judge whether it is a noncopy, both
with a high degree of confidence. For two videos, if the similarities of their CUs through
all detectors in a chain are between the two thresholds, a soft-margin support vector
machine (SVM) classifier based on the SIFT keypoint matching between the two CUs
is then utilized to further check whether or not they are near-duplicates.

Extensive experiments were conducted on three benchmark datasets, including
TRECVID-CBCD [Over et al. 2010], MUSCLE-VCD-2007 [Law-To et al. 2007], and
CC_WEB_VIDEO [Wu et al. 2007]. The experimental results showed that compared
to several state-of-the-art approaches, the TASC can achieve excellent copy detection
accuracy and localization precision with a very high efficiency.

The remainder of this article is organized as follows. After briefly summarizing the
related work in Section 2, we formulate the TASC approach and describe its implemen-
tation in Section 3. Section 4 then presents the algorithms for CU search, soft boundary
learning, and CU-based copy localization. Extensive experiments are presented in Sec-
tion 5, and we conclude the article in Section 6.

2. RELATED WORK

As an active research problem with great value, video copy detection has attracted a
lot of attention in recent years. This section presents a brief review of the related work
from the viewpoint of multimodal video copy detection. For more details about NDVR,
we refer the readers to a recent survey [Liu et al. 2013b].

2.1. Two Typical Paradigms

In general, the task of copy detection can be formulated as follows. Given a query video
q∈Q and reference videos R={ri}(1≤i≤R), the task is to examine whether ∃ri∈R such
that A(q, ri) holds, where A(x, y) stands for x being a copy of y by the system; if so,
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Fig. 1. Sliding window–based (a) and frame-fusion—based (b) paradigms of video copy detection.

then return the locations of the copy segments in q and ri, namely [t(B)(q), t(E)(q)] and
[t(B)(ri), t(E)(ri)]. Note that slightly differently, the NDVR task is to find all ri∈R that
meet these conditions.

Often, two typical paradigms can be used for this task. As shown in Figure 1(a), the
first one is to extract global features (e.g., spatiotemporal DCT [Coskun et al. 2006])
or an audiovisual signature (e.g., Chiu et al. [2010]) to represent a video clip, and then
use a sliding window to scan each ri ∈ R and compute the similarity between q and
the windowed clip in ri. Here an implicit assumption is that the whole video q is or
is not a copy. But in practice, probably only one segment of q is a copy of a small
segment in ri. Moreover, this approach is difficult to deal with the task when temporal
transformations such as frames inserting or deleting are involved in generating the
copy. Instead, a more flexible paradigm is to partition q and ri into basic indexing units
(e.g., audiovisual frames) and then utilize efficient indexing models (e.g., hashing,
inverted table) to speed up video matching. As shown in Figure 1(b), it searches a list
of similar reference frames for each query frame and then determines video matches
by assembling the frame matches with proper temporal fusing strategy. Different from
the sliding window–based paradigm that is linearly dependent on the size of R, this
paradigm is sublinear and thus can be applicable to large-scale copy detection systems.

Specifically, two main subtasks are involved in the frame fusion–based paradigm:
frame-level similarity evaluation and frame fusion. For the first subtask, two key tech-
niques are involved (i.e., multimodal feature representation and fusion), whereas for
the second one, the key issue is how to utilize temporal consistency constraints on frame
matches to identify several video matches.1 This article mainly focuses on the first
one, and thus we present a brief review of its related work in the following discussion.

2.2. Multimodal Feature Representation

Often, three kinds of features are used for video copy detection in existing work, namely
global and local visual features, and audio features. From these features, a video sig-
nature can be derived as a compact structure or a higher-level video summarization
to represent each video segment or clip on which the copy detection system actually
performs.

Based on the statistics of the entire frame or the whole clip, global visual features
have the advantages of compactness in size and low computational complexity. Among
them, the spatial or temporal ordinal signatures (e.g., Chiu et al. [2008] and Lei et al.
[2012]) have been widely used in copy detection. There are also many proposals that

1Various methods have been proposed for this subtask, such as 2D Hough transform [Liu et al. 2010],
spatiotemporal verification [Douze et al. 2010], Viterbi-based frame fusion [Wei et al. 2011], approximate
string matching [Yeh and Cheng 2011], temporal pyramid matching [Tian et al. 2013], and frame matching-
result graph [Liu et al. 2013a].
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compute video signatures from a specific transform domain, such as DCT [Mou et al.
2013], polar Fourier transform [Swaminathan et al. 2006], and radon transform [Roover
et al. 2005], or from special images constructed from the video [Esmaeili et al. 2011].

However, global features cannot effectively deal with more complex transformations,
such as postproduction. Instead, local visual features, mostly based on the interest
point detection and local descriptor calculation [Joly et al. 2007; Douze et al. 2010; Liu
et al. 2013a], are by nature resistant to such content-altering operations since a part
of original content always remains in the copy. Among them, scale-invariant feature
transform (SIFT) and its derivations, such as SURF [Bay et al. 2006], DC-SIFT [Bosch
et al. 2008], and PCA-SIFT [Ke and Sukthankar 2004], could be the most suitable
local features for copy detection. To enhance the tolerance of SIFT on some special
transformations, such as flip, some new developments, MI-SIFT [Ma et al. 2012] and
F-SIFT [Zhao and Ngo 2013], were proposed in recent years. In addition, to improve the
compactness of the descriptor and to accelerate feature matching, the BoW technique
is used frequently in recent work (e.g., Douze et al. [2010] and Wang et al. [2012]) by
building a visual vocabulary for local features and constructing a visual word histogram
to represent each frame.

Since a video clip contains both visual and audio components, it is increasingly
becoming an important trend to make use of both visual and audio features in video copy
detection. Some audio features originally designed for content-based audio retrieval are
often used as audio signatures, such as Mel-frequency cepstral coefficients (MFCCs),
mean energy, normalized spectral sub-band moments, and audio spectrum flatness
(ASF) [Huang et al. 2010]. For more details about audio signatures, we direct the
readers to a separate survey [Chandrasekhar et al. 2011].

Several recent studies have started utilizing semantic features (e.g., human faces
[Cotsaces et al. 2009], semantic concepts [Min et al. 2012]) for video copy detection. The
underlying assumption is that content transformations tend to preserve the semantic
information. However, the state-of-the-art performance of semantic concept detection
in videos still keeps a very low level (e.g., the best MAP of 20% for 20 concepts on TV08
and 09 benchmark datasets [Tang et al. 2012]). Thus, it is far from generalizing the
concept-based copy detection methods to large-scale video databases.

2.3. Fusion of Multimodal Detections

After years of practice, researchers have recognized that no single feature or signature
can be both robust and discriminative for copy detection tasks under various transfor-
mations [Kraaij and Awad 2011]. Thus, it is beneficial to combine different signatures
or several detectors to improve the performance. Typically, two sorts of approaches
have been used: feature-level and result-level fusion (or equivalently early and late
fusion).

In feature-level fusion approaches, several features are combined into a single rep-
resentation. For example, in Saracoğlu et al. [2009], two color features, two texture
features, and one motion feature are concatenated into a new global visual descriptor
for copy detection; in Wu et al. [2009b], color histograms and local SIFT points are
combined with the contextual information from time duration and number of views; in
Liu et al. [2010], MFCC and RASRA-PLP are combined in a bag-of-audio-words (BoA)
representation; and in Song et al. [2011], the authors learn a group of hash functions
to map the video keyframes into the Hamming space and generate a series of binary
codes to represent the video dataset. Potentially, such a representation can make use of
the coherency and correlation across feature spaces. However, none of existing methods
has been proven to remarkably boost the robustness of the copy detection system. This
is also an open issue at the TRECVID-CBCD task, where few participating approaches
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can obtain a good detection performance using feature-level fusion [Kraaij and Awad
2011].

Instead, result-level fusion approaches utilize a set of audiovisual features to con-
struct several detectors and then derive the final result by fusing the detection results
from these detectors. In Saracoğlu et al. [2009] and Anguera et al. [2011], the fusion
rule is to choose the best-matching result in terms of similarity obtained from separate
audio and visual matches, whereas in Liu et al. [2010], the fusion is formulated as a
reranking problem, which recalculates the similarity scores for all of the individual
detection results and then employs four strategies (i.e., average, max, multiply, and
logistic) to choose the best match as the final result. In our previous system [Tian et al.
2011], we proposed a verification-based fusion schema: a query video is accepted as
a copy only if it is positively asserted by at least two detectors; otherwise, it should
be further evaluated using an additional SIFT-based verification module. As such, our
system achieved the best overall detection accuracy at the TRECVID-CBCD-2010 task.
The system was further extended in Jiang et al. [2012] and Tian et al. [2013] by orga-
nizing multiple complementary detectors in a cascade structure, each of which is based
on a single audio or visual feature. This can remarkably reduce the processing time for
most query videos since the copies can be correctly detected by the first two detectors.

Although these approaches could achieve better detection accuracy than a single
detector, a notable drawback is that all query videos, whichever transformations to
they are subject, are processed by the same set of detectors. In other words, they
ignore the fact that query videos with different transformations may exhibit signifi-
cantly distinct audiovisual properties. To address this problem, some recent studies
were devoted to investigate video copy detection methods for some specific transfor-
mations. For example, Liu et al. [2013a] proposed a twin-threshold segmentation and
a graph-based sequence matching method for detecting copies with picture-in-picture
(PiP); Kim et al. [2014b] proposed a video copy detection approach against rotation
and flipping by extracting two complementary region binary patterns from keyframes
and deriving a new video fingerprint. Wu et al. [2009a] proposed an approach based
on transformation recognition. In their approach, seven visual features were used to
recognize the transformation types and accordingly to construct several detectors, each
for one transformation type. Note that their recognition method was built on 10 single
transformations, with average accuracy of 78.7%. Therefore, it is difficult to extend
it to more complex transformations, even the combination of several transformations.
Thus, we need to design a more reasonable strategy for transformation recognition.
More importantly, an architecture is needed to organize different detectors in a prin-
cipled way such that the good detection effective and high processing efficiency can be
achieved.

3. TASC: TRANSFORMATION-AWARE SOFT CASCADING

In this section, we first summarize the multimodal detector cascading approach pro-
posed in our previous work [Jiang et al. 2012; Tian et al. 2013] and then describe the
TASC and its implementation.

3.1. Cascading of Multimodal Detectors

In Jiang et al. [2012] and Tian et al. [2013], multiple detectors based on complemen-
tary audiovisual features are organized in a cascade structure. Formally, the N-stage
cascade can be expressed as DN= 〈d1, d2, . . . , dN〉 with a set of decision thresholds
�N={θ1, θ2, . . . , θN}, where dn (1≤n≤N) denotes the nth detector and θn is its decision
threshold. In this system, any query video q is first processed by d1 where a positive
detection result (i.e., the returned reference video r1 with a similarity s1 where s1≥θ1)
will lead to the acceptance of q as a copy; otherwise, the evaluation of d2 on q will be
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triggered. Only if q is asserted as a noncopy by all detectors will it be accepted as a
noncopy. In practice, most copies can be detected through the first several detectors.

Generally, three basic principles should be taken into account when designing such
a cascade:

(1) Complementarity: The used detectors should be complement each other. One of
them may be robust against certain transformations but vulnerable to the others;
other detectors may be the other way around.

(2) Simple-to-complex: A series of detectors should be organized in a simple-to-complex
order. Namely, efficient but simple detectors should be placed in the forepart,
whereas effective but complex detectors should be located in the rear.

(3) Terminated-by-PA: To determine whether ∃r∈R for a query q such that A(q, r) holds,
q should be sequentially processed until one detector asserts it as a copy (i.e., a
Positive Assertion) or all determine it as a noncopy.2

Note that different from the Terminated-by-NA policy that is employed in the boosting
algorithm, the Terminated-by-PA strategy is used here mainly because each detector,
if it is specially designed for some transformations, has a high confidence to make a
positive assertion for a query video with these transformations; otherwise, it cannot
determine if the query video is a noncopy, as the video is possibly subject to some other
transformations. In this case, a noncopy query should be processed by all detectors in
the cascade.

3.2. The TASC

This article further extends the multimodal detector cascading framework to a more
general approach—TASC. Basically, three additional mechanisms are taken into ac-
count in the TASC:

(1) Transformation-Awareness: Several sets of detectors are organized in multiple cas-
cade chains, each of which is devoted to process query videos of a specific category.

(2) Detection-on-Copy-Units: To judge whether two videos are near-duplicates, the de-
cision should depend on the similarity between their most similar fractions CUs
rather than their video-level similarity.

(3) Soft-Decision-Boundary: Instead of using a single decision threshold for each de-
tector, a more flexible soft decision boundary strategy is used, by learning two
thresholds for each detector and meanwhile training a nonlinear classifier for each
chain.

In the following discussion, we will explain these mechanisms in detail and then present
the TASC.

Considering the fact that query videos with different transformations may exhibit
distinct audiovisual properties, it is obviously not an optimal solution to use the same
set of detectors to process all query videos. Figure 2 shows two examples in which
both are judged by the DCT-based detector as duplicates. However, the two frames in
(a) are indeed duplicates, but those in (b) are not. Thus, two cascade chains should
be constructed by respectively including or excluding the DCT-based detector. More
generally, let G={g1, . . . , gM} denote the categories and Dm=〈dm,1, . . . , dm,Nm〉 denote the
detector chain for the mth category where Nm is the number of detectors. Then the TASC

2For the NDVR task whose goal is to find ∀r∈R with A(q, r), q should be sequentially processed throughout
the cascade so that all such r are found out or all detectors determine it as a noncopy.
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Fig. 2. Two examples that both are judged by the DCT-based detector as duplicates. However, the two
frames in (a) are indeed duplicates, but those in (b) are not.

Fig. 3. The state machine of a detector (with the nonlinear classifier). The main notations used in this
section are also shown in the right side of the figure.

can be expressed as a set of transformation-aware chains of cascading detectors

D =

⎧⎪⎪⎨
⎪⎪⎩

D1
D2
...

DM

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

d1,1 d1,2 · · · d1,N1

d2,1 d2,2 · · · d2,N2

...
...

. . .
...

dM,1 dM,2 · · · dM,NM

⎫⎪⎪⎬
⎪⎪⎭

, (1)

where M is the number of chains (also the number of categories) and dm,n denotes the
nth detector in the mth chain (with its state machine shown in Figure 3). Basically, the
TASC consists of a preprocessing module, a transformation recognition module, and the
detector chains D. Given a query video q, the system first performs some preprocessing
operations (e.g., frame extraction) and recognizes its category (denoted by gm). Then q
is processed successively by each detector in the mth chain until one asserts it as a copy
or all determine it as a noncopy of any video in the reference database R.

The other two mechanisms are basically related to the design of detectors in the
TASC. Legally or technologically, only videos in which the length of identical or sim-
ilar content is more than a predefined value (e.g., 3 to 10 seconds) can be treated as
duplicates or near-duplicates. Such a predefined minimum length defines the basic
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Fig. 4. Two examples that the three detectors all judge the two videos as noncopies by using the learned
thresholds (0.65 for AFPs [Haitsma and Kalke 2012], 0.85 for DCT features [Mou et al. 2013], and 0.3 for
SIFT BoW features [Douze et al. 2010]). In this figure, each AFP (and DCT) feature is depicted as a block
diagram by using a black/white block to denote the bit 1/0, whereas the difference is also represented as a
diagram where a black/white block denotes that their corresponding bits are different/the same.

unit for copy detection. Between two videos, we call the most similar fractions with the
predefined length as a pair of CUs. Thus, to judge whether A(q, r) holds for q and r, the
decision should be based on the segment-level similarity between their CUs rather than
the video-level similarity between q and r. In other words, let 〈u k(q), u l(r)|sk,l〉 denote
the CUs between q and r where k and l are their beginning locations, then

A(u k(q), u l(r)) ⇒ A(q, r). (2)

Obviously, it is easier to judge whether two videos are copies or not by using the
segment-level similarity of their CUs than by using the whole video-level similarity,
as in practice many videos only share one or more near-duplicate segments with each
other. Moreover, this mechanism can remarkably reduce the computational complexity
of the following processes in copy detection.

Often, most of existing methods are to empirically set or experimentally train a
single decision threshold for each detector. In the real-world applications, however, it
is difficult to use only one threshold to perfectly divide the copies and noncopies. Two
such examples are shown in Figure 4, where the three detectors all determine the query
video as a noncopy of the reference video by using their optimal thresholds. In other
words, the copies and noncopies are possibly linearly inseparable in the feature space.
To address this problem, the TASC introduces a more flexible strategy—soft decision
boundary—to replace the single threshold strategy. Its basic idea is to automatically
learn two decision thresholds for each detector to examine the easy-to-judge copies and
noncopies respectively, and meanwhile to train a nonlinear classifier for each chain to
further check those hard-to-judge ones.

Formally, each detector dm,n can be expressed as a base hypothesis �m,n:
Qm×R→{−1,+1}, where Qm is the mth category of query videos, and for q∈Qm
and r∈R, y=±1 denote A(q, r) and ¬A(q, r), respectively. Then the final output of
each chain Dm=〈dm,1, . . . , dm,Nm〉 is always a convex combination of base hypotheses
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fwm(q, r)=∑Nm
n=1 wm,n�m,n(q, r), where wm,n is the weight of �m,n satisfying wm,n≥0 and∑Nm

n=1 wm,n=1. Therefore, the (hard) margin of (q, r) can be defined as

�(q, r, wm) = y(q, r) fwm(q, r) = y(q, r)
Nm∑

n=1

wm,n�m,n(q, r). (3)

For the chain Dm, the hard margin ℘(wm) is thus defined as the smallest margin over
the set Qm. In the TASC, the base hypothesis �m,n is specified by two thresholds (i.e., the
upper threshold θ�

m,n and the lower threshold θ⊥
m,n), where θ�

m,n is used to definitely de-
termine whether A(q, r) holds, whereas θ⊥

m,n is used to definitely judge whether ¬A(q, r)
holds. This copy detection process is therefore called a hard decision.

For those video pairs that are not separable by convex combinations of the base
hypotheses, the TASC also introduces an additional classifier, ϕm, for Dm. Different
from dm,n∈Dm, ϕm is a strong classifier based on the features with high discriminative
ability. It can define a nonlinear boundary between copies and noncopies. In contrast,
we call copy detection with the classifier ϕm a soft decision.

By assembling the two sorts of decision margins, the soft boundary of D can be
expressed as

� =

⎡
⎢⎢⎣

�1|ϕ1
�2|ϕ2

...
�M|ϕM

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

θ1,1 · · · θ1,N1 | ϕ1
θ2,1 · · · θ2,N2 | ϕ2

...
. . .

... | ...
θ M,1 · · · θ M,NM | ϕM

⎤
⎥⎥⎦, (4)

where θm,n=〈θ�
m,n, θ

⊥
m,n〉 are the bi-thresholds for dm,n.

Figure 3 depicts the state machine of each detector dm,n in the TASC, together with the
classifier ϕm. Given a query video q, dm,n should first perform two processes sequentially:

—The similarity evaluation process P1, to calculate the frame-level similarity between
q and ∀r∈R;

—The CU search process P2, to find a pair of CUs 〈u k(q), u l(r)|sk,l〉 between q and ∀r∈R.

Then the TASC can take action among three options:

(1) if sk,l ≥ θ�
m,n, then dm,n asserts A(q, r) holds;

(2) if sk,l < θ⊥
m,n, then dm,n asserts ¬A(q, r) holds; and

(3) otherwise, if n < Nm, then q will be handed over to the next detector dm,n+1, whereas
if n = Nm, 〈u k(q), u l(r)〉 should be further checked by the process P3, where

—The soft decision process P3, to utilize a nonlinear classifier ϕm to check 〈u k(q), u l(r)〉
to determine whether A(q, r) holds or not.

Note that if the output of dm,n is that A(u k(q), u l(r)) holds (accordingly, A(q, r) holds),
then it will further perform the process P4, where

—The CU-based localization process P4, to find the precise locations of the copy seg-
ments in q and r that are with 〈u k(q), u l(r)〉 as the center.

In summary, the TASC provides a general framework to organize detectors in a cascade
and transformation-sensitive way, which is expected to achieve high detection accuracy
while minimizing the processing time. The detectors in each chain can be elaborately
designed by utilizing the audiovisual characteristics of the query videos in that cate-
gory. However, here the TASC does not specify how each detector works (e.g., utilizing
which audio or visual features to perform the similarity evaluation process P1), as long
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as it outputs a CU for a given query video. Thus, we will present an efficient imple-
mentation of the TASC in Section 3.3 and then discuss how to design the algorithms
for the processes P2 through P4 in Section 4, which are basically independent of the
variant implementations of the TASC.

3.3. A Four-Chain Implementation of the TASC

In practice, the implementation of the TASC is mainly related to three issues: which
audiovisual features are utilized, how to design a reasonable classification strategy,
and how to organize the detectors into several chains. In addition, the preprocessing
operations should also be considered.

3.3.1. Preprocessing. In the implementation, some preprocessing operations should
be performed first. Visual keyframes are obtained by uniformly sampling the visual
component at a rate of 3 frames per second, whereas an audio frame with a length of
0.37 seconds is extracted from the audio signal for every interval of 11.6 milliseconds.
As in Haitsma and Kalke [2012], the overlap factor of two consecutive audio frames is
set to 31/32. Thus, for a 3-second-long video segment, a total of 10 visual keyframes
and about 256 audio frames can be extracted. Often, this segment length should be
consistent with the predefined length of CUs.

PiP detection is also performed in the preprocessing step. Instead of using a sim-
ple Hough transform–based method, we use a recently proposed PiP detection method
[Qian et al. 2014] that introduces the spatiotemporal slicing to establish the proba-
bility measurement of the corresponding edge surface and then uses an optimization
algorithm to refine vertical and horizontal edge lines. For queries with PiP, the fore-
ground and nonforeground keyframes will be processed respectively to check whether
the corresponding videos are copies. In addition, queries asserted as noncopies will be
flipped and matched again to deal with flip transformation.

3.3.2. Multimodal Features. To keep robustness to diverse transformations, the system
should extract several complementary features from audio and video frames [Tian et al.
2013]. Generally, three kinds of features should be used: audio, global, and local visual
features. The complementarity of visual and audio features is obvious; that between
global and local visual features lies in that the former is capable of resisting quality-
degrading operations (e.g., blur, noise), whereas the latter can cope well with a wide
range of other transformations [Mou et al. 2013]. In this implementation, the details
about the used features are described as follows:

(1) Audio feature: Our previous systems [Tian et al. 2012, 2013; Mou et al. 2013] used
the weighted audio spectrum flatness (WASF) [Chen and Huang 2008] as the audio
feature. Despite having good performance for some audio transformations, such as
MP3 compression, its computational complexity is high. Instead, this implemen-
tation uses a robust AFP proposed in [Haitsma and Kalke 2012]. AFP extracts a
32-bit subfingerprint for each audio frame by calculating energy differences along
the frequency and time axes. As in Haitsma and Kalke [2012], the bit errors are
used to measure the similarity between two AFPs, and all AFPs for reference videos
are organized in a hash lookup table for quick search. Our experimental results in
Section 6 show that AFP only takes 1/13 the processing time of WASF on the same
dataset.

(2) Global visual feature: As a kind of compact and computationally efficient feature,
the 256-D DCT [Mou et al. 2013] is still used as the global visual feature in this
implementation. In the DCT-based detector, Hamming distance is used as the dis-
tance metric. For each frame in a reference video, the first 64 bits of its DCT feature
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are indexed by locality sensitive hashing (LSH). Then a two-stage strategy can be
adopted for fast DCT feature matching, which first searches in the LSH table for
all candidates whose difference with the first 64 bits of the query frame is no more
than 3 bits and then conducts the exact comparison of the whole DCT features
between these candidates and the query frame. Note that here the comparison
between two DCT features is computationally very efficient (only four CPU clock
cycles when using the “popcnt” instruction).

(3) Local visual feature: In our previous systems [Tian et al. 2013; Mou et al. 2013],
DC-SIFT [Bosch et al. 2008] was used as as the local feature. It can obtain excellent
detection accuracy at the cost of a very long processing time. Thus, in this imple-
mentation, we use SIFT to replace DC-SIFT and also apply the BoW technique
to convert each SIFT descriptor into a visual word (1,000 words generated from
the Flickr 1M dataset). Meanwhile, the position in the 2×2 partition of the image,
scale (large vs. small), orientation (quantized into 12 bins), and Laplacian response
(positive vs. negative) are also taken into account. Only two features mapped to the
same word and with similar position, scale, orientation, and Laplacian response
can be regarded as a match. The similarity between two frames is defined as the
average percentage of the matches. For all reference videos, SIFT BoWs are stored
into an inverted index table for quick matching. Note that the original SIFT de-
scriptors of each CU are also used in the soft decision process P3 to further examine
those hard-to-judge copies and noncopies.

3.3.3. Transformation Recognition. Generally, different transformations may produce dif-
ferent effects on audiovisual content. For example, some audio transformations, such
as removal of audio signal or mixture with speech, will remarkably change the acous-
tic content of a video, whereas some others (e.g., mp3 compression and compand-
ing) will not. Similarly, video content is largely preserved after spatial or temporal
content-preserving operations, such as format conversion, degrade in quality (e.g.,
noise addition, resolution change, and re-encoding). In contrast, video is notably mod-
ified after spatial or temporal content-altering operations such as cropping, PiP, and
pattern insertion [Tian et al. 2013]. Therefore, ideally, we can group the query videos
according to whether the audiovisual content is notably modified or not. Following
this idea, we have tried a strategy that identifies three transformation categories:
(1) content-preserving audio transformations, no matter which visual transformations
exist; (2) content-altering audio transformations with content-preserving visual trans-
formations; and (3) content-altering audio and visual transformations. However, the
task of correctly recognizing these transformation categories for query videos is chal-
lenging and even more difficult than the copy detection tasks themselves. Our prelim-
inary experiments show that by training two SVM classifiers for audiovisual content-
altering detection, the average recognition accuracy can only reach 78.9%. In this case,
the recognition errors will heavily influence the copy detection performance of the
whole system.

Therefore, a more reasonable strategy should not only facilitate the utilization of
different features but also should be easy to recognize the categories. Toward this end,
this implementation adopts a strategy that classifies the query videos according to the
perceptual distinguishability between them and their near-duplicates. We have shown
two contrasting examples in Figure 2: the query keyframe in (a), despite being heavily
transformed, can be easily determined as a copy of the reference keyframe; on the
contrary, it is often hard to distinguish the two frames in (b) if their color information
is ignored. This is mainly because we cannot extract discriminative features (e.g.,
DCT features) from those low-contrast images. Similar observation can also be found
in the audio signal when inserting mute audio as an editing effect. Following these
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observations, four categories are identified in this implementation if a query video
consists of the following types of frames:

—G1: Mute audio and low-contrast visual frames
—G2: Normal visual frames with mute audio
—G3: Normal audio frames and low-contrast visual frames
—G4: Normal audiovisual frames.

As such, the transformation recognition can be formulated as two simple detection
tasks: mute audio detection and low-contrast frame detection. For mute audio detection,
if the average energy of all 2,048 samples in an audio frame is lower than a very low
value (e.g., 3), we can treat it as a mute frame. For low-contrast frame detection, each
original frame is first transformed into the gray image and then quantized into 32 bins.
After that, if the sum of any three adjacent bins takes a very high percentage (e.g.,
97%), this frame can be treated as a low-contrast one. In practice, both detection tasks
can obtain very high recognition rates. Moreover, the simple computation also makes
the whole transformation recognition computationally efficient.

3.3.4. Design of Transformation-Aware Detector Chains. Given the preceding multimodal
features and transformation recognition, the third issue is to organize the detectors
into several transformation-aware chains. Obviously, for categories G1 and G2 where
no (or very weak) audio signal exists in the query video, the AFP-based detector should
not be used; similarly, for categories G1 and G3 where low-contrast visual frames exist
in the video, the DCT-based detector should be excluded. Therefore, the detector chains
can be expressed as

D =

⎧⎪⎨
⎪⎩

D1
D2
D3
D4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

dSIFTBoW

dDCT dSIFTBoW

dAFP dSIFTBoW

dAFP dDCT dSIFTBoW

⎫⎪⎬
⎪⎭, (5)

where dSIFTBoW (or dAFP, dDCT) denotes the detector that is based on the SIFT BoW
feature (or the AFP and DCT features, respectively). Accordingly, the soft boundary for
D in Equation (4) can be rewritten as

� =

⎡
⎢⎣

�1|ϕ1
�2|ϕ2
�3|ϕ3
�4|ϕ4

⎤
⎥⎦ =

⎡
⎢⎣

θ1,1 |ϕ1
θ2,1 θ2,2 |ϕ2
θ3,1 θ3,2 |ϕ3
θ4,1 θ4,2 θ4,3 |ϕ4

⎤
⎥⎦. (6)

Note that although the detector dSIFTBoW is used in all chains, the corresponding decision
thresholds (i.e., θ1,1, θ2,2, θ3,2, and θ4,3) are different in most cases, as they are learned
from different training data. The analogous observations also hold for dAFP and dDCT.

4. THE ALGORITHMS

This section will describe three algorithms used in the TASC, including the CU search
algorithm for the process P2, the soft boundary learning algorithm for the process P3,
and the CU-based localization algorithm for the process P4. Note that these algorithms
are basically independent of the implementation details of the TASC and thus can
be applied to its different implementations. For more readability, Table I shows some
main notations used in this section.

4.1. The CU Search Algorithm

Given the frame-level similarity results between a query video qj and a reference video
∀r ∈ R provided by the process P1, the CU search process P2 to find a CU pair, denoted
by 〈u k(qj), u l(r)|sk,l〉 where k and l are their beginning locations, which is then used by
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Table I. Some Main Notations Used in This Section

Notation Meaning
Dm = 〈dm,1, . . . , dm,Nm〉 The mth detector chain, in which dm,n is the nth detector

Qm = {q1, . . . , qJm} The training query videos for the mth chain
qj = {Q1, . . . , QLq } ∈ Qm A query video with Lq keyframes

r = {R1, . . . , RLr } ∈ R A reference video with Lr keyframes
S = [Sim(Qi′ ,Rj′ )]Lq ,Lr The frame-level similarity matrix

〈u k(qj ), u l(r)|sk,l〉 A CU pair in 〈qj , r〉 with its similarity sk,l

P(k, l, �) Sum of the frame-level similarities in 〈u k(qj ),u l(r)〉
Cm,n(qj , r) All candidate CUs in 〈qj , r〉 found by dm,n

U�
m,n or U⊥

m,n The CU set when training θ�
m,n or θ⊥

m,n
U∗

m The CU set when training ϕm for Dm

[t(B)(x), t(E)(x)] The precise location of a segment in x
�∗

m = [θ∗
m,1, . . . , θ∗

m,Nm
] The optimal thresholds for Dm

ϒ(qj , r, θm,n) The decision cost of (qj , r) by θm,n

Ä (qj , r) The statement that qj is a copy of r in the ground truth
A(qj , r) The statement that qj is asserted as a copy of r by the system

� The predefined CU length
θ̄m The localization termination threshold

detector dm,n to decide whether A(qj, r), holds. Let � denote the predefined length of a
CU. We suppose that there are totally Lq keyframes in qj (denoted by Q1, . . . , QLq ) and
Lr keyframes in r (denoted by R1, . . . , RLr ). Note that if Lq < � or Lr < �, according to
the Detection-on-Copy-Units mechanism, dm,n can directly determine that qj is not a
copy of r. Then the CU search algorithm is to find k∗ and l∗, 1 ≤ k∗ ≤ Lq, 1 ≤ l∗ ≤ Lr,
that maximize the following objective function:

P(k, l, �) =
�−1∑
i=0

Sim(Qk+i, Rl+i), (7)

where Sim(X, Y ) denotes the similarity between two frames X and Y . For the two
videos qj and r, there are at most (Lq − �+1) ×(Lr − � + 1) possible CU pairs. Among
them, only the ones whose P() are larger than a predefined threshold can be viewed
as the candidate CUs (denoted by Cm,n(qj, r)). In our experiments, the threshold is set
to � × θ⊥∗

m,n, where θ⊥∗
m,n is the optimal lower threshold for dm,n that is learned using

Algorithm 2.
Figure 5 visualizes two examples for the CU search, where each block diagram rep-

resents a frame-level similarity matrix. In Figure 5(a), there is only one copy segment
between the two videos. In this case, each candidate CU pair (marked by the dotted
blue lines) corresponds to a slant that has the length of �. As such, we can find a slant
(marked by the solid red line) that maximizes the sum of the similarity values between
all frame pairs in this line. Figure 5(b) shows another case that there are more than
one copy segments between the two videos. In this case, we need to find all candidate
CUs and sort them in the descending order by similarity; then for each candidate
CU, repeat the copy detection P3 process and the localization process P4 until no copy
segment pairs can be found again.

To obtain the optimal solution {k∗, l∗}, we need to calculate P() for all (Lq−�+1)×(Lr −
� + 1) slants, using totally (Lq−�+1)×(Lr−�+1)×(�−1) add operations. Namely, the
computation complexity is approximately O(�Lq Lr). To reduce the computation, we
observe that for a long slant starting from (Qi′ , Rj ′ ) (1≤i′≤Lq−�, 1≤ j ′≤Lr−�), with
the length of K (�≤K≤min(Lq−�, Lr−�)), there are totally K calculations of P() using
Equation (7) (i.e., P(i′, j ′, �), P(i′ + 1, j ′ + 1, �), . . . , P(i′ + K, j ′ + K, �)). Here for any
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Fig. 5. Two examples for the CU search, where only one copy segment (a) and more than one copy segments
(b) exist between between a query video and a reference video. Here each block diagram represents a
similarity matrix between two videos, in which the dotted blue lines denote the candidate CUs, whereas the
the solid red lines represent the desired CUs.

two adjacent terms P(k, l, �) and P(k+ 1, l + 1, �) where i′ ≤ k < i′ + K and j ′ ≤ l < j ′ +
K, P(k + 1, l + 1, � − 1) is calculated twice. Then we introduce the matrix E by

E(k, l) =
{

Sim(Qk, Rl), k = 1 or l = 1;
E(k − 1, l − 1) + Sim(Qk, Rl), otherwise,

(8)

where k∈[1, . . . , Lq] and l∈[1, . . . , Lr]. Then P(k, l, �) can be rewritten as

P(k, l, �) = E(k + � − 1, l + � − 1) − E(k − 1, l − 1). (9)

In other words, given the precalculated accumulative matrix E, we only need one add
operation for the calculation of P(), instead of (�−1) add operations directly using Equa-
tion (7). Since the calculation of E is about O(Lq Lr), the total computation complex-
ity can thus be reduced to approximately O(Lq Lr+(Lq−�+1) ×(Lr−�+1))≈O(2Lq Lr).
Algorithm 1 presents the pseudocode of the CU search process P2.

Note that this algorithm needs the frame-level similarity matrix S from the similar-
ity evaluation process P1 as its input. Let δm,n denote the similarity evaluation time
between two frames in detector dm,n (in terms of basic operations), then the computa-
tion complexity of P1 is approximately O(δm,nLq Lr), which is much larger than O(2Lq Lr)
of the CU search process P2. Actually, the computation of P1 can also be accelerated
by using the indexing structure of the used features (e.g., the hash lookup table for
AFP, the LSH for DCT, and the inverted table for SIFT BoW). Given a query video
qj , each detector dm,n picks up top K similar reference keyframes (audio frames) for
each query keyframe (audio frame) from the index structure, obtaining a collection
{m m,n(Qk, Rl)}Qk∈qj ,Rl∈r of frame matches (K = 20 in this work). After that, we can only
calculate the similarity for all frame pairs in the slants that contain {m m,n(Qk, Rl)} and
perform the process P2 in these slants. In practice, the number of such slants is limited.
Thus, the computation complexity of P1 can be remarkably reduced.

4.2. The Soft Boundary Learning Algorithm

In the TASC, each detector dm,n takes two thresholds (i.e., θ�
m,n and θ⊥

m,n) to examine the
easy-to-judge copies and noncopies (called hard decision), whereas each chain Dm also
trains one nonlinear classifier to check those hard-to-judge ones (called soft decision).
Thus, for Dm, the soft boundary learning problem can be divided into two subtasks:
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ALGORITHM 1: The CU Search Algorithm
Input: A query video qj = {Q1, . . . , QLq }, a reference video r = {R1, . . . , RLr }, the similarity

matrix S = [
Sim(Qi′ , Rj′ )

]
Lq ,Lr

, the dm,n’s optimal lower threshold θ⊥∗
m,n, and the

predefined CU length �.
Output: A CU pair 〈u k(qj), u l(r)|sk,l〉 and the candidate CU set Cm,n(qj, r).

1. Calculate the accumulative matrix E.
E ← [

0.0
]

0∼Lq ,0∼Lr
,Cm,n(qj, r) ← ∅;

for i′ = 1, . . . , Lq; j ′ = 1, . . . , Lr do
E(i′, j ′) ← S(i′, j ′) + E(i′ − 1, j ′ − 1);

end
2. Calculate the most similar segments.
EMax ← 0.0;
for i′=0, . . . , Lq−�; j ′=0, . . . , min(Lr−�,Lq−�−i′) do

ECur ←E(i′+�, j ′+�)−E(i′, j ′);
if ECur > EMax then

EMax ← ECur , k ← i′ + 1, l ← j + 1;
end
if ECur > � × θ⊥∗

m,n then
Cm,n(qj, r) = Cm,n(qj, r) ∪ {i′, j ′, ECur/�};

end
end
for j ′=1, . . . , Lr−�;i′=0, . . . , min(Lq−�,Lr−�− j ′) do

ECur ←E(i′+�, j ′+�)−E(i′, j ′);
if ECur > EMax then

EMax ← ECur , k ← i′ + 1, l ← j ′ + 1;
end
if ECur > � × θ⊥∗

m,n then
Cm,n(qj, r) = Cm,n(qj, r) ∪ {i′, j ′, ECur/�};

end
end
3. Return the CU.
u k(q) ← {Qk, . . . , Qk+�−1}; u l(r) ← {Rl, . . . , Rl+�−1};
sk,l ← EMax/�.

learning bi-thresholds �∗
m=[θ∗

m,1, . . . , θ
∗
m,Nm

] where θ∗
m,n=〈θ�∗

m,n, θ⊥∗
m,n〉 are the optimal bi-

thresholds for dm,n, and training a nonlinear classifier ϕm.

4.2.1. Learning Bi-Thresholds for Hard Decision. In Jiang et al. [2012] and Tian et al.
[2013], a soft threshold learning algorithm was proposed to automatically determine
the optimal thresholds. However, it learns a single decision threshold for each detec-
tor. Moreover, that algorithm is built on the video-level similarity between two videos,
whereas the TASC utilizes the segment-level similarity of their CUs to decide whether
or not they are near-duplicates. Therefore, we will describe how to extend that algo-
rithm to learn bi-thresholds for hard decision in the TASC.

Ideally, for a detector dm,n∈Dm, its upper threshold θ�
m,n is used to definitely determine

whether a query video qj is a copy of r, whereas the lower one θ⊥
m,n is used to definitely

judge whether qj is a noncopy. In other words, when dm,n uses θ�
m,n to judge whether

A(qj, r) holds, the results should be without any false alarm (i.e., false positive). This
is analogous to the NOFA profile in the TRECVID-CBCD task [Over et al. 2010] where
a very high cost is set to an individual false alarm. Such an idea is also illustrated in
Figure 6(a) through (c), which visualizes the bi-thresholds respectively for the AFP-,
DCT-, and SIFT BoW-based detectors using the TRECVID-CBCD-2010 data.
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Fig. 6. Visualize the bi-thresholds for AFP (a), DCT (b), and SIFT BoW-based (c) detectors, as well as the
soft boundary of the classifier ϕSIFT , using the TRECVID-CBCD-2010 data. In each subfigure, a cycle mark
(o) denotes that the two CUs are duplicates in the ground truth, whereas a cross mark (x) denotes that they
are nonduplicates; the dashed line annotated by θ�

X represents the upper threshold for the corresponding
detector, whereas the dotted line annotated by θ⊥

X represents the lower one.

Let 〈u k(qj), u l(r)|sk,l〉 denote the CU pair of a query video qj∈Q and a reference video
r∈R, where sk,l is the segment-level similarity between u k(qj) and u l(r) (note that
sk,l should be the maximal value among the similarity values of all candidate CUs
Cm,n(qj, r)). We also let Ä(qj, r) denote the statement that qj is indeed a copy of r in the
ground truth, whereas A(qj, r) denote that qj is asserted as a copy of r by the system.
Thus, the decision cost of dm,n with θ�

m,n on A(qj, r), denoted by ϒ(qj, r, θ�
m,n), is evaluated

in the following four cases:

(1) If Ä(qj, r) and sk,l≥θ�
m,n, then it is a true positive (TP) and ϒ(qj, r, θ�

m,n) is set to zero.
(2) If ¬Ä(qj, r) but sk,l≥θ�

m,n, then it is a false positive (FP) and ϒ(qj, r, θ�
m,n) is set to a

large value cL (e.g., cL = 100).
(3) If ¬Ä(qj, r) and meanwhile sk,l<θ�

m,n, then it is a true negative (TN) and ϒ(qj, r, θ�
m,n)

is set to zero.
(4) Otherwise (namely, Ä(qj, r) and sk,l<θ�

m,n), dm,n is not able to utilize θ�
m,n to judge

whether u k(qj) is or is not a copy of u l(r), and thus ϒ(qj, r, θ�
m,n) is set to a small

value cS (e.g., cS = 1).

By summarizing the four cases, we can get

ϒ
(
qj, r, θ�

m,n

) =

⎧⎪⎨
⎪⎩

0,
(
Ä(qj, r) ∩ (

sk,l ≥ θ�
m,n

)) ∪ (¬Ä(qj, r) ∩ (
sk,l < θ�

m,n

))
;

cL,
(¬Ä(qj, r) ∩ (

sk,l ≥ θ�
m,n

))
;

cS, otherwise.

(10)

Note that if there are more than one copy segments between qj and r (as shown in
Figure 5(b)), the CUs from each copy segment should be used to calculate ϒ(qj, r, θ�

m,n).
Similarly, we can use θ⊥

m,n as the decision threshold of dm,n to definitely reject noncopies
and then derive the decision cost ϒ(q, r, θ⊥

m,n) as follows:

ϒ
(
qj, r, θ⊥

m,n

) =

⎧⎪⎨
⎪⎩

0,
(¬Ä(qj, r) ∩ (

sk,l < θ⊥
m,n

)) ∪ (
Ä(qj, r) ∩ (

sk,l ≥ θ⊥
m,n

))
;

cL,
(
Ä(qj, r) ∩ (

sk,l < θ⊥
m,n

))
;

cS, otherwise.

(11)

For each detector dm,n, the two thresholds θ�
m,n and θ⊥

m,n work independently, thus they
can be learned in two separate but similar training tasks. Given a training set Q, we
first divide it into M subsets, each of which corresponds to one category (denoted by
Qm={q1, . . . , qJm} for the mth category). Then for ∀m∈[1, . . . , M], we need to perform the
similarity evaluation process P1 to calculate the frame-level similarity between ∀qj∈Qm
and ∀r∈R. After that, we perform the CU search process P2 to collect all CUs between
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Qm and R, and then construct two subsets:

U�
m,n = {〈u k(qj), u l(r)〉|∀qj,∀r, Ä(qj, r), ω�

m, j > 0},
U⊥

m,n = {〈u k(qj), u l(r)〉|∀qj,∀r,¬Ä(qj, r), ω⊥
m, j > 0}, (12)

where ω�
m, j∈W�

m(or ω⊥
m, j∈W⊥

m) denotes the weight of qj when training θ�
m,n (or θ⊥

m,n). Since
the learning procedures for θ�

m,n or θ⊥
m,n are almost the same, we use θm,n to denote either

θ�
m,n or θ⊥

m,n in the following discussion, with its corresponding CU set Um,n∈{U�
m,n, U⊥

m,n}
and weight vector Wm∈{W�

m, W⊥
m}. Note that here the weight vector Wm is introduced

such that detectors in each chain are enforced to only focus on the queries that are
incorrectly detected by their antecessors. Thus,

ωm, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, n = 1;

0, n > 1,
∑
∀r∈R

ϒ
(
qj, r, θ∗

m,n−1

) = 0;

α jωm, j, otherwise,

(13)

where θ∗
m,n−1 is the learned upper or lower threshold for dm,n−1 and α j=∑

∀r ϒ(qj ,r,θ∗
m,n−1)∑

∀qj

∑
∀r ϒ(qj ,r,θ∗

m,n−1)/Jm
is a regularization factor .

By assembling the individual costs of dm,n on all CUs in Um,n, the overall decision cost
of dm,n with respect to θm,n can be expressed as follows:

ε(Um,n, θm,n) =
∑

∀〈u k(qj ),u l(r)〉∈Um,n

ωm, j × ϒ(qj, r, θm,n). (14)

Therefore, the optimal threshold θ∗
m,n can be obtained by solving the following mini-

mization problem:

θ∗
m,n = arg min

θm,n∈[šm,n,ŝm,n]
ε(Um,n, θm,n), (15)

where šm,n and ŝm,n denote the minimal/maximal segment-level similarity values among
CUs in Um,n.

As a result, the learning procedure for the bi-thresholds {�m}1≤m≤M for all detectors
in D is summarized in Algorithm 2.

4.2.2. Learning Nonlinear Classifiers for Soft Decision. As mentioned earlier, for a CU
〈u k(qj), u l(r)〉 whose similarity sk,l is between θ�

m,n and θ⊥
m,n, the detector dm,n is not

able to utilize the bi-thresholds to determine whether or not they are duplicates. If
the similar assertions are obtained throughout all detectors in Dm, it should be further
checked by a nonlinear classifier ϕm. Note that here ϕm requires that the input feature
should characterize the similarity or difference between u k(q) and u l(r) in a CU.

In the field of copy detection, the keypoint matching based on the SIFT descriptor (not
the SIFT BoW feature) is well recognized for its good stability and discriminative abil-
ity, despite that it is computationally expensive for large number of points and the high
dimension [Liu et al. 2013a]. In this study, we choose the SIFT descriptor to describe
visual characteristics of each 3-second-long video segment in a CU. This is computation-
ally feasible since such a segment only contains 10 visual keyframes (i.e., � = 10), and
the calculations in SIFT feature extraction can be reused with the SIFT BoW-based
detector. Thus, given a CU pair 〈u k(q), u l(r)〉 where u k(q)={Qk, Qk+1, . . . , Qk+�−1} and
u l(r)={Rl, Rl+1, . . . , Rl+�−1}, the frame-level similarity Sim(Qk+i, Rl+i) is calculated as
the average percentage of the SIFT keypoint matches between two frames ∀Qk+i∈u k(q)
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ALGORITHM 2: The Bi-Thresholds Learning Algorithm
Input: The M chains D={D1, . . . , DM} where Dm =〈dm,1, . . . , dm,Nm〉, a training set Q={Q1, . . . ,

QM} where Qm={q1, . . . , qJm} for the mth category, and a reference database R.
Output: �∗

m=[θ∗
m,1,. . .,θ

∗
m,Nm

] for 1≤m≤M, where θ∗
m,n=〈θ�∗

m,n,θ
⊥∗
m,n〉 are the optimal bi-thresholds

for dm,n.

for m = 1, . . . , M do
1. Initialize weights {ω�

m, j ,ω
⊥
m, j}← 1 for 1 ≤ j ≤ Jm;

2. for n = 1, . . . , Nm do
2.1. Evaluate the frame-level similarity using the process P1, for ∀qj∈Qm and ∀r∈R;
2.2. Perform the process P2 to collect all CUs and then construct two CU sets:
U�

m,n={〈u k(qj), u l(r)〉|∀qj, ∀r, Ä(qj, r), ω�
m, j>0},

U⊥
m,n={〈u k(qj), u l(r)〉|∀qj, ∀r, ¬Ä(qj, r), ω⊥

m, j>0};
for θm,n∈{θ�

m,n, θ
⊥
m,n}, with its corresponding Um,n∈{U�

m,n, U⊥
m,n} and Wm∈{W�

m, W⊥
m} do

2.3. Evaluation the cost ϒ(qj, r, θm,n) for ∀〈u k(qj), u l(r)〉 ∈Um,n;
2.4. Calculate the max/min similarities:
ŝm,n=max{sk,l|〈u k(qj), u l(r)〉∈Um,n},
šm,n=min{sk,l|〈u k(qj), u l(r)〉∈Um,n};
2.5. Find the optimal threshold θ∗

m,n for dm,n by Equation (15);
2.6. Update ωm, j using Equation (13), for 1 ≤ j ≤ Jm;

end
end
3. Return �∗

m = [θ∗
m,1, . . . , θ

∗
m,Nm

].
end

and ∀Rl+i∈u l(r) where 0≤i<�. Consequently, a �-D vector is constructed as the input of
ϕm by concatenating these frame-level similarities:

v(u k(q), u l(r)) = [Sim(Qk, Rl), . . . , Sim(Qk+�−1, Rl+�−1)]T. (16)

In this study, we use SVM with soft margin (e.g., LibSVM [Chang and Lin 2011]) as
the classifier, as it utilizes the kernel trick to map the original feature space into a
high-dimensional space where a maximum soft margin hyperplane can be constructed
for classification. For each chain Dm, a nonlinear classifier ϕm can be trained over the
training set U∗

m that contains the CUs between ∀qj∈Qm and ∀r∈R whose decision cost
by the last detector dm,Nm is larger than zero—that is,

U∗
m = {〈u k(qj), u l(r)〉|ϒ(qj, r, θm,Nm) > 0}. (17)

Figure 6(d) illustrates an example of the soft boundary trained on the TRECVID-
CBCD-2010 dataset. We can see that compared to all other detectors shown in
Figure 6(a) through (c), the CU similarity distribution when using the SIFT keypoint
matching is linearly more separable. Thus, based on this, the soft-margin SVM can
further improve the detection performance. It should also be noted that since only the
SIFT descriptor is used in the nonlinear classifiers, the four-chain implementation of
the TASC just needs to train two soft-margin SVMs: one for categories G1 and G3 and
the other for categories G2 and G4.

4.3. The Localization Algorithm

If a query qj is asserted as a copy of r∈R, then the remaining task is to locate the
precise timestamps of the copy segments in qj and r, namely [t(B)(qj), t(E)(qj)] and
[t(B)(r), t(E)(r)]. In our previous work [Jiang et al. 2012; Tian et al. 2013], a multiscale
sequence matching method—temporal pyramid matching (TPM)—was proposed for the
copy localization task. However, it cannot be applied here because the TASC adopts the
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Fig. 7. Schematic illustration of the CU-based localization algorithm for the normal-speed (a), the frame
rate–increasing (b), and frame-dropping (c) cases, respectively.

CUs as the sole basis for copy detection. In other words, the goal of the copy localization
process P4 is to find copy segments in qj and r that are with the asserted CU as their
center. Toward this end, we propose a CU-based localization algorithm.

Figure 7(a) illustrates the conceptual scheme of our CU-based localization algorithm.
Given a query video qj = {Q1, . . . , QLq} and a reference video r = {R1, . . . , RLr }, their CU
pair 〈u k(qj)u l(r)〉 is asserted as copies by the detector chain Dm. Starting from this CU
pair, a backward scanning and a forward scanning are used to determine the beginning
and ending timestamps of the copy segments, respectively. Take the backward scanning
as the example. Two sliding windows of the length � are used to iteratively backward
scan qj and r. The sliding window in qj starts from the starting frame of u k(qj) (i.e., the
kth frame) and moves backward with the step length of �t at each iteration, whereas
that in r starts from the starting frame of u l(r) (i.e., the lth frame) and moves backward
with three step lengths (i.e., 0, �t, 2�t) at each iteration. Note that here, �t may
be one to several frames (we set �t=1 in the experiments). As such, we can obtain
three possible matches between the windowed segments in qj and r at each iteration
(marked by the dotted ellipses in the figure). After that, the segment-level similarity
is calculated for each match. The match with maximal similarity (marked by the bold
solid ellipses) will be selected as the starting points at the next iteration. This iteration
process will be terminated when the similarity of the selected match is lower than
a threshold θ̄m, where θ̄m can be calculated on the training set Qm as the minimal
segment-level similarity in all ground-truth copy segments.

Note that due to utilization of the variable step lengths for the sliding window on the
reference video, this CU-based localization algorithm can cope well with the temporal
content-altering operations such as frame-rate change and frame dropping. Figure 7(b)
and (c) illustrate the two cases. Moreover, if more than one copy segments exist between
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between qj and r, and several CUs are asserted as copies by Dm, we can repeat the CU-
based localization algorithm for each CU pair.

Algorithm 3 summarizes the CU-based localization algorithm. Here, P(i′, j ′, �) is
defined in Equation (7). In particular, if i′ �∈[1,Lq−�+1] or j ′ �∈ [1,Lr−�+1], then
P(i′, j ′, �)=−∞.

ALGORITHM 3: The CU-Based Localization Algorithm
Input: A query video qj = {Q1, . . . , QLq }, a reference video r = {R1, . . . , RLr }, the similarity

matrix S = [
Sim(Qi′ , Rj′ )

]
Lq ,Lr

, the asserted CU 〈u k(q), u l(r)|sk,l〉, the predefined CU

length �, and the termination threshold θ̄m.
Output: The copy locations [t(B)(qj), t(E)(qj)] in qj and [t(B)(r), t(E)(r)] in r.

1. The backward scanning.
t(B)(r) ← l;
for t(B)(qj) = k, . . . , 1 do

Calculate P(t(B)(qj), t(B)(r) − i, �) for i ∈ [0, 2];
{Smax, i∗}=maxi∈[0,2] P(t(B)(qj),t(B)(r)−i,�);
if Smax<� × θ̄m then break;
t(B)(r) ←t(B)(r)−i∗;

end
2. The forward scanning.
t(E)(r) ← l;
for t(E)(qj) = k, . . . , Lq − � + 1 do

Calculate P(t(E)(qj), t(E)(r) + i, �) for i ∈ [0, 2];
{Smax, i∗}=maxi∈[0,2] P(t(E)(qj),t(E)(r)+i,�);
if Smax<� × θ̄m then break;
t(E)(r) ←t(E)(r)+i∗;

end
t(E)(qj) ←t(E)(qj)+�−1;t(E)(r) ←t(E)(r)+�−1;
3. Return [t(B)(qj), t(E)(qj)] and [t(B)(r), t(E)(r)].

For a given query qj and a reference video r∈R, if the similarity matrix
S=[

Sim(Qi′ , Rj ′ )
]

Lq,Lr
is precalculated, the computation of each scanning process is

mainly ascribed to the computation of P(). Let Lc denote the frame number of the copy
segment in qj (Lc � Lq in most cases), then the overall computation complexity of this
algorithm is approximately O(3�Lc) and much lower than that of P1 or P2. Therefore,
the process P4 is computationally very efficient.

5. EXPERIMENTS

In this section, we discuss several experiments that were conducted to prove the effec-
tiveness and efficiency of our TASC approach. The main objectives were twofold: (1) to
explore how different components of the TASC works and (2) to evaluate whether the
TASC can effectively and efficiently detect and locate video copies. Toward these ends,
we adopted three most widely used benchmark datasets in the experiments, including
TRECVID-CBCD [Kraaij and Awad 2011], MUSCLE-VCD-2007 [Law-To et al. 2007],
and CC_WEB_VIDEO [Wu et al. 2007].

TRECVID-CBCD. The TRECVID-CBCD datasets [Kraaij and Awad 2011] are widely
recognized as the largest and most challenging benchmarks for video copy detection.
The 425-hour reference database contains 11,503 videos collected from the Internet,
thereby diverse in content, style, format, and quality. Meanwhile, two query sets were
constructed for the TRECVID-CBCD 2010 and 2011 tasks, respectively, by randomly
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applying a combination of 8 visual and 7 audio transformations (a total of 56 transfor-
mations) to three types of video: reference video only, reference video embedded into a
nonreference video, and nonreference video only. Among them, the TRECVID-CBCD-
2010 dataset contains a total of 10,936 query videos, whereas the TRECVID-CBCD-
2011 dataset contains 11,256 query videos. In our experiments, the former was used
to train the TASC and evaluate the performance of its different components, whereas
the latter was used to evaluate its overall performance.

In the datasets, the detection results are often evaluated for each transformation
in terms of normalized detection cost rate (NDCR), Mean F1, and mean processing
time (MP-Time) [Kraaij and Awad 2011]. NDCR is the primary metric to evaluate the
detection effectiveness as follows [Over et al. 2010]:

NDCR = PMiss + β ∗ RFA, (18)

where PMiss is defined as the percentage of misses (i.e., false negatives) in all queries
containing a copy, RFA is calculated as the percentage of false alarms (i.e., false posi-
tives) measured on the full reference dataset, and β is a weighting factor.3 The second
measure, Mean F1, is used to assess the localization accuracy once a copy has been
correctly detected. It is defined as the harmonic mean of precision and recall, where
precision is the length percentage of the asserted copy that is indeed an actual copy,
whereas recall is the length percentage of the actual copy that is subsumed in the as-
serted copy. The third measure, MP-Time, is the average processing time (in seconds)
for a query. Obviously, the less NDCR, higher Mean F1, and shorter MP-Time, the
better.

MUSCLE-VCD-2007 [Law-To et al. 2007]. MUSCLE-VCD-2007 consists of 101 videos
with a total length of 80 hours, collected from different sources such as Web videos,
TV archives, and movies with different bitrates, resolutions, and formats. Two sets
of query videos were constructed by applying transformations to some reference and
nonreference videos: ST1 with 15 videos and ST2 with 3 videos. For ST1, the task is to
determine whether a query is a copy of a reference video. Thus, the evaluation metric,
quality (Q), is calculated as the percentage of correct answers. For ST2, the task is to
find the copy segments with the boundaries. Two evaluation metrics, QualitySegment
(QS) and QualityFrame (QF), are used to measure the detection effectiveness and
localization precision, respectively:

QS = TPSeg − FASeg

NSeg
, (19)

QF = 1 − FMiss

FT otal
, (20)

where TPSeg (or FASeg) is the number of correctly matched (or mismatched) video
segments, NSeg is the total number of segments in all queries, FMiss denotes the number
of mismatched frames, and FTotal is the total number of frames in all queries.

CC_WEB_VIDEO [Wu et al. 2007]. CC_WEB_VIDEO contains 24 sets of video clips
(a total of 12,790 videos) collected from YouTube, Yahoo! Video, and Google Video. For
each set of videos, the most popular video is used as the query video, whereas the other
videos are labeled as “redundant” or “irrelevant” in the ground truth. These redun-
dant videos are (approximately) identical to the query video but different in lengths,

3Two profiles are evaluated at the TRECVID-CBCD task: NOFA, which aims to reduce the false alarm rate
to 0. and BALANCED, which sets an equal cost for false alarms and misses. For simplicity, this article only
reports the results on the BALANCED profile.
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Fig. 8. An example of the misrecognized low-contrast frames: the original frame (a), its gray image (b), and
its histogram (c).

formats, encoding parameters, photometric variations (color, lighting changes), edit-
ing operations (caption, logo, and border insertion), and certain modifications (frames
add/remove). The performance is evaluated by mean average precision (MAP) as fol-
lows:

AP = 1
J

J∑
i=1

i
ri

, (21)

where J is the number of relevant videos and ri is the rank of the ith relevant video.
Meanwhile, the precision-recall curve is also used to assess the performance of near-
duplicate detection.

Note that in the experiments, we used the TRECVID-CBCD-2010 dataset as the
training set for the TASC. Then the learned parameters and classifiers were applied
to the other three datasets. This is reasonable, because our criteria for copy detection
should remain the same, whichever sources from these datasets were constructed.
Of course, this also presents a greater challenge for the TASC. All experiments were
carried out on a Windows Server 2008 with 32-core 2.0GHz CPUs and 32GB memory.

5.1. How It Works

In the first set of experiments, the main objective was to explore how different com-
ponents of the TASC work, including the transformation recognition, the individual
detectors, the soft decision boundary with bi-thresholds and nonlinear classifiers, and
the CU-based localization. In these experiments, we randomly divided the TRECVID-
CBCD-2010 dataset into four folds of equal size: one subset was used for training,
whereas the other three subsets were used for validation.

5.1.1. Transformation Recognition Results. This experiment evaluated the effectiveness
of the transformation recognition in the TASC. To do so, we manually labeled the
category IDs for all query videos in the TRECVID-CBCD-2010 dataset. For low-contrast
frames, we labeled the ground truth through subjective evaluation, whereas for mute
audio clips, the ground truth could be obtained using the automatic detection tool with
manual verification. In the TASC, the transformation recognition is formulated as two
simple detection tasks: mute audio detection and low-contrast frame detection. In the
experiment, the recognition rates of mute audio and low-contrast frames could reach
100% and 96%, respectively. Figure 8 shows a failure example of the low-contrast frame
detection, where the given high-contrast frame is misrecognized as a low-contrast one
because its gray histogram has two dominant neighboring bins. Note that this is also the
reason why we need to manually label the ground truth for low-contrast frames. Given
the detection results of mute audio and low-contrast frames in a CU, a decision rule was
used to determine the category of that CU according to the definition of transformation
categories. Table II shows the corresponding confusion matrix. On average, the average
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Table II. The Confusion Matrix of Transformation Recognition
on the TRECVID-CBCD-2010 Dataset

Asserted Category
G1 G2 G3 G4

G1 0.99 0.01 0 0
Actual G2 0.05 0.95 0 0

Category G3 0 0 0.99 0.01
G4 0 0 0.04 0.96

transformation recognition accuracy is about 97.3% in the four categories. The results
show that the transformation recognition in the TASC is very effective.

5.1.2. Performance of Individual Detectors. The second experiment evaluated the perfor-
mance of individual detectors under various audiovisual transformations. Five detec-
tors were involved in this experiment, including SIFT BoW, DCT, and AFP used in the
TASC and DC-SIFT BoW and WASF used in our previous work [Tian et al. 2013; Mou
et al. 2013]. Note that here all of these detectors utilize the CUs as the sole basis for
copy detection and localization.

Table III(a) shows the detection performance of individual detectors in terms of
NDCR and MP-Time. Here, for each detector, we used the soft threshold learning al-
gorithm [Tian et al. 2013] to train a single optimal threshold. Overall, the detection
results of all detectors are much worse than those in Tian et al. [2013] and Mou et al.
[2013]. This is mainly because the features extracted from each CU pair are much less
that those from the whole video segments. Among the three visual detectors, the perfor-
mance of the DC-SIFT–based detector is remarkably better than those of SIFT-based
and DCT-based detectors. However, its MP-Time is nearly 17 times that of the SIFT-
based detector, making it practically infeasible to many real-world copy detection tasks.
Comparatively, the DCT-based detector performs better on some content-preserving
transformations such as V4, whereas the performance of the SIFT-based detector is
superior on several content-altering transformations, namely V3, V5, and V8. As for
the efficiency, their MP-Times are varied for different transformations. For example,
MP-Times for V2, V8, and V10 are much longer than those for the other transforma-
tions. This is because an additional processing will be paid for PiP and flip effects in all
V2 videos and parts of V8 and V10 videos. One surprising finding is that both of the two
detectors seemed totally incapable of resisting V1, V2, V6, and V10 (i.e., with NDCRs
of larger than 0.6). Through an in-depth analysis, we found that this might be caused
by the “single decision threshold” strategy, since at least one of them could correctly
detect most of copies for query videos that were subject to these transformations if a
small number (e.g., 10) of false alarms were tolerated. This indicates that the used
detectors may be effective for CU-based copy detection, although what we really need
is probably to introduce a more flexible decision strategy for each detector.

To further validate this conjecture, we conducted a supplementary experiment by
learning the optimal bi-thresholds using Algorithm 2 and implementing a simplest
nonlinear classifier for each detector. This nonlinear classifier, called AvgSim, was
simply based on the average SIFT-based similarity among all frames in a CU pair.
Given all CUs that were identified by a specific detector, it thus could be used to judge
the ones whose similarities were between the two thresholds. In this case, the more
accurately the detector identified the CUs, the higher the detection performance that
could be achieved. Table III(b) shows the detection performance of individual detectors
with the learned bi-thresholds and the simple AvgSim classifier. We can see that the
detection performance of the three visual detectors improves significantly. In particular,
the average NDCR of the SIFT-based detector improved from 0.701 to 0.255, whereas
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Table III. Detection Performance of Individual Detectors on the TRECVID-CBCD-2010 Dataset1

(a) Each detector with a single threshold learned by the soft threshold learning algorithm.
V1 V2 V3 V4 V5 V6 V8

Metric Detector (A1) (A2) (A3) (A14) (A5) (A6) (A7) V10 AVG

DC-SIFT BoW 0.636 0.569 0.208 0.292 0.115 0.446 0.415 0.492 0.397
SIFT BoW 1.000 0.869 0.246 1.000 0.284 0.746 0.661 0.799 0.701

NDCR DCT 0.908 0.738 0.777 0.331 0.514 0.744 0.885 0.892 0.724
WASF 0.806 0.776 1.000 1.000 0.910 0.933 1.000 — 0.918
AFP 0.238 0.262 0.269 0.262 0.285 0.308 0.300 — 0.275

DC-SIFT BoW 172.493 513.615 243.896 260.327 189.152 234.372 406.465 379.177 299.937
SIFT BoW 12.384 27.400 14.267 17.788 11.632 14.455 22.621 21.210 17.720

MP- DCT 4.663 9.991 6.452 5.728 4.710 5.236 9.387 8.642 6.851
Time2

WASF 8.979 8.988 8.986 8.979 8.979 8.980 8.979 — 8.981
AFP 0.777 0.740 0.556 0.640 0.778 0.582 0.672 — 0.678

(b) Each detector with the learned bi-thresholds and a simple implementation of the nonlinear classifier
that is based on the average SIFT-based similarity among all frames in a CU pair.

V1 V2 V3 V4 V5 V6 V8
Metric Detector (A1) (A2) (A3) (A14) (A5) (A6) (A7) V10 AVG

DC-SIFT BoW 0.177 0.215 0.092 0.092 0.085 0.154 0.138 0.262 0.152
SIFT BoW 0.223 0.208 0.092 0.437 0.100 0.400 0.169 0.414 0.255

NDCR DCT 0.615 0.623 0.362 0.169 0.200 0.338 0.715 0.554 0.447
WASF 0.470 0.470 0.575 0.940 0.597 0.746 0.948 — 0.678
AFP 0.238 0.262 0.262 0.262 0.277 0.285 0.277 — 0.266

DC-SIFT BoW 173.289 515.711 244.831 261.302 190.248 235.294 407.829 380.590 301.137
SIFT BoW 12.717 28.238 14.612 18.307 12.230 15.109 23.126 21.914 18.282

MP- DCT 4.807 10.639 7.109 6.142 5.831 6.143 10.031 9.238 7.493
Time2

WASF 16.948 16.925 16.735 16.820 16.865 16.688 16.763 — 16.820
AFP 7.181 7.146 6.962 7.044 7.181 6.987 7.077 — 7.083

1On the TRECVID-CBCD datasets, transformations are V1. Cam-cording; V2. PiP; V3. Insertions of pattern;
V4. Re-encoding; V5. Change of gamma; V6. Decrease in quality; V8. Postproduction; V10. Combination of
three randomly chosen transformations; A1. Do nothing; A2. MP3 compression; A3. MP3 compression and
multiband companding; A4. Bandwidth limit and single-band companding; A5. Mix with speech; A6. Mix
with speech and multiband compression; A7. Bandwidth filter, mix with speech, and compression.
2Here the MP-Times are excluded the processing times (in seconds) for CU-based localization.

that of the DCT-based detector improved from 0.724 to 0.447, only at the additional
cost of about 1-second MP-Time for AvgSim. This shows that the soft decision boundary
strategy can indeed improve the detection performance of each detector remarkably.
Moreover, the DCT-based detector shows good robustness (lower NDCR values) to V2
and V4, whereas the SIFT-based detector can achieve better performance on other
visual transformations. In other words, they demonstrate a strong complementarity in
dealing with different visual transformations.

For audio, Table III(a) shows that the NDCR values of the WASF-based detector are
all close to one. On the contrary, the AFP-based detector shows very good detection
performance on nearly all audio transformations. More importantly, the AFP-based
detector is computationally very efficient since it only takes about 1/13 processing time
that of the WASF-based detector on this dataset. Table III(b) also shows the detection
performance of the two audio detectors with the learned bi-thresholds and the simple
AvgSim classifier. We can see that the NDCRs of the AFP-based detector are slightly
improved (from 0.275 to 0.266). This means that most of the CUs identified by the
AFP-based detector can be effectively recognized as copies or noncopies using either
a single decision threshold or bi-thresholds. We also noted that AvgSim took about
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Fig. 9. (a) The NDCR curves when different C values are adopted in SM-SVMRBF . (b) The detection per-
formance of the TASC with three implementations of the nonlinear classifiers: AvgSim, SM-SVMRBF with
C = 10 and SVMLinear .

6 to 8 seconds on average for each audio detector. This time was mainly paid for SIFT
feature extraction and similarity evaluation for both the original and flipped visual
frames.

Overall, the experimental results can support our conjecture about the complemen-
tarity of SIFT BoW, DCT, and AFP features. In other words, none of them can resist
all of the transformations, whereas a good overall performance may be achieved by ap-
propriately combining them together. Moreover, the results also confirm the necessity
of utilization of the soft decision boundary strategy for copy detection.

5.1.3. Performance of Soft Decision Boundary. After experimentally verifying its necessity,
this experiment evaluated the performance of the soft decision boundary strategy in
the TASC. As mentioned in Section 4.2, the TASC utilizes the soft-margin SVMs as the
nonlinear classifiers. In our experiments, the soft-margin SVMs were equipped with
the RBF kernel (denoted by SM-SVMRBF ) and implemented on the LibSVM [Chang
and Lin 2011]. Two comparison methods were used as well, including the simplest
AvgSim, and SVMLinear (i.e., the SVM classifier using the linear kernel). It should be
noted that the four-chain implementation of the TASC just needs to train two nonlinear
classifiers: one for categories G1 and G3 and the other for categories G2 and G4.

Figure 9(a) shows the NDCR curves when different regularization parameter C
values (from 0 to 1,000) are adopted in SM-SVMRBF . Clearly, when C = 0, SM-SVMRBF
becomes the hard-margin SVM. We can see that the best performance of SM-SVMRBF
could be achieved when C = 10, whether for a single chain or for all chains. Thus, in
the rest of experiments, we used SM-SVMRBF with C = 10.

Figure 9(b) compares both NDCRs and MP-times of the TASC for three implementa-
tions of the nonlinear classifiers. Clearly, the detection effectiveness of SM-SVMRBF is
remarkably better than both AvgSim and SVMLinear despite that its MP-Time is slightly
longer (more than 3 seconds on average).

5.1.4. Performance of CU-Based Localization. The fourth experiment evaluated the effec-
tiveness and efficiency of the CU-based localization algorithm. To do so, we evaluated
the localization precision (in terms of Mean F1) for different detectors and the whole
TASC. Table IV shows the results. We can see that for individual detectors, the SIFT-
based detector has the best Mean F1 of 0.945, slightly better than that of the DCT-
and AFP-based ones (0.935 and 0.913, respectively). Overall, the Mean F1 of the TASC
achieves 0.938. Considering the fact that the visual keyframes are extracted at a rate
of three frames per second, this localization precision is pretty good. Meanwhile, the
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Table IV. The Localization Performance of CU-Based Localization with Different Detectors
and the Whole TASC on the TRECVID-CBCD-2010 Dataset

V1 V2 V3 V4 V5 V6 V8
Metric Detector (A1) (A2) (A3) (A14) (A5) (A6) (A7) V10 AVG

SIFT BoW 0.926 0.949 0.952 0.936 0.951 0.938 0.956 0.956 0.945
DCT 0.921 0.944 0.954 0.914 0.958 0.943 0.935 0.915 0.935

Mean AFP 0.941 0.937 0.925 0.926 0.888 0.886 0.886 — 0.913
F1 0.929 0.944 0.944 0.914 0.943 0.949 0.951 0.929

TASC (0.942) (0.941) (0.939) (0.938) (0.934) (0.935) (0.935) — 0.938

SIFT BoW 0.057 0.056 0.057 0.057 0.057 0.057 0.057 0.057 0.057
DCT 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026

MP- AFP 0.010 0.010 0.010 0.010 0.010 0.010 0.010 — 0.010
Time∗

0.034 0.035 0.030 0.025 0.027 0.027 0.040 0.031
TASC (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) — 0.031

∗Here the MP-Times are the mean processing times (in seconds) only for CU-based localization while
excluding times for all other operations.

average MP-Time of 0.031 seconds also validates the high efficiency of the CU-based
localization algorithm in the TASC.

5.2. Whether It Works

In the second set of experiments, the main objective was to see whether our TASC ap-
proach could really work. Toward this end, we compared it with several state-of-the-art
methods on the TRECVID-CBCD-2011, MUSCLE-VCD-2007, and CC_WEB_VIDEO
datasets by using the parameters and classifiers trained on the TRECVID-CBCD-2010
dataset. On each dataset, we strictly followed the same evaluation proxy that was orig-
inally proposed by the dataset designer to make the experimental results comparable
to other methods.

5.2.1. Results on the TRECVID-CBCD-2011 Dataset. This experiment compared the TASC
with several cutting-edge methods on the TRECVID-CBCD-2011 dataset. These meth-
ods included (1) two variants of our previous system, the single soft threshold method
in Jiang et al. [2012] and Tian et al. [2013] (i.e., D

(S)
3 = 〈d(S)

WASF, d(S)
DCT, d(S)

DCSIFT〉, denoted
by “SoftD3”), and the hard threshold version (D(H)

3 = 〈d(H)
WASF, d(H)

DCT, d(H)
DCSIFT〉, denoted by

“HardD3”) [Tian et al. 2012; Mou et al. 2013] that achieved the best overall performance
at the TRECVID-CBCD-2011 task; (2) two best methods from the other 21 participants
at the TRECVID-CBCD-2011 task, CRIM-VISI [Gupta et al. 2011] and INRIA-LEAR
[Ayari et al. 2011], and the median performances on each transformation among all
approaches at this task [Kraaij and Awad 2011], denoted by “Median”; (3) three state-
of-the-art methods, including the subspace learning–based video fingerprinting (SLFP)
method [Cirakman et al. 2012], the nearest-neighbor mapping (NNM) method [Gupta
et al. 2012], and the randomly projected binary features (RPBF) method (RPBF) [Wu
et al. 2012]. Note that among the last three methods, only the NNM method [Gupta
et al. 2012] presents the detection results on different transformations on this dataset.

Table V shows the comparison results. We can see that the TASC obtained the
best detection performance (with average NDCR of 0.047) and comparable localization
precision (with average Mean F1 of 0.947). SoftD3 also achieved very good NDCR and
Mean F1. Among the other three state-of-the-art methods, RPBF got the best Mean F1
(i.e., 0.952 on average) but had very poor detection performance, whereas NNM could
obtain a comparable average NDCR.

Official evaluation results at the TRECVID-CBCD-2011 task showed that our
HardD3 method achieved excellent NDCR performance (e.g., 34 best “Actual NDCR”

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 7, Publication date: February 2015.



7:28 Y. Tian et al.

Table V. Comparison between the TASC and Several State-of-the-Art Results
on the TRECVID-CBCD-2011 Dataset

Method Avg. NDCR Avg. Mean F1 Avg. MP-Time
TASC 0.047 0.947 26.823

SoftD3 0.054 0.951 163.184
State-of-the-Art NNM 0.102 0.833 NA2

Methods RPBF 0.545 0.952 NA
SLFP 0.900 0.800 NA

HardD3 0.055 0.950 172.291
TRECVID-CBCD- CRIM-VISI 0.159 0.715 2,792.014
2011 Evaluation1 INRIA-LEAR 0.217 0.943 2,079.294

Median 1.050 0.889 191.535
1Their MP-Times are only used as references since they were executed on different
platforms.
2NA means that the paper did not provide the corresponding results (similarly here-
inafter).

for the BALANCED profile) and very good Mean F1 performance (i.e., average F1 of
0.95 on all transformations) [Kraaij and Awad 2011]. Comparatively, CRIM-VISI won
20 best NDCR (particularly on V3 and V5) but had very poor localization precision with
average Mean F1 of 0.715, whereas INRIA-LEAR showed good Mean F1 (0.944, on av-
erage). As an extension of HardD3 and its soft threshold variant SoftD3, the TASC can
further improve the detection effectiveness. Figure 10 depicts the performance curves
of these methods on the 56 transformations. We can see that the TASC even exhibits
excellent detection accuracy on some most complex transformations, such as V8 (i.e.,
postproduction) and V10 (i.e., combinational transformations). More importantly, the
MP-Time of the TASC is only about 1/6 of SoftD3 and HardD3, demonstrating very high
computational efficiency.

5.2.2. Results on the MUSCLE-VCD-2007 Dataset. This experiment evaluated the perfor-
mance of the TASC on the MUSCLE-VCD-2007 dataset by using the parameters and
classifiers trained on the TRECVID-CBCD-2010 dataset. Our objective was to test the
robustness and generalization of the TASC across different datasets. By comparison,
eight state-of-the-art results on this dataset were also cited directly from the litera-
ture, including Anguera et al. [2009], Tan et al. [2009], Cui et al. [2010], Yeh and Cheng
[2011], Zheng et al. [2011], Ren et al. [2012], Kim et al. [2014a], and Wu and Aizawa
[2014]. For simplicity, they are denoted by Anguera2009, Tan2009, Cui2010, Yeh2011,
Zheng2011, Ren2012, Kim2014, and Wu2014, respectively.

Note that two tasks are involved in this dataset: for a given query video, only the most
similar duplicate video should be returned in the ST1 task, whereas all duplicate or
near-duplicate video segments with the boundaries should be returned in the ST2 task.
For performance evaluation, only the detection accuracy of the top-1 result should be
evaluated in ST1 (in terms of Q), whereas both the detection accuracy and localization
precision should be evaluated in ST2 (in terms of QS and QF). Thus, in ST2, the TASC
should find all candidate CUs for a given query video and then repeat the copy detection
process P3 and the localization process P4 until no copy segment pairs can be found
again.

Table VI shows the experimental results. In ST1, many methods, including our
TASC, achieved excellent detection performance with Q of 1.0. This means that they
could correctly detect all copies on the ST1 database. In ST2, the TASC also showed
significant advantage, with QS of 1.0 and QF of 0.977. These results are even better
than the most recent results in Wu2014, which obtained QS of 0.95 and QF of 0.9.
One possible reason is that all query videos in the MUSCLE-VCD-2007 dataset are not
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Fig. 10. Comparison between the TASC approach and several state-of-the-art results on the TRECVID-
CBCD-2011 dataset over 56 transformations. (a) NDCR (y-axis in log2 coordinate). (b) Mean F1.

Table VI. Comparison between the Proposed TASC and the State-of-the-Art Methods
on the MUSCLE-VCD-2007 Dataset

Metric TASC Anguera2009 Tan2009 Cui2010 Yeh2011 Zheng2011 Ren2012 Kim2014 Wu2014
ST1 Q 1.00 1.00 1.00 1.00 0.93 1.00 0.93 0.93 1.00

QS 1.00 0.88 0.9 0.86 0.86 0.9 0.93 0.86 0.95
ST2 QF 0.977 NA 0.82 NA NA 0.85 NA NA 0.9

subject to any audio transformation, making them very easy to be recognized as copies
or noncopies by the TASC. In addition, the TASC is very computationally efficient
on this dataset. Its MP-Time is averagely 34.663 seconds for 749.3-second-long query
videos in ST1 and 45.733 seconds for 896.9-second-long query videos in ST2. Overall
speaking, the experimental results show that the TASC exhibits excellent detection
performance, good robustness, and high efficiency on the MUSCLE-VCD-2007 dataset.

5.2.3. Results on the CC_WEB_VIDEO Dataset. The last experiment evaluated the perfor-
mance of the TASC on the CC_WEB_VIDEO dataset. Given a query video, the TASC
should retrieve all duplicate and near-duplicate videos. On this dataset, the perfor-
mance should be evaluated in terms of MAP and the precision-recall curve. In this
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Table VII. Comparison between the Proposed TASC and the State-of-the-Art Methods
on the CC_WEB_VIDEO Dataset

Metric TASC Wu2007 Shang2010 Cai2012 Zhou2012 Song2013 Wu2014
MAP 0.986 0.952 0.953 0.918 0.956 0.958 0.922

Fig. 11. The average precision-recall curves of different methods on the CC_WEB_VIDEO dataset.

case, the localization process P4 should not be performed. For comparison, seven state-
of-the-art results were also collected from the literature, including Wu et al. [2007],
Shang et al. [2010], Liu et al. [2011], Cai et al. [2012], Zhou et al. [2012], Song et al.
[2013], and Wu and Aizawa [2014]. Similarly, they are denoted by Wu2007, Shang2010,
Liu2011, Cai2012, Zhou2012, Song2013, and Wu2014, respectively.

Note that Liu 2011 did not provide its MAP result, whereas Cai2012 did not provide
its precision-recall data. Thus, they were excluded in the corresponding comparisons.

Table VII shows the comparison of the MAP results. Among all of these methods,
the TASC obtained the best MAP (i.e., 0.986), with about 3% improvement over the
best result Song2013 in the literature. Figure 11 depicts the precision-recall curves of
different methods. We can see that the TASC can obtain the precision of 100% even
when the recall reaches 80%. This is consistent with the Soft-Decision-Boundary mech-
anism, which enables the TASC to preferably find more results under the prerequisite
of keeping as high detection accuracy as possible.

5.2.4. Summary. Extensive experiments on three benchmark datasets showed that the
TASC can achieve excellent copy detection accuracy and localization precision with a
very high processing efficiency. However, it should be admitted that video copy detection
is a very challenging task due to the complex audiovisual transformations. Figure 12
shows some examples of failure cases on the TRECVID-CBCD-2011 dataset and the
CC_WEB_VIDEO dataset. In Figure 12(a), the miss detection is mainly caused by the
addition of black borders and heavy degradation on the query video; in Figure 12(b)
and (c), the two miss detections are mainly due to the insertion of a heavily degraded
clip into the query video as PiP; and in Figure 12(d), the false alarm is caused by the
insertion of a short clip (less than the predefined CU length) into the query video.
Clearly, we need to further improve the performance of the TASC when dealing with
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Fig. 12. Some examples of failure cases: two miss detections (a, b) on the TRECVID-CBCD-2011 dataset;
one miss detection (c) and one false alarm (d) on the CC_WEB_VIDEO dataset. For simplicity, each video is
only shown with two frames.

more complex transformations (e.g., PiP with heavy degradation, insertion of black
borders).

6. CONCLUSION

This article proposes a TASC approach for multimodal video copy detection. Our main
contributions are summarized as follows:

—We propose the TASC to organize multiple multimodal detectors in a cascading
and transformation-aware way, which is expected to achieve high detection accuracy
while minimizing the processing time. One efficient implementation is also developed
by utilizing three commonly used multimodal features (i.e., AFP, DCT, and SIFT
BoW) to construct four different chains.

—A Detection-on-Copy-Units mechanism is introduced in the TASC, which makes the
decision of copy detection depending on the similarity between their most similar
CUs rather than the video-level similarity. To do so, we also propose a CU search
algorithm to find a pair of CUs from two videos and a CU-based localization algorithm
to find the precise locations of their copy segments that are with the asserted CUs
as the center.

—To address the problem that the copies and noncopies are possibly linearly insepa-
rable in the feature space, we introduce a flexible soft decision boundary strategy in
the TASC and then propose a bi-threshold learning algorithm for hard decision and
utilize a soft-margin SVM classifier based on the SIFT keypoint matching for soft
decision.

Due to its excellent processing performance, the TASC is capable of satisfying various
requirements in practical copy detection applications. For example, the TASC-based
system will be used by the Chinese government to discover pirated videos on the
Internet, whereas Baidu (the Chinese search engine giant) also tries to use this tech-
nology in her video search engine to eliminate the semantically and visually identical
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duplicates from video search results. In the future work, we intend to further optimize
the performance and scalability of the TASC on these practical applications.
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Georges Quénot. 2010. TRECVID 2010: An overview of the goals, tasks, data, evaluation mechanisms,
and metrics. In Online Proceedings of TRECVid 2010.

Mengren Qian, Luntian Mou, Jia Li, and Yonghong Tian. 2014. Video picture-in-picture detection using
spatio-temporal slicing. In Proceedings of the ICME 2014 Workshop on Emerging Multimedia Systems
and Applications.

Jennifer Ren, Fangzhe Chang, Thomas Wood, and John R. Zhang. 2012. Efficient video copy detection
via aligning video signature time series. In Proceedings of the 2nd ACM International Conference on
Multimedia Retrieval (ICMR’12). ACM, New York, NY, Article No. 14.

Cédric De Roover, Christophe De Vleeschouwer, Frédéric Lefèbvre, and Benoiı̂t M. Macq. 2005. Robust video
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