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ABSTRACT

Dendritic Computation-driven Learning Methods for

Biophysically Detailed Neuron Models

Gan He (Computer Application Technology)

Supervised by Professor Tiejun Huang

ABSTRACT

Understanding how the brain achieves efficient learning remains a fundamental and
longstanding scientific question in computational neuroscience and brain-inspired intelligence
research. Although the backpropagation algorithm has achieved remarkable success in deep
learning, it remains unclear whether the biological brain employs a similar gradient-based
efficient learning mechanism, and whether neuronal dendritic computation could support such
a mechanism. Traditional neuroscience studies primarily focus on unsupervised learning
mechanisms, exemplified by Hebbian plasticity. However, a clear theoretical framework for
biologically plausible supervised learning at the dendritic scale is yet to be established.
Meanwhile, existing studies in brain-inspired intelligence predominantly utilize simplified
point-neuron models optimized by gradient-based algorithms, neglecting the powerful
computational potential inherent to real neurons with complex dendritic structures.

To address these gaps, this dissertation takes dendritic computation mechanisms as a
biological basis, and employs biophysically detailed multi-compartment neuron models to
propose a series of dendrite-driven, gradient-based efficient learning methods for detailed
neuron models. These methods systematically tackle the gradient optimization challenge,
progressively from passive dendrites (integrating inputs through passive voltage diffusion) to
active dendrites (actively regulating inputs via voltage-gated ion channels), establishing for
the first time a comprehensive theoretical framework for efficient supervised learning at the
dendritic level. The main innovations include:

First, focusing on passive dendrite models—the most widely adopted in dendritic
computation research—this dissertation proposes steady-state and transient surrogate models
based on passive dendritic steady-state and transient computations, respectively. The steady-
state surrogate model enables efficient training of deep, detailed neural networks with complex
dendritic structures on data-driven tasks using the DeepDendrite platform. The transient

surrogate model breaks through the steady-state assumption, achieves explicit gradient
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computation and efficient training for active dendrites under transient conditions, and is
applied for the first time to train the BAAIWorm detailed C. elegans neural network model.
This approach accurately reconstructs experimentally observed calcium signals from
biological recordings, and successfully generates worm locomotion closely resembling
biological behaviors. Ablation experiments further revealed the critical role of network
structure in regulating the worm's behavioral patterns.

Second, this dissertation further discovers and rigorously proves the mathematical
equivalence between gradient computation and numerical simulation in detailed neuron
models, leading to a novel learning method named “forward replay gradient simulation”.
Through forward replay of specific gradient currents during numerical simulation, this method
achieves accurate and efficient computation of synaptic weight gradients, providing a
theoretical basis for how biological neurons might leverage their physiological mechanisms to
compute gradients.

Third, based on the above gradient simulation method, this dissertation proposes an even
more computationally efficient “backward replay learning method” by analyzing gradient
components in-depth. This new approach significantly reduces the computational cost of
calculating synaptic weight gradients for detailed neuron models, while maintaining learning
performance comparable to exact gradient methods. Moreover, this dissertation innovatively
designs dendrite-mediated contextual selection experiments, successfully demonstrating that
detailed neuron models can efficiently solve complex learning tasks that are challenging for
traditional point-neuron models, thus highlighting the substantial computational advantage of
dendritic computation.

In summary, this dissertation systematically addresses the challenge of efficient
supervised learning at the dendritic scale driven by dendritic computation, verifying the
efficiency and biological plausibility of the proposed dendrite-level learning methods and
explicitly elucidating the significant contribution of dendritic computation to system-level
neural network functions. This dissertation provides a novel theoretical foundation and
methodological framework for understanding efficient learning mechanisms in the brain,
significantly advancing the fields of brain-inspired intelligence and computational

neuroscience toward intelligent, efficient, and biologically plausible computational paradigms.
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