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Abstract—Sparse representation has been observed to be
highly efficient in dealing with rich, varied and directional
information in natural scenes. Based on the statistical analysis
of primitives in sparse coding, the entropy of primitive (EoP)
was proposed for measuring visual information of images, and
its changing tendency has been shown to be highly relevant with
the human visual system (HVS). But the sparse coefficient energy
was ignored when calculating EoP, which may be critical in
accounting for the primitive characteristics. To tackle this, an
improved EoP is developed in this work via `2 norm calculation.
We further give mathematical derivations for its convergence
verification. Experimental evaluations have also demonstrated
that the improved EoP can achieve more stable convergence
tendencies, which is consistent with the perceptual experiences.

Index Terms—Entropy of primitive, sparse representation,
orthogonal matching pursuit, visual information estimation.

I. INTRODUCTION

Sparse representation develops swift and becomes a pow-
erful method in describing signals owing to its efficient in
dealing with rich, varied and directional information obtained
from natural scenes [1]. Extensive successful applications have
been observed based on sparse models, e.g. image denoising
[2], image restoration [3], [4], [5], [6] and image quality
assessment [7], [8], [9]. Sparse theory claims that signals can
be well represented by a few bases from an over-complete
dictionary, where the dictionary is assumed to be highly
adaptive to a set of signals within a limited subspace. There
are two basic problems in sparse models, which are dictionary
training and sparse decomposition, respectively. A typical
algorithm for dictionary learning was the K-SVD [10], while
the orthogonal matching pursuit (OMP) was proposed to solve
the second problem.

What attracts us is how to measure the visual information
in the natural scene with the form of sparse representation.
To solve this, a novel concept was developed recently, i.e.
entropy of primitive (EoP) [11], [12], [13], where the sparse
coefficients distribution and its entropy value were used for

measuring the visual information. It was also found that the
EoP changing tendency was relevant to the visual cognitive
process. Successful applications have been achieved from
image quality assessment to just-noticeable difference (JND)
model.

However, we observed that EoP tendency was not always
consistent with the HVS, especially for complex scenes with
unnaturalness. This may be caused by the definition of EoP,
where only the count of nonzero coefficient values was taken
into account while the coefficient amplitude was completely
ignored during the calculations. The sparse value may be,
however, very significant in accounting for the image repre-
sentation. Therefore, an improved approach in calculating EoP
is presented in this work, and its convergency performance has
shown to be both theoretically and experimentally superior to
the original EoP.

The rest of the paper is organized as follows. In Section
II, the concept of EoP is introduced briefly. The improved
EoP and its mathematical convergence proof are discussed
in Section III. We further give experimental verifications in
Section IV. Section V concludes this paper.

II. ENTROPY OF PRIMITIVE

In this section, the concept of entropy of primitive (EoP) is
briefly reviewed.

A. Sparse Representation via Learned Dictionary

The theory foundation of EoP is the sparse-land model [14]
assuming that natural images can be approximately represent-
ed by a linear combination from an over-complete dictionary.
Formally, we can write ∀Y ∈ Rs×n, Y ≈ DX , where
D ∈ Rs×m is the over-complete dictionary, and X ∈ Rm×n

is the sparse coefficient matrix. Each column of D is also
called a primitive, and its corresponding coefficient vector xi

performs sparse, i.e. ||xi||0 � m.
In order to train the over-complete dictionary, the K-SVD

algorithm [10] is employed in this work, which is a kind of
generalization of K-means. It consists of two processes, i.e.
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sparse coding and dictionary training. The problem can be
formalized as the following formula:

minD,X ||Y −DX||F , s.t. ||xi||0 ≤ L, i = 1, 2, ..., n, (1)

where ||·||F is the matrix norm and is a measure of the
error between Y and DX , and ||·||0 represents the number
of nonzero components. L is the sparsity level parameter that
governs the `0 norm of sparse coefficients.

The orthogonal matching pursuit (OMP) [15] is a popular
extension of matching pursuit family, which is a type of
sparse decomposition algorithm targeting at finding the “best
matching” projections of multidimensional data onto the over-
complete dictionary D. The OMP method works in a greedy
fashion that the most similar primitive with the residual
is chosen after each iteration. It should be noted that all
coefficients extracted so far are updated after each iteration, by
computing the orthogonal projection of the residual onto the
selected atoms, which can lead to more efficient representation.

B. Entropy of Primitive

Some mathematical notations should be introduced at first.
Let ni

j denote the incremental number of the jth primitive
selected in the ith iteration during the OMP algorithm. N i

j

represents the total number of the jth primitive selected in the
previous i iterations, it can be written as follows,

N i
j =

i∑
t=1

nt
j . (2)

Accordingly, the probability density function (PDF) is defined
by,

P i(j)
∆
=

N i
j∑

t N
i
t

. (3)

It represents the distribution of primitives in the previous i
iterations which can also be comprehended as the cumulative
distribution of the primitives during the OMP algorithm. Next,
based on the Shannon theory, the entropy of primitive (EoP)
value can be defined as follows [13],

EoPi
∆
= −

∑k

j
P i(j) logP i(j), (4)

where k is the number of the primitives.

III. IMPROVED EOP VIA `2 NORM

A. Improved EoP

Despite its success, EoP was not always consistent with the
HVS, especially for complex scenes with unnaturalness. This
may be caused by the reason that only the count of nonzero
values was taken into account in the definition of EoP. The
amplitude of coefficient values may be however significant in
image representations. EoP is an individual measurement of
the information of image for sparse representation. In order to
overcome this inconsistency, a new version of EoP based on
the `2 norm is proposed in this work.

Put more formally, let Xt = (xt
i,j)m×n be the sparse

coefficient matrix at the tth iteration, then a PDF considering
the coefficient energy can be defined as follows,

pt,i =
Nt,i

Nt
, (5)

where

Nt =
m∑
i=1

Nt,i, (6)

Nt,i =

√√√√ n∑
j=1

X2
t (i, j). (7)

Consequently, the improved EoP can be defined as,

I-EoP = −
m∑
i=1

pt,ilog2pt,i. (8)

B. Convergency Verification

To verify the convergence of the proposed EoP, we try to
prove its robustness and stability with mathematical deriva-
tions in this subsection. The basic idea is that the difference
between two PDFs of successive iterations approaches to zero
as the iteration increases, such that I-EoP can be stable.

Firstly, we define two EoPs of successive iterations as
follows,

I-EoPt = −
m∑
i=1

pt,ilog2pt,i, (9)

I-EoPt+1 = −
m∑
i=1

pt+1,ilog2pt+1,i, (10)

where pt+1,i =
Nt+1,i

Nt+1
, Xt+1 = (xt+1

i,j )m×n =

(xt
i,j + ∆t

i,j)m×n and ∆t
i,j represents the coefficient differ-

ence between successive iterations in the sparse representation.
Then the PDF of the t+1 iteration can be rewritten as follows,

pt+1,i =

√
n∑

j=1

X2
t (i, j) + 2

n∑
j=1

Xt(i, j)∆t
i,j +

n∑
j=1

∆t
i,j

2

m∑
k=1

√
n∑

j=1

X2
t (k, j) + 2

n∑
j=1

Xt(k, j)∆t
k,j +

n∑
j=1

∆t
k,j

2

.

(11)
The ultimate goal is to verify that limt→∞ |pt+1,i−pt,i| = 0,

which can be split to the following two parts,

lim
t→∞

|pt+1,imin
− pt,i| = 0, (12)

lim
t→∞

|pt+1,imax − pt,i| = 0, (13)

where pt+1,imin and pt+1,imax are the lower bound and upper
bound of pt+1,i, respectively. In the following derivations, only
the first part in (12) will be addressed, while the second part
in (13) can be derived in a similar way.

In order to derive (12), we also need to split the discussion
in whether the formula

∑n
j=1 Xt∆

t
i,j is negative or positive,

where only the case when
∑n

j=1 Xt∆
t
i,j < 0 will be given in

the following.



According to (11), we have,

pt+1,i

≥

√
n∑

j=1

X2
t (i, j) + 2

n∑
j=1

Xt∆
t
i,j

m∑
k=1

√
n∑

j=1

X2
t (k, j) +

n∑
j=1

∆t
k,j

2
+
∑

k∈At

√
2

n∑
j=1

Xt(k, j)∆t
k,j

≥

√
n∑

j=1

X2
t (i, j)−

√
2|

n∑
j=1

Xt∆t
i,j |

m∑
k=1

√
n∑

j=1

X2
t (k, j) + Bt +

m∑
k=1

n∑
j=1

|∆t
k,j |

=

Nt,i −
√

2|
n∑

j=1

Xt(i, j)∆t
i,j |

Nt + Bt + ||∆t||1
,

(14)
where

At = {k|
n∑

j=1

Xt(k, j)∆
t
k,j > 0}, (15)

Bt =
∑
k∈At

√√√√2

n∑
j=1

Xt(k, j)∆t
k,j , (16)

||∆t||1 =
m∑
i=1

n∑
j=1

|∆t
i,j |. (17)

Subsequently, (12) can be further derived by incorporating (14)
as follows,

|pt+1,imin
− pt,i| =

∣∣∣∣∣∣∣∣∣∣
Nt,i −

√
2|

n∑
j=1

Xt(i, j)∆t
i,j |

Nt + Bt + ||∆t||1
− Nt,i

Nt

∣∣∣∣∣∣∣∣∣∣
≤

√
2 max

1≤j≤n
{|∆t

i,j |}
n∑

j=1

|Xt(i, j)|

Nt
+
||∆t||1
Nt

+
Bt

Nt

≤

√
2||∆t||1

∑n
j=1 |Xt(i, j)|

Nt
+
||∆t||1
Nt

+

∑
k∈At

√
2
∑n

j=1 |Xt(k, j)|||∆t||1

Nt
.

(18)
Assuming that limt→∞ ||∆t||1 = 0, the conclusion in (12) can
be finally obtained. This assumption seems reasonable because
the rt and rt+1 are closer to zero when the iteration number
increases, and the experimental validation for supporting this
assumption will be given in Section IV.

IV. EXPERIMENTAL RESULTS

To evaluate and verify the improved EoP, common natural
images in most image processing applications are used in this
work, and some examples are shown in Fig. 1.

(a) Mesh (b) Shroom (c) Lake (d) Roping

(e) Stripe (f) Lena (g) Fox (h) Roof

(i) Flower (j) Sunset (k) Turtle (l) City

Fig. 1. Examples of test images.

Firstly, we verify the assumption of limt→∞ ||∆t||1 = 0
when deriving (18) by measuring the residual energy of each
iteration, i.e. ‖rt‖

2
F

Nt
, where rt indicate the residual matrix in tth

iteration. The corresponding results are shown in Fig 2, from
which one can observe that the residual energy approaches to
zero after several times of iteration, and it can provide strong
support for this assumption.

Put it more formally, we have the following equation,

DXt + rt = DXt+1 + rt+1. (19)

Then we can derive,

D(Xt+1 −Xt) = rt − rt+1, (20)

∆t = Xt+1 −Xt = D†(rt − rt+1). (21)

Therefore, it can be concluded that limt→∞ ||∆t||1 = 0 since
the residuals tend to zero.

Secondly, to further demonstrate the robustness and conver-
gency of I-EoP , we employ the KL divergence to measure
the difference between two PDFs of successive iterations as
defined in (5). The results are visualized in Fig. 3, where the
KL divergence reaches close to zero after several iterations
indicating the final convergence of I-EoP .

Finally, the comparisons between original EoP and im-
proved EoP are given in Fig. 4, from which one can ob-
serve that the improved one achieves more stable and robust
convergence tendencies against original EoP, which is more
consistent with human eyes.

V. CONCLUSION

In this work, an improved version of EoP is proposed
for visual information estimation. The motivation is that the
original EoP definition takes no consideration of the amplitude
of sparse coefficient values and its convergence tendency
sometimes gets worse for complex natural scenes with un-
naturalness. Therefore, in the improved EoP, we propose to
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Fig. 2. Residual energy in terms of iteration times.
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Fig. 3. KL divergence between PDFs of two successive iterations.

use the `2 norm instead of `0 norm, and its convergence per-
formance and robustness are guaranteed by both mathematical
derivations and experimental verifications.
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