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CONCOLOR: Constrained Non-Convex Low-Rank
Model for Image Deblocking
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Abstract— Due to independent and coarse quantization of
transform coefficients in each block, block-based transform
coding usually introduces visually annoying blocking artifacts
at low bitrates, which greatly prevents further bit reduction.
To alleviate the conflict between bit reduction and quality preser-
vation, deblocking as a post-processing strategy is an attractive
and promising solution without changing existing codec. In this
paper, in order to reduce blocking artifacts and obtain high-
quality image, image deblocking is formulated as an optimization
problem within maximum a posteriori framework, and a novel
algorithm for image deblocking using constrained non-convex
low-rank model is proposed. The l p (0 < p < 1) penalty
function is extended on singular values of a matrix to characterize
low-rank prior model rather than the nuclear norm, while the
quantization constraint is explicitly transformed into the feasible
solution space to constrain the non-convex low-rank optimization.
Moreover, a new quantization noise model is developed, and
an alternatively minimizing strategy with adaptive parameter
adjustment is developed to solve the proposed optimization prob-
lem. This parameter-free advantage enables the whole algorithm
more attractive and practical. Experiments demonstrate that the
proposed image deblocking algorithm outperforms the current
state-of-the-art methods in both the objective quality and the
perceptual quality.

Index Terms— Image deblocking, low-rank, blocking artifact
reduction, optimization, quantization constraint.

I. INTRODUCTION

RECENT years have witnessed the rapid developments
of social network and mobile internet, and image and

video have been becoming the main carrier of multimedia.
For image and video compression, block-based transform
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Fig. 1. Illustrations for blocking artifacts and image deblocking with respect
to Butterfly. (a) JPEG-coded image with 0.54 bpp (PSNR = 25.24 dB);
(b) Deblocking result of (a) using the proposed image deblocking algorithm
(PSNR = 27.90 dB). Obviously, (b) has much better quality than (a).

coding has been widely adopted in various current cod-
ing standards, such as JPEG [1], H.264/AVC [2], and
H.265/HEVC [3], due to its regularity and simplicity for
hardware implementation. Among all the transform kernels,
block discrete cosine transform (BDCT) is the most popular
one owing to its good energy compaction and de-correlation
properties. However, due to independent and coarse quan-
tization of discrete cosine transform (DCT) coefficients in
each block, BDCT coding technique usually results in visually
annoying blocking artifacts in coded images and videos,
especially at low bitrates, which greatly prevents further bit
reduction. As illustrated in Fig. 1(a), the blocking artifacts
are characterized by visually noticeable discontinuity between
neighboring blocks.

The procedure to effectively remove the blocking artifacts
and obtain visually acceptable quality for BDCT coded images
and videos is referred to as image/video deblocking, which
has attracted great interest of researchers [4]–[25]. This paper
mainly focuses on image deblocking for JPEG-coded images.
In order to alleviate the conflict between bit reduction and
image quality preservation while maintaining standard compli-
ant, image deblocking as a post-processing technique becomes
an attractive and promising solution due to its advantage of
requiring no change of existing codec. Remarkably reducing
blocking artifacts is able to improve image quality with
respect to a specific bit rate of compression. For instance,
JPEG-coded image of Butterfly with 0.54 bpp is shown
in Fig. 1(a). Fig. 1(b) is the deblocking result of Fig. 1(a)
using the proposed image deblocking algorithm. Obviously,
Fig. 1(b) has much better quality than (a), preserving visually
acceptable quality while being standard compliant.
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In recent years, researchers have developed a number of
post-processing methods for image deblocking, which can
be generally divided into two categories [4], [5]: image
enhancement based deblocking methods and image restoration
based deblocking methods. The basic idea of image enhance-
ment based deblocking methods is to consider deblocking
as an image enhancement process, and to conduct filtering
in spatial and frequency domain to smooth visible artifacts.
Zhai et al. proposed an effective deblocking method for JPEG
compressed image through post-filtering in shifted windows of
image blocks [6]. Zhai et al. also developed an image deblock-
ing method involving three parts: i.e., local AC coefficient
regularization in the DCT domain, block-wise shape adaptive
filtering in the spatial domain, and quantization constraint in
the DCT domain [7]. Foi et al. developed an image deblocking
filtering based on shape-adaptive DCT, in conjunction with
the anisotropic local polynomial approximation-intersection of
confidence intervals technique, which defines the shape of
the transforms support in a pointwise adaptive manner [8].
Inspired by the success of nonlocal means and bilateral filter
for image denoising, some nonlocal filters to have been pro-
posed for image deblocking [9]–[11]. Farinella et al. exploited
the Structure Sparse Coding Model Selection (SSMS) to
restore compressed noisy images, yielding impressive perfor-
mance improvement [12]. Kim proposed an adaptive image
blocking aritfact reduction method by exploiting the direc-
tional activity of wavelet-based block analysis [13]. Lately,
Yoo et al. proposed to classify the coded image into flat region
and edge region, and developed a two-step framework for
reducing blocking artifacts in different region based on inter-
block correlation [14]. Yeh et al. proposed a self-learning-
based post-processing framework for image/video deblocking
by formulating deblocking as a morphological component
analysis based image decomposition problem via sparse
representation [5].

For image restoration based deblocking methods,
deblocking is usually formulated as an ill-posed image
inverse problem by exploiting some image prior knowledge
and observed data at the decoder [15]. For instance,
iterative image recovery algorithms were proposed using the
traditional projection onto convex sets (POCS) [16]–[19]. Total
variation [20], block-based sparse representation [21]–[23],
Markov random field (MRF) [24], [25] were utilized as image
prior models to seek the MAP estimation of the original
image. Typically, Sun and Cham modeled the quantization
distortion as Gaussian noise, and used field of experts
as image prior to construct image deblocking optimization
problem [26]. Recently, Zhang et al. proposed to utilize image
block similarity prior model to reduce compression artifacts
by the overlapped block transform coefficient estimation from
non-local blocks [27], [28].

From above previous works, it can be inferred that
image prior models play an important role in both image
enhancement based deblocking methods and image restoration
based deblocking methods. The evolution of image prior
models is from local to nonlocal, and from pixel-wise to
block-wise [29]–[32]. Recent studies show that, by exploiting
the non-local self-similarity and clustering similar blocks,

low-rank prior models achieve promising results in image
restoration tasks, such as image deblocking [33], [34] and
image denoising [35]–[37].

However, there exist two issues in current image deblocking
strategies with low-rank models [33], [34]. First, to obtain an
approximated solution, they both adopt the nuclear norm (sum
of the singular values) as a convex surrogate of the matrix rank.
Despite good theoretical guarantee by the classic technique
of singular value thresholding (SVT) [38], [39], the nuclear
norm is actually not accurate enough to approximate the matrix
rank. Second, they neither take quantization constraint (QC)
into account, which means that the DCT coefficients of the
deblocking image do not always lie within the quantization
limits defined by the compression.

In this paper, to deal with the above two issues, we extend
the surrogate function of l0 norm, i.e. l p (0 < p < 1) penalty
function on singular values of a matrix to substitute for the
nuclear norm for characterizing low-rank prior model. Inspired
by the success of l p (0 < p < 1) sparse optimization,
the proposed non-convex low-rank model is expected to be
more accurate than traditional nuclear norm. In addition,
quantization constraint is transformed into the feasible solution
space, which is explicitly used to constrain the non-convex
low-rank optimization. Therefore, a novel COnstrained
Non-COnvex LOw-Rank (CONCOLOR) model is proposed
for image deblocking. Moreover, a new quantization noise
model is developed, and the proposed objective function is
efficiently solved by the alternatively minimizing strategy.
It is worth emphasizing that the proposed image deblocking
algorithm CONCOLOR is parameter-adaptive, which enables
the whole algorithm more effective and attractive. Extensive
experiments manifest that the proposed image deblocking
algorithm outperforms current state-of-the-art algorithms in
both PSNR and visual perception, and greatly improves current
existing image deblocking quality.

The remainder of this paper is organized as follows.
The background of JPEG compression and decompression
and some notations are given in Section II. Section III
elaborates the proposed image deblocking framework.
Section IV presents the implementation details of solving the
proposed optimization problem. Extensive experimental results
are reported in Section V. In Section VI, we conclude this
paper.

II. BACKGROUND

In this section, we briefly review the process of
JPEG compression and decompression, and give some
notations for the convenience of later discussions.

It is known that JPEG is able to generate acceptable
compressed images at a rather high compression with very
easy implementation, rendering it one of the most popular
lossy compression schemes in the last two decades. Basically,
JPEG compression is composed of four stages: a) split the
whole input image into non-overlapped blocks of size 8 × 8;
b) apply discrete cosine transformation (DCT) on each block;
c) divide DCT coefficients of each block by a quantization
table element-wisely and round the quantized values; d) use
entropy coding to generate the JPEG compressed bit-stream.
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The JPEG decompression is inverse, which involves lossless
entropy decoding, de-quantization, inverse DCT (IDCT) to
each block, and block reassembling. It is obvious to see that
the information loss for JPEG compression takes place in the
stage of quantization, leading to round-off errors in each block,
which inevitably produces blocking artifacts.

In this paper, the boldface uppercase letters denote matrices,
e.g. X, and X[i, j ] is defined as the (i, j)th entry of matrix X.
The boldface lowercase letters denote column vectors, e.g. x,
and x[k] is defined as the kth entry of vector x. Italics
denotes scalars. ‖x‖0 counts the nonzero elements in x, and
‖X‖F denotes the Frobenius norm of X. Suppose we have an
image X of size N×N . Then its vector representation is x, and
x[(i−1)×N+ j ] stands for the pixel with the coordinates in the
vertical and the horizontal directions being i and j in image X,
respectively. Here, to simplify the first two stages of JPEG
compression, like [23], let us define a block DCT N×N matrix
operator A, which can transform each non-overlapped 8 × 8
block of the input image to its frequency domain. Similarly,
the matrix operator A−1 represents the inverse process. The
quantization matrix of size 8×8 is denoted by Mq , determined
by the quality factor (QF) q in the range [1 100]. Suppose
x is the original image and let y be the observed
JPEG-coded image which is directly decompressed from the
JPEG compressed bit-stream by JPEG decoder. Denote

x̂ = Ax; ŷ = Ay, (1)

which stand for the frequency images of x and y, respectively.
Then, according to the process of JPEG compression

described above, we have

ŷ[(k−1)×N+l] = round

(

x̂[(k−1)×N+l]

M[k,l]

)

× M[k,l], (2)

where 1 ≤ k, l ≤ N , round (·) is to round towards the nearest
integer, M is a matrix of size N × N with M[k,l] = Mq

[k̄,l̄],
and k = mod (k, 8) ; l = mod (l, 8).

The purpose of image deblocking is to take advantage
of the information in JPEG compressed bit-stream, such
as y and Mq , to suppress blocking artifacts and obtain a
high-quality reconstruction image.

III. CONSTRAINED NON-CONVEX LOW-RANK

(CONCOLOR) MODEL FOR

IMAGE DEBLOCKING

In this paper, we cast image deblocking as an image inverse
problem, and formulate the proposed algorithm through
maximum a posteriori (MAP) framework. Thus, our proposed
algorithm belongs to the category of image restoration based
deblocking method.

To be concrete, given JPEG compressed image y, the
original image x can be obtained by

x̃ = arg max
x

p(x|y). (3)

According to the Bayesian rule, the above problem Eq. (3)
can be expressed as

x̃ = arg max
x

log (p(y|x)) + log (p(x)), (4)

Fig. 2. Agreement between the values of σe estimated by Eq. (6) and the
optimal ones (found experimentally), which give the highest PSNR for the
deblocking Butterfly and House images using our proposed algorithm.

where the first term in Eq. (4) represents data-fidelity, charac-
terizing the relationship between y and x, and the second term
corresponds to the image prior knowledge constraining the
solution space. In this paper, a new quantization noise model
is developed to depict log (p(y|x)), and a new constrained non-
convex low-rank model is formulated to interpret log (p(x)).
Hence, a novel constrained non-convex low-rank minimization
function for image deblocking is proposed. The details are
provided in the following.

A. Quantization Noise Model

In the literature, the observed JPEG-coded image is usually
modelled as the corrupted one by the quantization noise, i.e.

y = x + e, (5)

where y is the JPEG-coded image with blocking artifacts,
x is the original image, and e is the quantization noise. Many
sophisticated models of BDCT quantization noise have been
proposed [8], [25], [26], [40], [41].

In this paper, we adopt Gaussian model to characterize
the quantization noise e in Eq. (5) due to its simplicity and
effectiveness. To estimate its variance σ 2

e that is suitable for
our proposed framework, we first observe the optimal values
of σe found experimentally for the images Butterfly and House
compressed with different quantization tables Mq correspond-
ing to quality factor q = 5, 10, . . . , 95, as illustrated in Fig. 2.
It can be inferred that different images with the same q
have similar optimal values of σe, which means that σe is
only related with q . Hence, in this paper, we propose to
estimate the optimal value of σe directly from the quantiza-
tion table Mq by curve fitting using the following empirical
formulation:

σ 2
e = 1.195 ∗ (ṡ)0.6394 + 0.9693, ṡ = 1

9

3
∑

i, j=1

Mq
[i, j ], (6)

where Mq is the 8×8 quantization matrix with the quality
factor q , and ṡ is the mean value of the nine upper-left entries
in Mq , corresponding to the lowest-frequency DCT harmonics.
It is apparent that a higher compression corresponds to a larger
value for the variance.
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Fig. 3. Illustrations for image low-rank prior. Extract each exemplar patch vector xk from image x. For each xk , denote Sxk the set composed of its best
matched blocks. Stack all the patches in Sxk to construct the data matrix, denoted by XGk . XGk has a low-rank property.

With the Gaussian quantization noise model, the first data-
fidelity term in Eq. (4) thus can be formulated as

log (p (y|x)) = − 1

2σ 2
e

‖x − y‖2
2 . (7)

Note that σ 2
e in Eq. (7) is adaptively determined by Eq. (6)

according to different quantization matrices. Experiments for
a wide range of different quantization matrices in Section V
will verify the robustness and effectiveness of Gaussian quan-
tization noise model and Eq. (6). Here, it is also worth
emphasizing that the noise variance σ 2

e calculated by Eq. (6)
is not the real estimate of the variance of the difference
between the original and the compressed images. Under the
assumption of Gaussian noise model, it is just the variance of
the hypothetical Gaussian noise, which determines the level
of adaptive smoothing that is able to reduce the artifacts
generated by the BDCT quantization with Mq [8].

B. Non-Convex Low-Rank Prior

In this section, we will elaborate the proposed non-convex
low-rank prior model.

The basic assumption is that the well-known non-local self-
similarity, which depicts the repetitiveness of higher level
patterns (e.g. textures and structures) globally positioned in
natural images, implies that many similar patches can be
searched for any exemplar patch [42], [43]. To be concrete,
as illustrated in Fig. 3, first, divide the image x ∈ R

N2
with

size N2 into K overlapped patches of size
√

Bs × √
Bs , and

each patch is denoted by the vector xk ∈ R
Bs , i.e. k =

1, 2, . . . , K . Then, for each exemplar patch xk , denoted by
small red square in Fig. 3, within the Ws ×Ws training window
(big blue square), search its c best matched patches, which
comprise the group Sxk . Here, Euclidean distance is selected
as the similarity criterion between different patches. Next, all
the patches in each group Sxk are stacked into a data matrix of
size Bs ×c, denoted by XGk , which includes every patch in Sxk

as its columns, i.e. XGk =[xGk
⊗

1, xGk
⊗

2, . . . ,xGk
⊗

c]. Since
all the patches in each data matrix have similar structures,
the constructed data matrix XGk has a low-rank property.
In practice, we usually suppose XGk is corrupted by some
noise. As discussed in Section III.A, we can model the data
matrix as: XGk = ZGk + SGk , where ZGk and SGk denote the
low-rank matrix and the Gaussian noise matrix, respectively.

Fig. 4. Illustrations of F(x) = |x|p, (0 < p < 1) (green), rank(x) = ‖x‖0
(red), and the nuclear norm ‖x‖1 (blue) in the case of a scalar.

Then, the low-rank matrix ZGk can be reconstructed by solving
the following optimization problem:

ZGk = arg min
ZGk

1

2σ 2
s

∥

∥XGk − ZGk

∥

∥

2
F + λ rank(ZGk ). (8)

where ‖ · ‖2
F denotes the Frobenious norm and σ 2

s denotes
the variance of additive Gaussian noise. In general, the rank
minimization is an NP-hard problem. To obtain an approxi-
mated solution, the nuclear norm (sum of the singular values)
is usually adopted as a convex surrogate of the rank. By the
nuclear norm, the rank minimization problem can be efficiently
solved by the classic technique of singular value threshold-
ing (SVT) [39]. Despite the good theoretical guarantee, the
nuclear norm is actually not accurate to approximate the rank,
as shown in Fig. 4.

Inspired by the success of l p (0 < p < 1) sparse
optimization, in this paper, to approximate matrix rank more
accurately, we extend the non-convex l p (0 < p < 1) penalty
function on singular values of the data matrix to substitute
the convex nuclear norm. Concretely, the rank function can be
approximately solved by the following function:

F(ZGk ) =
c

∑

i=1

|σi (ZGk )|p, (9)

where 0 < p < 1 and σi (X) denotes the i -th singular value
of a matrix X ∈ R

Bs×c (assuming Bs ≤ c in this work).
Fig. 4 shows the comparison of the proposed non-convex
surrogate function F(ZGk ), the rank, and the nuclear norm in
the scalar case. One can clearly see that the proposed F(ZGk )
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is more accurate to approximate the rank than the nuclear
norm.

Therefore, for each exemplar image patch, we can approx-
imate the matrix XGk with a low-rank matrix ZGk by solving
the following minimization instead of Eq. (8):

ZGk = arg min
ZGk

1

2σ 2
s

∥

∥XGk − ZGk

∥

∥

2
F + λF(ZGk ). (10)

Accordingly, considering all the matrices XGk , the proposed
non-convex low-rank prior model is formulated as

log(p(x)) = −
(

α

2σ 2
s

K
∑

k=1

‖RGk x − ZGk ‖2
F + β

K
∑

k=1

F(ZGk )

)

,

(11)

where XGk = RGk x = [xGk
⊗

1, xGk
⊗

2, . . . ,xGk
⊗

c] is
the matrix operator that extracts the patch xGk

⊗

i from x.
Obviously, the proposed non-convex low-rank model is able
to exploit both the non-local self-similarity of similar patches
and non-convexity of rank minimization simultaneously, which
is expected to achieve better recovery than previous methods.

C. Quantization Constraint Prior

For image deblocking problem, the quantization con-
straint (QC) is a key prior [26], which is unfortunately ignored
by current algorithms with low-rank approximation [33], [34].
Considering the quantization step in JPEG compression, we
incorporate QC into the proposed framework.

Firstly, the quantization step in Eq. (2) can be equivalently
transformed into

∣

∣

∣

∣

x̂[(k−1)×N+l]

M[k,l]
− ŷ[(k−1)×N+l]

M[k,l]

∣

∣

∣

∣

≤ ω, (12)

where 1 ≤ k, l ≤ N , and ω is usually set to be not more
than 0.5 [19].

Next, Eq. (12) is expanded as

(̂y[(k−1)×N+l] − ω × M[k,l])

≤ x̂[(k−1)×N+l] ≤ (̂y[(k−1)×N+l] + ω × M[k,l]). (13)

Let us define the lower and upper bound vectors ̂l and û,
i.e.

̂l[(k−1)×N+l] = (̂y[(k−1)×N+l] − ω × M[k,l]);
û[(k−1)×N+l] = (̂y[(k−1)×N+l] + ω × M[k,l]). (14)

Therefore, as illustrated in Fig. 5, the frequency coefficients
of the original image should satisfy

̂l � x̂ � û, (15)

where � denotes the operator of element-wise comparison.
Eq. (15) is just the expression of QC. Furthermore, the solution
space restricted by QC can be defined as

�={x|̂l � Ax � û}. (16)

Note that � can be directly obtained from the given
JPEG compressed bit-stream. As to image enhancement based
deblocking methods, the most commonly way is to apply QC

Fig. 5. Illustrations for quantization constraint in JPEG compression.
The original frequency coefficient x̂[(k−1)×N+l] lies in the range between
̂l[(k−1)×N+l] and û[(k−1)×N+l].

to restrain the final deblocking result to improve the perfor-
mance. However, this does not always work for image restora-
tion based deblocking methods. In this paper, we explicitly
incorporate the feasible solution space � into Eq. (4), and
design a novel constrained optimization problem. Furthermore,
in order to make better use of QC prior, different from
previous work [16], [23], we exploit narrow quantization
constraint (NQC) [19] to construct the feasible solution space
� by setting ω in Eq. (14) to be 0.4, instead of 0.5. The
advantage of ω = 0.4 over ω = 0.5 for the proposed algorithm
will be presented in the experimental section.

D. Proposed Image Deblocking Framework

Incorporating the above quantization noise model and
two image priors into Eq. (4), we have the proposed
novel COnstrained Non-COnvex LOw-Rank (CONCOLOR)
optimization problem as follows

(x̃, Z̃Gk ) = arg min
x,ZGk

1

2σ 2
e

‖x − y‖2
F + α

2σ 2
s

K
∑

k=1

‖RGk x − ZGk ‖2
F

+β

K
∑

k=1

F(ZGk ) s.t . x ∈ �. (17)

Compared with existing image deblocking algorithms with
low-rank priors [33], [34], there are three main improvements
in CONCOLOR. The first one is the introduction of the non-
convex low-rank approximation function F(ZGk ) by extending
l p (0 < p < 1) on the singular values of a matrix, which
is more accurate than the convex nuclear norm. The second
one is that narrow quantization constraint is explicitly used
to construct the feasible solution space � as the optimization
constraint, which will be verified quite effective for image
deblocking. The third one is that an alternatively minimizing
strategy with adaptive parameter adjustment is developed to
solve the proposed optimization problem. The parameter-free
advantage enables the whole algorithm more attractive and
practical. More details about the optimization will be provided
in the next section. Note that Eq. (17) jointly exploits the
quantization model, low-rank prior and QC prior within the
MAP framework. Thus, it is expected that better deblocking
results will be achieved.

IV. ALGORITHM OPTIMIZATION AND PARAMETER

SETTING FOR CONCOLOR

In this section, we will show how to utilize the alterna-
tively minimizing strategy to solve the proposed optimization
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problem (17) efficiently with respect to the whole image x and
low-rank data matrices ZGk .

A. Non-Convex Low-Rank Minimization

Given x, the non-convex low-rank minimization for each
ZGk (k = 1, . . . , K ) is formulated as:

Z̃Gk = arg min
ZGk

α

2σ 2
s

‖RGk x − ZGk ‖2
F +β

K
∑

k=1

F(ZGk ). (18)

Let τ = σ 2
s β
α , then we get

min
1

2
‖XGk − ZGk ‖2

F +
c

∑

i=1

gτ (σi (ZGk )), (19)

where the penalty function gτ (·) is defined as gτ (x) =
τ |x |p, (0 < p < 1).

Note that gτ (x) is concave and monotonically increasing
on [0 ∞), with its gradients being decreasing. Based on this
property, recently, Lu et. al proposed an iteratively reweighted
nuclear norm (IRNN) algorithm to solve the general non-
convex non-smooth low-rank minimization with convergence
guarantee [44]. Here, borrowing the wisdom of IRNN, we will
show how to solve the problem (19).

For simplicity of notation, denote h(ZGk ) = 1
2‖XGk −

ZGk ‖2
F , σi = σi (ZGk ), and σ

(l)
i = σi (Z

(l)
Gk

). Owing to that
gτ (x) is concave and differentiable on [0 ∞), we obtain

gτ (σi ) ≤ gτ (σ
(l)
i ) + w

(l)
i (σi − σ

(l)
i ). (20)

Here

w
(l)
i = g′

τ (σ
(l)
i ), (21)

g′
τ (x) = τpx p−1, x ∈ [0 ∞).
Then, by the anti-monotone gradient property of gτ (x),

since σ
(l)
1 � σ

(l)
2 ≥ . . . ≥ σ

(l)
c ≥ 0, we have

0 ≤ w
(l)
1 ≤ w

(l)
2 ≤ . . . ≤ w(l)

c . (22)

The property (22) is very important for achieving efficient
solution to (19), which will be shown later. According to (20),
we minimize its right hand instead of gτ (σi ), leading to the
following relaxed problem

Z(l+1)
Gk

= arg min
ZGk

gτ (σ
(l)
i ) + w

(l)
i (σi − σ

(l)
i )+ h(ZGk ). (23)

Removing the constant terms, the problem (23) equivalently
becomes

Z(l+1)
Gk

= arg min
ZGk

w
(l)
i (σi (ZGk )) + h(ZGk ). (24)

Furthermore, instead of updating Z(l+1)
Gk

by solving (24)

directly, we linearize h(ZGk ) at Z(l)
Gk

and add a proximal
term:

h(ZGk ) ≈ h(Z(l)
Gk

)+ < �h(Z(l)
Gk

), ZGk − Z(l)
Gk

>

+μ

2
‖ZGk − Z(l)

Gk
‖2

F , (25)

Algorithm 1 Solving Non-Convex Low-Rank Problem (19)

where μ > L(h), and L(h) > 0 is the Lipschitz constant
of �h. Hence, the update of Z(l+1)

Gk
is

Z(l+1)
Gk

= arg min
ZGk

w
(l)
i (σi (ZGk )) + h(Z(l)

Gk
)

+ < �h(Z(l)
Gk

), ZGk − Z(l)
Gk

> +μ

2
‖ZGk − Z(l)

Gk
‖2

F ,

(26)

which is equivalently transformed as

Z(l+1)
Gk

= arg min
ZGk

w
(l)
i (σi (ZGk ))

+μ

2
‖ZGk − (Z(l)

Gk
− 1

μ
�h(Z(l)

Gk
))‖2

F . (27)

Although (27) is still non-convex, due to the property (22),
it actually has a closed-form solution based on the following
Theorem 1.

Theorem 1 [45]: For any λ > 0, Y ∈ R
m×n, and 0 ≤ w1 ≤

w2 ≤ . . . ≤ ws, (s = min(m, n)), a globally optimal solution
to the following problem

min λ

s
∑

i=1

wiσi (X) + 1

2
‖X − Y‖2

F , (28)

is given by the weighted singular value thresholding

X∗ = USλw(�)VT , (29)

Y = U�VT is the SVD of Y, and Sλw(�) =
Diag(�ii − λwi ).

Therefore, by iteratively computing w
(l)
i according to (21)

and updating Z(l+1)
Gk

according to (29), we achieve the efficient
solution to the non-convex low-rank minimization (19). The
whole procedure to solve (19) is described in Algorithm 1.
Moreover, Algorithm 1 decreases the objective function value
monotonically, and any limit point is a stationary point of
problem (19). The convergence analysis is provided by the
following Theorem 2.

Theorem 2 [44]: The sequences Z(l)
Gk

generated in
Algorithm 1 satisfies the following properties:

1) F(Z(l)
Gk

) is monotonically decreasing. Indeed,

F(Z(l)
Gk

) − F(Z(l+1)
Gk

) ≥ μ − L(h)

2
‖Z(l)

Gk
− Z(l+1)

Gk
‖2

F ;

2) liml→∞(Z(l)
Gk

− Z(l+1)
Gk

) = 0;
3) The sequences {Z(l)

Gk
} is bounded, and any accumulation

point Z̃Gk of {Z(l)
Gk

} is a stationary of (19).
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B. Constrained Quadratic Minimization

After obtaining each ZGk , the whole image x can be
reconstructed by solving the following constrained quadratic
minimization problem:

x̃ = arg min
x

1

2σ 2
e

‖x − y‖2
2 + α

2σ 2
s

K
∑

k=1

‖RGk x − ZGk ‖2
F

s.t x ∈ �. (30)

Since � is convex set, to make solving (30) more efficient
and tractable, we first get the solution of the unconstrained
quadratic minimization of (30), and then project the solution
to �. Specifically, without consideration of the constraint
x ∈ �, the unconstrained version of (30) is

ẋ = arg min
x

1

2σ 2
e

‖x − y‖2
2 + α

2σ 2
s

K
∑

k=1

‖RGk x − ZGk ‖2
F ,

(31)

which obviously admits a closed-form solution, that is

ẋ =
(

I + σ 2
e α

σ 2
s

K
∑

k=1

RT
Gk

RGk

)−1 (

y + σ 2
e α

σ 2
s

K
∑

k=1

RT
Gk

ZGk

)

,

(32)

where RT
Gk

ZGk = ∑c
i=1 RT

Gk
⊗

i zGk
⊗

i , I is the identity

matrix, and RT
Gk

RGk = ∑c
i=1 RT

Gk
⊗

i RGk
⊗

i .

Since I + σ 2
e α

σ 2
s

∑K
k=1 RT

Gk
RGk is actually a diagonal matrix,

(32) can be efficiently obtained by element-wise division
operations.

Next, we find the optimal feasible solution of (30) in � by
utilizing the projection operation, i.e.

x̃ = A−1P(A(ẋ), l̂, û), (33)

A is the matrix operator defined by � in Section II, and
v = P(x, l, u) is a projection operator defined as

v[k] =
⎧

⎨

⎩

l[k], i f x[k] < l[k]

x[k], i f l[k] ≤ x[k] ≤ u[k], 1 ≤ k ≤ N2.
u[k], i f x[k] > u[k]

(34)

Therefore, according to (32) and (33), we can achieve the
efficient solution to the constrained quadratic minimization
problem (30).

To sum up, the optimization of (17) is split into two
minimization sub-problems: non-convex low-rank minimiza-
tion (18) and constrained quadratic minimization (30). These
two minimization sub-problems are alternatively processed,
and such process is iterated until the convergence.

C. Parameter Setting

This section will give some details about parameter setting.
In total, the proposed image deblocking algorithm
CONCOLOR requires to tune five parameters, i.e., σ 2

e ,
σ 2

s , α, β, and μ. Among them, α, β, and μ are set be fixed
values, while σ 2

e and σ 2
s are adaptively adjusted depending

on image content and quantization matrix.

Algorithm 2 CONCOLOR for Image Deblocking

In particular, the setting of σe is adaptively determined by
Eq. (6). For σs, since each ZGk in Eq. (19) varies as the itera-
tion number increases, its setting should be adaptively adjusted
at each iteration. Here, the image zt−1 that is reconstructed by
all the Z(t−1)

Gk
at (t − 1)th iteration is used to obtain robust

σ
(t−1)
s . z(t−1) is formulated as

z(t−1) =
K

∑

k=1

RT
Gk

ZGk ./

K
∑

k=1

RT
Gk

1Gk , (35)

where ./ stands for the element-wise division of two vectors
and 1Gk is a matrix of size Bs×c with all the elements being 1.

After getting z(t−1), σ
(t−1)
s can be estimated by

σ (t−1)
s = δ

√

σ 2
e − ‖z(t−1) − y‖2

2, (36)

where δ is a scaling factor to control the variance estimation.
Such technique has appeared in existing works, and please
refer to [35] and [37] for further details. In this paper, we
empirically set δ to be 0.2, which has been verified suitable
for all the QFs by extensive experiments.

D. Summary

Up to now, the efficient solution for each separated mini-
mization sub-problem has been acquired, and all the parameter
settings are given. In light of all derivations above, a detailed
descriptions of the proposed algorithm CONCOLOR for image
deblocking are provided in Algorithm 2.

V. EXPERIMENTAL RESULTS

In this section, extensive experimental results are pre-
sented to verify the performance of the proposed algorithm
CONCOLOR for image deblocking. The default parameters
are follows: the size of a data matrix is set to be 36 × 60,
with Bs being 36 and c being 60. The width of overlap-
ping between adjacent patches is 3 pixels. The range of
training window for constructing the low-rank matrix, i.e.
Ws × Ws is set to be 30 × 30. ω = 0.4, μ = 10, α = 10,
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Fig. 6. PSNR result comparisons of different versions with various quality factors for four grayscale images: Butterfly, House, Foreman and Leaves.

β = 200
√

2c, T = 20. Without loss of generality, p in
Eq. (9) is set to be 0.2. All the experiments are performed in
Matlab 2013a on a Dell OPTIPLEX computer with Intel(R)
Core(TM) i7 (2.80GHz), 8G memory, and Windows 7 oper-
ating system. The source code of CONCOLOR and all the
experimental results can be downloaded from the following
website http://idm.pku.edu.cn/staff/zhangjian/CONCOLOR/.

A. Effectiveness of Non-Convex Low-Rank Prior
and Quantization Constraint Prior

In order to demonstrate the effectiveness of each com-
ponent and the combination of the proposed CONCOLOR
such as quantization constraint (QC) and low-rank prior, we
first implement four variants of the proposed deblocking
algorithm: a) Only using QC, b) Only using p = 1,
c) Only using p = 0.2, and d) Proposed (QC and p = 0.2).
We conduct experiments on four grayscale images with various
JPEG quality factors from 20 to 90. The PSNR result
comparisons of different versions are illustrated in Fig. 6,
where ‘�’, ‘×’, ‘•’ and ‘∗’ denote the versions of Only
using QC, Only using p = 1, Only using p = 0.2, and
Proposed (QC and p = 0.2), respectively. From Fig. 6, it
is clear to show the evidence of each claim of novel of the
proposed algorithm. Obviously, the version of Only using QC
produces the worst results. One can observe that the version
of Only using p = 0.2 performs better than the version
of Only using p = 1. The proposed deblocking algorithm
CONCOLOR combining QC and p = 0.2 achieves the best

highest PSNR results among all the versions over all the cases,
further demonstrating its effectiveness.

B. Comparison With State-of-the-Art Algorithms

The proposed CONCOLOR is compared with five repre-
sentative image deblocking methods, i.e. Sun’s [26], Foi’s [8],
DicTV [23], Zhang’s [28], Ren’s [33], and two representative
image denoising methods, i.e. BM3D [46] and WNNM [37].
The results of all the competing algorithms are generated by
the original authors softwares with the optimal parameters.
It is worth emphasizing that Ren’s [33] and WNNM [37] both
exploit low-rank prior via the nuclear norm, and they generate
the state-of-the-art image deblocking and denoising results,
respectively.

For comparison, all the standard test images shown in Fig. 7
are first encoded by a JPEG coder [1] with different quality
factors (QF) that correspond to different quantization matrices,
and then decoded using the standard JPEG decoder followed
by different image deblocking methods. To evaluate the quality
of the deblocking image, in addition to PSNR and the well-
known perceptual quality metric SSIM [47], a block-sensitive
index, named PSNR-B [48], which is specially designed to
assess blocky and deblocked images, is also adopted.

The PSNR, SSIM and PSNR-B result comparisons for
all grayscale test images in the cases of QF = 5 and
QF = 10 are provided in Table I, Table II and Table III,
respectively, with the best results highlighted in bold. The
proposed CONCOLOR achieves the highest PSNR, SSIM and
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Fig. 7. All test images including nine standard grayscale images and five standard color images. From top to bottom and left to right: Barbara, Butterfly,
Cameraman, Foreman, House, Leaves, Lena, Parrots, Peppers, Butterfly, Foreman, Barbara, House and Leaves.

TABLE I

PSNR (UNIT: dB) RESULTS OF ALL COMPETITIVE ALGORITHMS FOR GRAYSCALE IMAGE DEBLOCKING

TABLE II

SSIM RESULTS OF ALL COMPETITIVE ALGORITHMS FOR GRAYSCALE IMAGE DEBLOCKING

PSNR-B among the eight comparative algorithms over all the
cases with significant gain over previous works. Concretely,
it is obvious to see that Sun’s and BM3D performs better

than DicTV, and Foi’s and Zhang’s produce better results
than Sun’s and BM3D. Ren’s and WNNM show very similar
performance, which are superior to Foi’s and Zhang’s. As for
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TABLE III

PSNR-B (UNIT: dB) RESULTS OF ALL COMPETITIVE ALGORITHMS FOR GRAYSCALE IMAGE DEBLOCKING

Fig. 8. Visual quality comparison of image deblocking for grayscale image Foreman in the case of QF = 5. From left to right and top to bottom:
original image, JPEG compressed image (PSNR = 26.28 dB; SSIM = 0.7307; PSNR-B = 23.61 dB), the deblocking results by Sun’s (PSNR = 27.64 dB;
SSIM = 0.8106; PSNR-B = 27.38 dB), Foi’s (PSNR = 28.09 dB; SSIM = 0.8197; PSNR-B = 28.09 dB), Zhang’s (PSNR = 28.03 dB; SSIM = 0.8171;
PSNR-B = 28.03 dB), Ren’s (PSNR = 28.39 dB; SSIM = 0.8217; PSNR-B = 28.39 dB), BM3D (PSNR = 27.85 dB; SSIM = 0.8004; PSNR-B = 27.75 dB),
DicTV (PSNR = 27.04 dB; SSIM = 0.7785; PSNR-B = 25.53 dB), WNNM (PSNR = 28.33 dB; SSIM = 0.8184; PSNR-B = 28.33 dB) and the proposed
CONCOLOR (PSNR = 29.08 dB; SSIM = 0.8377; PSNR-B = 29.08 dB).

CONCOLOR, in the case of QF = 5, it achieves (0.47 dB,
0.49 dB) gains in PSNR, (0.0150, 0.0166) gains in SSIM and
(0.69 dB, 0.89 dB) gains in PSNR-B over Ren’s and WNNM
on average; in the case of QF = 10, it achieves (0.48 dB,
0.47 dB) gains in PSNR, (0.0102, 0.0099) gains in SSIM and
(1.09 dB, 1.11 dB) gains in PSNR-B over Ren’s and WNNM
on average. In particular, in the case of QF = 5 for image
Foreman, CONCOLOR achieves up to (1.44 dB, 0.99 dB,
1.05 dB, 0.69 dB, 1.23 dB, 2.04 dB, 0.75 dB) PSNR gains
and (1.70 dB, 0.99 dB, 1.05 dB, 0.69 dB, 1.23 dB, 3.55 dB,
0.75 dB) PSNR-B gains over Sun’s, Foi’s, Zhang’s, Ren’s,
BM3D, DicTV, and WNNM, respectively. The visual quality
comparisons in the cases of QF = 5 and QF = 10 for two
grayscale test images are provided in Fig. 8 and Fig. 9. One
can see that the blocking artifacts are obvious in the images

decoded directly by the standard JPEG. DicTV, Sun’s and
BM3D can suppress the blocking artifacts partially, but many
blocking artifacts are still visible in reconstructed images.
Foi’s and Zhang’s usually generate better results than Sun’s
and BM3D. However, they often produce noticeable zigzag
artifacts and blur effects along image edges. Ren’s and WNNM
are good at capturing image edges, but it may produces ghost
effects and generate some incorrect textures. The proposed
CONCOLOR not only reduces most of the blocking artifacts
significantly, but also provides better reconstruction on both
edges and textures than other competing methods.

Furthermore, we extend the proposed CONCOLOR from
grayscale images to color images. Since the JPEG standard
compresses color images in the YUV color space, it is natural
to first decompose the JPEG-compressed color image into
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Fig. 9. Visual quality comparison of image deblocking for grayscale image Barbara in the case of QF = 10. From left to right and top to bottom:
original image, JPEG compressed image (PSNR = 26.29 dB; SSIM = 0.7901; PSNR-B = 22.96 dB), the deblocking results by Sun’s (PSNR = 27.10 dB;
SSIM = 0.8205; PSNR-B = 25.53 dB), Foi’s (PSNR = 27.36 dB; SSIM = 0.8297; PSNR-B = 25.89 dB), Zhang’s (PSNR = 27.77 dB; SSIM = 0.8288;
PSNR-B = 27.31 dB), Ren’s (PSNR = 27.86 dB; SSIM = 0.8359; PSNR-B = 26.75 dB), BM3D (PSNR = 27.52 dB; SSIM = 0.8338; PSNR-B = 25.87 dB),
DicTV (PSNR = 27.07 dB; SSIM = 0.8262; PSNR-B = 24.86 dB), WNNM (PSNR = 27.81 dB; SSIM = 0.8362; PSNR-B = 26.69 dB) and the proposed
CONCOLOR (PSNR = 28.50 dB; SSIM = 0.8524; PSNR-B = 28.16 dB).

Fig. 10. Comparisons of PSNR results at different quality factors in the range [20 90] for four color test images: Barbara, Butterfly, Foreman, House,
and Leaves.

one luminance channels and two chrominance channels, and
then apply our proposed CONCOLOR in the resulting three
channels, respectively. In particular, the noise variance of
each component channel is calculated by Eq. (6) from the
corresponding quantization table, and the proposed deblocking
algorithm as described in Algorithm 2 is invoked to deal with

each component channel, separately. Extensive experiments
with various JPEG quality factors from 20 to 90 are conducted
on five color test images shown in Fig. 7. Fig. 10 presents
the reconstruction PSNR comparisons among JPEG, Foi’s,
WNNM, Ren’s, and the proposed CONCOLOR. As the
human eyes are sensitive to the luminance and insensitive to
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Fig. 11. Visual quality comparison of image deblocking for color image Butterfly in the case of QF = 40. From left to right: original image, JPEG compressed
image (PSNR = 31.24 dB), the deblocking results by Foi’s (PSNR = 32.66 dB), WNNM (PSNR = 32.76 dB), Ren’s (PSNR = 32.72 dB) and the proposed
CONCOLOR (PSNR = 33.75 dB).

Fig. 12. Visual quality comparison of image deblocking for color image Leaves in the case of QF = 50. From left to right: original image, JPEG compressed
image (PSNR = 33.01 dB), the deblocking results by Foi’s (PSNR = 34.53 dB), WNNM (PSNR = 35.09 dB), Ren’s (PSNR = 35.04 dB) and the proposed
CONCOLOR (PSNR = 36.13 dB).

the colors, we only use the luminance component to compute
PSNR in the experiments of color images.

From Fig. 10, it is also obvious to see that CONCOLOR
works well over a wide quality (or bit rate) range, and outper-
forms current state-of-the-art algorithms Ren’s and WNNM
over all the cases. Especially, for color image Butterfly,
the proposed CONCOLOR obtains on average 2.48 dB,
1.21 dB, 1.11 dB and 1.14 dB PSNR gains over JPEG, Foi’s,
WNNM and Ren’s; for color image Foreman, the proposed
CONCOLOR obtains on average 1.91 dB, 0.80 dB, 0.81 dB
and 0.80 dB PSNR gains over JPEG, Foi’s, WNNM and Ren’s;
for color image Leaves, the proposed CONCOLOR obtains on
average 3.06 dB, 1.62 dB, 1.08 dB and 1.13 dB PSNR gains
over JPEG, Foi’s, WNNM and Ren’s. Fig. 11 and Fig. 12
further show visual quality comparisons in the cases of
QF = 40 for color image Butterfly and QF = 50 for
color image Leaves. The proposed CONCOLOR not only
reduces most of the blocking artifacts significantly, but also
provides better reconstruction on both edges and textures
than other competing methods, which fully demonstrates the
effectiveness of CONCOLOR.

C. Effect of Quantization Constraint Parameter

This subsection gives some descriptions about how sensitive
the performance is affected by the quantization constraint
parameter ω. In this paper, we adopt narrow quantization
constraint (NQC) by setting ω = 0.4 rather than traditional
ω = 0.5. Table IV presents the performance comparisons
with various ω for three grayscale test images. Obviously, the
setting of ω = 0.4 achieves better results than that of ω = 0.5,
obtaining about 0.2 dB gain on average, which further verify
the effectiveness of NQC.

D. Algorithm Complexity and Computational Time

Now let’s now discuss about the complexity and com-
putational time of the proposed algorithm CONCOLOR.

TABLE IV

PSNR (dB) COMPARISONS WITH VARIOUS ω

Fig. 13. SSIM evolutions achieved by proposed CONCOLOR versus iteration
numbers for two grayscale images: House (Left) and Butterfly (Right).

It is apparent that the complexity of CONCOLOR mainly
lies in the non-convex low-rank minimization sub-problem
in Sec. IV.A. Assume that the number of image pixels is N2,
and that the average time to find similar patches for each
exemplar patch is T f . Due to that the SVD operation of
each matrix with size of Bs × c is O (

Bsc2
)

, the total
complexity of CONCOLOR is hence O (

N2
(

Bsc2 + T f
))

.
As illustrated in Fig. 13, the proposed CONCOLOR converges
after twenty iterations, and that’s just the reason we set
T = 20. In particular, as for a 256×256 grayscale image,
the proposed CONCOLOR requires about 7∼8 minutes for
image deblocking on an Intel(R) Core(TM) i7 2.80GHz PC
under Matlab R2013a environment. On going work utilizes
GPU hardware to address the parallelization for accelerating
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TABLE V

COMPUTATIONAL TIME COMPARISONS OF DIFFERENT METHODS FOR A 256×256 GRAYSCALE IMAGE (UNIT: s)

the proposed algorithm. All computational time comparisons
of different methods to deal with a 256×256 grayscale image
are shown in Table V.

VI. CONCLUSION

In this paper, in order to reduce blocking artifacts and
obtain high-quality image, a novel image deblocking algo-
rithm is proposed by utilizing COnstrained Non-COnvex
LOw-Rank (CONCOLOR) model under maximum a poste-
riori framework. The l p (0 < p < 1) penalty function
is extended on singular values of a matrix to characterize
low-rank prior model rather than the nuclear norm, while
the quantization constraint is explicitly transformed into the
feasible solution space to constrain the non-convex low-rank
optimization. To make the proposed optimization problem
tractable, an alternatively minimizing strategy with adaptive
parameter adjustment is developed. It is worth emphasizing
that the proposed algorithm CONCOLOR outperforms current
state-of-the-art algorithms in both PSNR and visual perception.
Future work includes the direct extensions of CONCOLOR on
video deblocking applications.
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