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Abstract—Recently, a novel concept referred to as Entropy
of Primitive (EoP) has been proposed for evaluating the visual
information of natural images. The idea originates from the
sparse representation, which has been successfully applied in
a wide variety of signal processing and analysis tasks. This is
because of the high efficiency of sparse representation in dealing
with rich, varied and directional information contained in the
natural scene. In this paper, we further explore the EoP to
bridge the sparse representation and visual perception. Sparse
primitives are divided into three categories depending on their
visual importance. Accordingly the visual signal is decomposed
into structural and non-structural layers. It is found that the
image sparse representation is highly relevant with the hierar-
chical visual information construction process in representing the
natural scene. We evaluate the efficiency and robustness of the
EoP in real applications, including surveillance video and shot
boundary detection.

I. INTRODUCTION

The human visual system (HVS) allows human beings
to perceive visual information from the outside world, and
the psychological process of visual information is known as
visual perception. As the ultimate receiver of images and
videos is the HVS, accurately evaluating visual information
plays an important role in the fields of image and video
processing. Generally, both near-threshold and supra-threshold
quality assessment models are highly revelent with the visual
information.

Near-threshold method measures the distortions that the
HVS couldn’t perceive. Generally, this is referred to as Just-
Noticeable Distortion (JND). The JND models have been
studied for decades and successfully applied in many fields
such as image/video coding [1] and quality assessment. These
models take advantages of the characteristics of the HVS,
including contrast sensitivity function, luminance adaptation,
and texture masking. Therefore, these kinds of methodologies
are “bottom-up” method that mimic the functionalities of HVS.

In supra-threshold models, the traditional Mean Square
Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are
popular for simplicity, but they cannot correlate well with the
subjective quality. Recently, it is found that the natural image
is highly structured and HVS is very adapted to the structural
information, and therefore the proposed Structure SIMilarity
(SSIM) index [2] has drawn extensive attentions and has been
applied in video coding techniques [3].

Sparse representation is an emerging and powerful method
to describe signals based on the sparsity and redundancy of
their representations and is efficient in dealing with rich, varied

and directional information contained in natural scene. Based
on the sparse theory, a novel concept of Entropy of Primitive
(EoP) has been proposed to estimate the visual information,
and has been successfully applied in the areas of image quality
assessment [4] and JND model [5]. In this work, we gain
some insights into the EoP by exploring the distribution of
the sparse representation. In the literature [6], it is stated that
the primitive has the properties of spatially localized, oriented
and bandpass, which closely corresponds to the characteristics
of receptive fields of simple cells. Thus we divide the sparse
primitives into different categories depending on their visual
importance and accordingly the visual construction process
could be represented by hierarchical structure. Moreover, we
discover the correlations between the FoP and the hierarchical
visual representation, and apply the FoP in accurate visual
information estimation of natural scene.

The rest of the paper is organized as follows. In Section II,
the EoP is briefly reviewed and we give a deep analyses of
the primitive distribution. In Section III, the visual perception
is interpreted as a hierarchical signal decomposition based on
the proposed primitive classification, and we bridge the gap
between the hierarchical structure and the primitive distribu-
tion as well as EoP. In Section IV the EoP has shown its
efficiency and robustness in estimating visual information for
real applications, such as surveillance video and shot boundary
detection. In Section V, we conclude this paper.

II. ENTROPY OF PRIMITIVE

In this section, we briefly introduce the novel concept
- the Entropy of Primitive (EoP) [5]. The image primitive
coding assumes that each natural image signal z(x € R")
can be approximated by a linear combination of an over-
complete dictionary. Put more formally, this can be written
as Va,z ~ Pa and [|af|, < n, where ¥(¥ € R"*¥) is the
over-complete dictionary, and a(a € R¥) is the representation
vector. The notation ||e||, represents the /o norm. Typically, we
assume that k£ > n, implying the dictionary ¥ is redundant to
z. In order to train the over-complete dictionary, the K-SVD
algorithm [7] is employed in this work. The input for training
is the non-overlapped 8 x 8 image patches. After training pro-
cess, the typical orthogonal matching pursuit (OMP) algorithm
[8] is applied to solve the sparse representation problem. The
OMP method works in a greedy fashion that choosing the
primitives most similar with the residual at each iteration. Note
that the “residual” at first iteration is the original patch itself.



Then the original signal is subtracted by the chosen primitive
to update the residual.

Let the n} indicates the number of the j*" primitive selected
in the 7*" iteration in the OMP method. For instance 100 image
patches vote for the first primitive in the first iteration, thus
we have nj = 100. And N represents the total number of
the j*" primitive selected in previous 4 iterations, which can
be calculated as N;f = > n§ So that the corresponding
probability density function (PDF) is given by P (j) = ZLJ]\E
which represents the cumulative distribution of primitivtes in
previous ¢ iterations. Based on the Shannon Theory, the EoP
is defined as follows,

EoP; = ZPl

where k is the number of the primitives. Interestingly, in
the visual construction process, the EoP value monotonously
increases with the iterations to approach a constant, while the
reconstructed image reaches the state without noticeable visual
distortion.

)log P* (), (1)

III. FROM HIERARCHICAL SIGNAL REPRESENTATION
TO VISUAL INFORMATION ESTIMATION

In this section, we further explore the properties of EoP and
build the correlations between sparse representation and visual
perception.

A. Entropy of Increment

The EoP corresponds to the cumulative distribution of
primitives in previous ¢ iterations. Similarly we define the

PDF in the i'" iteration as p’(j) = which could be

n
regarded as the increment distribution. Such that the Entropy
of Increment (Eol) is given by,

FEol; = Zp

Note that FoP; = Eol; because they correspond to the same
distribution in the first iteration.

The curves of Fol and EoP of two test images are
shown in Fig. 1. Here the horizontal axis denotes the [*"
iteration, with which the FoP, increases monotonously and
converges to a constant (around 6.5). It is also interesting
to observe that the value of Eol; approaches a relatively
stable level when [ > 3. Thus we make the hypothesis that
the increment distribution p’ (j) corresponds to an image-
independent identical distribution (I1ID) and leads the EoP to a
constant value. The IIID hypothesis has twofold interpretation.
First it is identical meaning that the distributions p’ (j) are
identical when j is beyond a threshold, such that the Fol and
EoP curves could converge. Besides, the image-independent
hypothesis accounts for the fact that EoP curves of different
images converge to a similar value.

To verify the hypothesis, we conduct several experiments
where the Kullback-Leibler divergence (KL divergence) is

) log p* (j)- 2
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Fig. 1. FEol and EoP curves in terms of the iteration [.
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Fig. 2. KL divergence of adjacent increment distributions in terms of [.

employed to measure the similarity of adjacent increment
distributions p' (j) and p'*! (j). The KL divergence satisfies
KL{p'(j Hp”‘l (j)} = 0 with equality if, and only if
p(5) = p*1(4). The results shown in Fig. 2 indicate that
the increment distributions are almost identical at iterations
when [ > 5, as the KL divergence approaches 0. The results
accord well with our hypothesis that the I/ID actually exists
in the sparse representation system and finally leads the EoP
curve to converge.

B. Classification of Sparse Primitive

To deeply analyze the EoP and Eol, we gain some insights
into the characteristics of primitives. A simple solution for
primitives classification is provided. We apply k-means cluster
algorithm to classify the primitives using extracted features.
Specifically, we extract two features from the DCT domain
as well as one feature from spatial domain, and employ
these features to adaptively cluster all primitives into three
categories, named as primary, sketch and texture, respectively

[9].
The two DCT domain features are defined as follows,
fi=1L, 3
fo=L/(M+H), )

where L, M and H refer to the mean values of low-frequency,
middle-frequency and high-frequency coefficients respectively.

The Laplacian operator is applied to obtain another feature
in the spatial domain for its high efficiency in dealing with
gradient detection applications. The third feature f3 is the
mean value of the Laplacian map of a primitive.

Finally, the three features are combined together as a feature
vector notated by F' = { f1, f2, f3}. For each sparse primitive,
we extract the feature vector F;. The k-means algorithm is
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Fig. 3. 3D plots of primitive classification by k-means algorithm. The red dots,
blue crosses and green stars represent texture, sketch and primary primitives,
respectively. The three black solid dots denote the centre of each classification.
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Fig. 4. Primitives classification results of Lena (left) and Plane (right) images.
Three categories: (a) texture, (b) sketch, (c) primary.

then applied to divide all the feature vectors {F;} in the 3-
D feature space into three parts, and each part represents a
type of primitive. The classification results are shown in Fig.
3 & 4. Primary primitives with smooth changes have relatively
larger value of f; and smaller value of fo as well as fs.
On the contrary, fexture primitives with sharp contrast have
relatively smaller value of f; and larger value of f5 as well as
f3. And sketch primitives are located between these two kinds
of primitives. Note that most of the primitives are classified
into the fexture type, while only small part of primitives belong
to the primary type.

C. Hierarchical Visual Signal Representation

Base on the primitive classification, the numbers of each
type of primitive selected in every iterations are recorded dur-
ing the sparse reconstruction process (i.e. the OMP algorithm).
The results are depicted in Fig. 5, from which we can find
that: 1) The primary primitives dominate in the first iteration
though it is the smallest portion of all primitives as shown in
Fig. 4. 2) The number of sketch primitives is relatively small,
and peaks at the 2"? or 3" iteration. 3) The number of texture
primitives is contrary to the primary type. It is smallest at first
and goes up to achieve the maximum after | = 6.

It can be concluded that OMP scheme decomposes image
signal into multiple layers, and these layers are naturally
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Fig. 5. The number of three kinds of primitive selected by OMP algorithm
at each iteration [.
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Fig. 6. Illustration of the hierarchical visual signal representation.

ordered by perceptual importance as illustrated in Fig. 6. The
first layer (I = 1), which is mostly consisted of primary prim-
itives, reconstructs the most of the visual information. Thus
we call it primary layer. The second layer (I € [2~I]) with
more sketch primitives recovers more detail visual information
of the original signal, so it is named as sketch layer. The
quantity ! corresponds to the threshold between the second and
the third layer. The first two layers contain almost all visual
information that can be captured by the HVS. Thus the two
layers can be combined as the structural layer. In contrast with
structural layer, the remaining non-structural layer (I > 1) is
negligible to HVS because there is little correlation with the
perceptual experience. This observation highly coincides with
the visual perception process, that the primary component (e.g.
what object is it) is perceived before details (e.g. what does
the object look alike).

D. Visual Information Estimation

The hierarchical structure of visual perception is tightly
relevant to the converging EoP curve and the /IID hypothesis.
As the primitives in //ID are mostly the texture primitives be-
longing to the non-structural visual layer, these non-structural
primitives are much “randomly” distributed with high Eol
value. By iteratively add this distribution to the sparse primi-
tive system, the total entropy of the build-up distribution (i.e.
the EoP) tends to go up and finally converge. It is highly
related to the generally saturated visual information.

Though the image-independent hypothesis of IIID leads the
saturated visual information in different images to a similar
value, the actual information contained in different images is
generally distinct. Inspired by [5], we use the EoP; to estimate
the visual information of an image, where the [ is the threshold
between structural and non-structural layers which is given by,

[ =argmini, st. FoP;> EoP, 5)
K3



where FoP = ZETOP this mean value threshold can avoid
instability caused by outliers and provides more accurate
estimation of visual information.

IV. EVALUATION EXPERIMENTS
A. Information Variance Detection for Surveillance Video

In this simulation, we train the background model using
the method proposed in [10] for the given surveillance video.
Then we evaluate the visual information contained in this
background frame and the original frames. Note that the sparse
dictionary is trained by the background picture and is used for
all frames to make sure that all test frames have the identical
basis. The results are given in Fig. 7. We can observe that the
visual information provided by background frame (drawn by
blue dashed line) is much less than that in original frames
(drawn by red solid line), indicating more information in
foreground objects. The fluctuation of visual information in
Crossroad sequence is stronger than Overbridge, it is because
more moving targets exist in Crossroad.

B. Video Shot Boundary Detection

In this subsection, we apply EoP for video shot boundary
detection. We evaluate the visual information of each frame. A
frame is marked as shot boundary when its visual information
deviates away from the average of previous video scene. Note
that the dictionary should be updated when new shot boundary
is detected. The test sequence is a news video with totally 200
frames and 4 different scenes. We give the results in Fig. 8§,
where the curve of visual information is plotted with different
colors and linetypes, indicating different video scenes. It is
shown that all the 4 shot boundaries have been detected as the
visual information is dramatically changed at shot boundary.
Thus it can be concluded that the EoP is an efficient tool to
accurately estimate the visual information.

V. CONCLUSION

In this paper, we bridge the sparse representation and
visual information evaluation with the concept of EoP. By
analyzing the primitive distribution Eol, we propose the image-
independent identical distribution (IIID) hypothesis to inter-
pret the converging EoP. Subsequently, by sparse primitive
classification, the visual perception is decomposed into a
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Fig. 7. Estimated visual information of surveillance video frames. The dashed
blue line represents the visual information of the trained background frame.
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Fig. 8. Results of shot boundary detection. Different shots are with different
colors and linetypes. The four different video scenes (the 15, 56", 82th
and 159" frames respectively) are shown in the right corner.

hierarchical representation consisting of structural and non-
structural layers. The hierarchical structure of visual per-
ception is tightly relevant to the converging EoP curve and
generally saturated visual information. Thus it motivates us to
use EoP to estimate the visual information in natural images.
The effectiveness and robustness of the EoP are verified in the
applications of surveillance video and shot boundary detection.
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