

B. Huet et al. (Eds.): PCM 2013, LNCS 8294, pp. 350–358, 2013.
© Springer International Publishing Switzerland 2013

An Efficient Zigzag Scanning and Entropy
Coding Architecture Design*

Tongbing Cui, Chuang Zhu, Yangang Cai, Meng Li,
Huizhu Jia, Don Xie, and Wen Gao

National Engineering Laboratory for Video Technology, Peking University Beijing, China
{tbcui,czhu,ygcai,limeng,hzjia,xdxie,wgao}@jdl.ac.cn

Abstract. Rate distortion optimization (RDO) technique is the best known
mode decision method in recent video coding standard, such as H.264 and
AVS. However, the unbearable computational burden limits its application. Ac-
cording to the proposed block-level pipeline architecture of RDO-based MD,
we find that zigzag scanning and entropy coding are the bottlenecks. In our pa-
per, we firstly analyze the time consumption of the bottlenecks, and then we
propose our efficient zigzag scanning and entropy coding architecture. Finally,
our enhanced architecture is implemented in AVS encoder. The experimental
results show that 20% throughput can be increased compared with the 4-way
parallel scanning and entropy coding. With the proposed architecture, the real
time RDO-based MD processing of 1080P@30fps can be supported. And our
design is realized in high-level Verilog/VHDL hardware description language
and implemented under SMIC 0.18μm CMOS technology with 50K logic gates
and 6 KB SRAMs at 237MHZ operation frequency.

Keywords: VLSI architecture, RDO, zigzag scan, entropy, AVS.

1 Introduction

The RDO-based MD is adopted in many video coding standards, such as H.261,
MPEG-1,2,4, H.264/AVC and AVS, etc. However, dramatic data processing through-
put and computation complexity in genuine RDO-based mode decision is a big
challenge [1].

To solve the problem of the unbearable computational burden in RDO-based MD,
some algorithms, like [2], try to do a rough estimate on distortion (D) and rate (R)
instead of using the real ones. The others, like [3], cut down the number of the candi-
date modes to alleviate the computation burden. The work [4-5], which belong to the
second category of the algorithms above, adopted highly efficient pipeline structure to
increase the throughput of RDO-based MD, as shown in Fig.1. To get the rate

* This work is partially supported by grants from the Chinese National Natural Science

Foundation under contract No.61171139 and No. 61035001, and National High Technology
Research and Development Program of China (863 Program) under contract
No.2012AA011703.

 An Efficient Zigzag Scanning and Entropy Coding Architecture Design 351

distortion cost (RDcost) of every candidate mode, we need to perform discrete cosine
transform (DCT), quantization (Q), inverse quantization (IQ), inverse discrete cosine
transform (IDCT), reconstruction (REC) functions, zigzag scanning (ZIGZAG), and
entropy coding (ENTROPY) for every block, in series. Among the processing units
above, ZIGZAG and ENTROPY are always the bottlenecks.

Fig. 1. Block-level pipeline structure

In [6], the 64 coefficients of one 8x8 block are segmented into eight groups along
the scanning trace. The scanning process of the proposed parallel scan strategy is
divided into 2 pipeline stages, and the total scanning cycles are different with differ-
ent number of nonzero coefficients. Work [7] integrated the scanning unit into the
entropy coding unit, the total scanning time consumption is equal to the total number
of coefficients. But with the increase of coefficients, the total processing time of zig-
zag scanning and entropy coding will be very long. So, how to reduce the processing
time when the coefficients are many will be a key issue.

In this paper, we propose an efficient zigzag scanning and entropy coding architec-
ture, which is suitable for the genuine RDO-based MD. And our architecture is veri-
fied through AVS high definition video encoder. The rest of this paper is organized as
follows. In section 2, we analyze the time consumption of ZIGZAG and ENTROPY
in detail. Then the universal parallel ZIGZAG and ENTROPY architecture will be
given in section 3. And we will realize our proposed architecture in AVS encoder in
section 4. At last, the experiment result and conclusion of our paper will be presented.

2 Time Consumption Analysis

2.1 Time Consumption Analysis of ZIGZAG

For an M×M block in the traditional serial scan strategy, we need one cycle to judge
whether each coefficient is zero or nonzero, thus M2 cycles are totally required for an
M×M block. To reduce the time consumption of ZIGZAG, some parallel scan algo-
rithms [5][6] have been proposed. Generally, these algorithms used multiple scan
engines to accelerate the scanning process. But how many engines should be used to
get the minimum time consumption will be a crucial problem.

To scan the coefficients in parallel manner, we firstly divided M2 coefficients into
several groups. In each group, we use one scan engine to detect the (run, level) pairs
in reverse zigzag order. After the detection, the (run, level) pairs are generated from
each group. We know that the run of (run, level) pair is the number of zeros preceding

352 T. Cui et al.

each non-zero coefficient and the continuous zeros may be interrupted at the end of
every group, so the first and last (run, level) pair of each group may be wrong because
of the interruption, as the red points shown in Fig.2. So, we need to fix those wrong
(run, level) pairs of each group. It is clear to see that the more groups we divide, the
more (run, level) pairs are to be fixed.

Fig. 2. Scanning diagrams of different segmentation

Assuming the number of groups is N and the block size M×M equals 8×8. Fig.2
shows different scanning diagrams when N equals 2, 4, 8, and 16. The number of the
red points represents the number of (run, level) pairs need to be fixed. For N = 2, 4, 8,
and 16, the corresponding number of (run, level) pairs need to fixed are 1, 3, 7 and 15.

Let TZIGZAG the total time consumption of ZIGZAG, TDETECTION the detection time
of each group, TFIX the total time of fixing all the possible wrong (run, level) pairs.
Then, we can get function (1).

TZIGZAG = TDETECTION + TFIX. (1)

In Function (1), TDETECTION is directly proportional to the total number of coeffi-
cients in each group. In fact, we need one cycle to detect every coefficient, and the
number of groups is N, so, TDETECTION can be described as function (2).

 TDETECTION = ceil(M2 / N). (2)

Here, ceil(M2 / N) returns the smallest integer greater than M2 / N. In addition, TFIX

is proportional to the number of (run, level) pairs which need to be fixed. It is clear
that the number of (run, level) pairs need to be fixed is N - 1. Due to the parallel de-
tection, the run of (run, level) pair in the interface between every 2 groups may be
interrupted. And, we can not fix all the (run, level) pairs at the same time but fix them
one by one in the zigzag order. For every (run, level) pair, we need α cycles to fix it.
Then, we can get the following function (3).

 An Efficient Zigzag Scanning and Entropy Coding Architecture Design 353

 TFIX = α × (N - 1). (3)

So, function (1) can be re-written as function (4),

TZIGZAG = TDETECTION + TFIX

 = ceil(M2 / N) + α × (N - 1). (4)

2.2 Time Consumption Analysis of Entropy

In order to generate the total bits of one block, we need to look up the codenums of all
the (run, level) pairs according to the appropriate variable length coding tables (such
as C2DVLC in AVS, CAVLC in H.264) and then generate bits through Exp-Golomb
coding. We use pipeline structure to generate the total bits of one coding unit. There-
fore, for ENTROPY, the total time consumption is composed of three parts. The first
part, TSETUP is the pipeline setup time. The second part, TPRO is the processing time of
the (run, level) pairs. Consider the worst case, TPRO = ceil(M2 / N). The last part of the
time consumption, TBIT comes from the total bits accumulating, and the time con-
sumption will increase with the increase of N. It is because that the number of addend
increases with the increase of N (for every group, there is one number of bits, called
an addend).

So, we can get the total time consumption of ENTROPY, which is described as
function (5).

 TENTROPY = TSETUP + ceil(M2 / N) + TBIT. (5)

β

C
Y

C
L

E
S

Time Consumption Trend

Parallelism Degree N

ENTROPY
ZIGZAG

Fig. 3. Time consumption trend of ENTROPY and ZIGZAG

3 The Proposed Universal Architecture

Based on the analysis above, the method of solving the bottleneck of ZIGZAG and
ENTROPY is to find the best solution of function(6). In other words, we should find
the best degree of parallelism in ZIGZAG and ENTROPY.

354 T. Cui et al.

TBEST = min{max{ TZIGZAG ,TENTROPY }}

 = min{max{ ceil(M2 / N) + α × (N - 1), TSETUP + ceil(M2 / N) + TBIT }}. (6)

Assuming the best degree of parallelism is β. Fig.3 shows the time consumption
trend of ZIGZAG and ENTROPY. For the ZIGZAG, when N is less than β, due to
TDETECTION is the major part of TZIGZAG, total scan time dropped significantly with the
growth of N. But with the increase of N, TFIX gradually becomes the major part of
TZIGZAG, when N is more than β, the scan time begin to increase. It is similar for the
ENTROPY, when N is less than β,TPRO is the major part of TENTROPY, and TBIT will
be the major part after N is more thanβ.

We can get the best degree of parallelism β by optimizing (6). So the enhanced
parallel ZIGZAG and ENTROPY architecture is proposed, as shown in Fig.4.
βdetection engines detect the coefficients belonging to the different groups of one
block in parallel. After detection, βgroups of (run, level) pairs generated by
theβdetection engines are stored in the (run, level) buffer array. Because the (run,
level) pairs from theβdetection engines may be wrong, they will be fixed by the fix
engine. To fix them, the fix engine examines the boundary (run, level) pairs between
two groups. If the level of the last (run, level) pair (in reverse zigzag order) in pre-
vious group equals 0, then we modify the run of the first (run, level) pair in current
group to run_previous + run_current.

Fig. 4. Parallel ZIGZAG and ENTROPY coding architecture

While at the same time, the (run, level) pairs, which have been fixed in the pre-
vious block-level pipeline period, residing in the other buffer array are transferred to
codenum engine array of VLC to generate the codenums of the (run, level) pairs.
After that, the codenums generated are used to produce bits of every group. At last, all
the bits from different groups are added together to form the final bits (R) for an
M×M block.

 An Efficient Zigzag Scanning and Entropy Coding Architecture Design 355

4 Implementation

4.1 MD Pipeline

Our MD module is integrated to an AVS encoder system, as shown in Fig.5, in which
MB_CTRL is a central control unit to synchronize all the processing modules in
concert and to configure all the MB-level pipelining modules. We adopted a 5-stage
MB-level pipelining structure, and they are: fetch unit (FETCH), integer motion
estimation (IME), fractional motion estimation (FME), MD, bit stream generating unit
(BG) and de-blocking unit (DBK). Besides, we used Multi-stage Motion Vector
Prediction (MVP) Schedule Strategy for the AVS HD Encoder, to solve the data
dependency problem [8].

The MD module, which belongs to the fourth stage of the MB-level pipelining,
gets the original and predicted pixels from FME and IP, and then chooses the best
mode based on RDcost. After that, MD transmits the codenums to BG, which are the
the values of encoded coefficients generated by C2DVLC, and reconstructed pixels of
the best mode to DBK, which filters the reconstructed pixels to filter out the block
effect, respectively.

Fig. 5. MB-level pipeline structure

Just like the work [5], we selected block-level 6-stage pipeline to get the RDcost
for every mode. As Fig.1 shows, the first stage is DCTH and the second stage is
DCTV. The third stage is Q and we adopted a 8-way quantization. After quantization,
the pipeline is divided into 2 branches. IQ-IDCTH and ZIGZAG both belong to the
fourth stage, while IDCTV and C2DVLC are at the same stage, the fifth stage. At the
last stage, the 2 branches of the pipeline again merge into one part, and the RDcost
can be then calculated.

356 T. Cui et al.

4.2 Architecture Realization

In section 3, we have given the universal method to solve the bottleneck of ZIGZAG
and ENTROPY. Now, we need to determine related parameters for the special reali-
zation in AVS.

For TZIGZAG, the size of base block is 8 × 8, so M = 8, and we need 2 cycles to fix
every (run, level) pair (one cycle to read out the (run, level) pair from buffer, the other
to fix it), so α = 2. According to Function (4), we can get function (7).

 TZIGZAG = ceil(64 / N) + 2 × (N - 1). (7)

So, we can get the time consumption of ZIGZAG in different degree of paral-
lelism, as Fig.6 shows.

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

C
Y

C
L

E
S

Parallelism Degree

Time Consumption

ENTROPY
ZIGZAG

Fig. 6. Time consumption of C2DVLC and ZIGZAG in different degree of parallelism

From Fig.6, we can see that when N equals 5 or 6, the time consumption is the
least.

For TENTROPY, we need 6 cycles to setup the pipeline in our implementation, so
TSETUP = 6. And Table 1 shows the TBIT with different N.

Table 1. Time consumption TBIT with different N

N 1 2 3 4 5 6 7 8 9

TBIT 1 2 3 3 4 4 4 4 5

According to Table 1 and Function (5), we can get function (8).

 TENTROPY = 6 + ceil(M2 / N) + TBIT (8)

So, we can get C2DVLC part in Fig.6, which depicts the time consumption of
ENTROPY coding.

 An Efficient Zigzag Scanning and Entropy Coding Architecture Design 357

From the figure above, it is obvious that the time consumption of ENTROPY cod-
ing declines with the increase of N. When N equals 7, the time consumption of
ENTROPY will be 20 cycles, which is less than the time consumption, when N is 6.
But if we choose N = 7, ZIGZAG will be the bottleneck of the MD pipeline, and the
number of cycles is 22. However, we should make good balance of ZIGZAG and
ENTROPY. Through careful observation of Fig.6, when N equals 6, the bottleneck of
MD pipeline will be the minimum, and the corresponding processing time is 21
cycles. So we adopted 6-way ZIGZAG and ENTROPY coding architecture to get the
best performance.

5 Experimental Results

We implemented our proposed 6-way ZIGZAG scanning and ENTROPY coding
design based on SMIC 0.18-μm CMOS technology, the on-chip memory is 6K bits
and the gate count is 50K. And the working frequency is 237MHZ, with which the
system can support real time 1080p@30fps.

Table 2. Time consumption of every processing unit

Processing Unit Time Consumption(cycles)
DCT-H 18
DCT-V 18

Q(8-way) 20
IQ && IDCTH 21

ZIGZAG(4-way) 22
IDCTV 18

C2DVLC(4-way) 26(MAX)
RDCOST && DECISION 17

Compared with the previous work as shown in Table 2, which adopted 4-way

ZIGZAG and ENTROPY coding. We reduced the bottleneck of MD pipeline from 26
cycles to 21 cycles. If we use RDO-based MD, for I frame, there are 28 block-level
tasks entering into the MD pipeline (In AVS-P2, for every intra-luma block, there are
5 different modes; and for every intra-chroma block, 4 different modes in total).
While for P frame, {P16x16, P16x8, P8x16, P8x8, Intra8x8} will enter into the MD
pipeline. And for B frame, {Bdirect, B16x16, B16x8, B8x16, B8x8, Intra8x8}, 6 MB-
level modes will enter into the pipeline. Then, we can get the number of cycles saved
in I, P and B frame respectively, shown in Table 3.

Table 3. Cycles saved in proposed architecture

PICTURE-TYPE Saved cycles for one MB(cycles)
I 28×(26-21)=140
P 30×(26-21)=150
B 36×(26-21)=180

358 T. Cui et al.

6 Conclusion

To solve the bottleneck of RDO-based MD pipeline, we analyzed the time consump-
tion of ZIGZAG and ENTROPY coding in detail respectively. Based on the analysis,
we proposed an enhanced parallel ZIGZAG and ENTROPY coding architecture,
which can be used to genuine RDO-based MD. The implementation result shows that
the proposed architecture can support real time 1080p@30fps encoding when inte-
grated to the encoder system. Compared with the previous work, we reduce the bot-
tleneck of MD pipeline from 26 cycles to 21 cycles, and the number of cycles saved
in one MB of I, P and B frame are 140, 150 and 180 respectively when using RDO-
based MD.

References

1. Zhang, T., Li, S., Tian, G., Ikenaga, T., Goto, S.: High throughput VLSI architecture of a
fast mode decision algorithm for H.264/AVC intra prediction. In: International Conference
on Communications, Circuits and Systems, ICCCAS (May 2008)

2. Wang, Q., Zhao, D., Gao, W., Ma, S.: Low complexity RDO mode decision based on a fast
coding-bits estimation model for H.264/AVC. In: IEEE International Symposium on Cir-
cuits and Systems, ISCAS 2005 (May 2005)

3. Pan, F., Lin, X., Susanto, R., Lim, K.P., Li, Z.G., Feng, G.N., Wu, D.J., Wu, S.: Fast mode
decision algorithm for intraprediction in H.264/AVC video coding. IEEE Trans. Circuits
Syst. Video Technol. 15(7), 813–822 (2005)

4. Yin, H., Wang, X., Zhu, X., Qi, H.: Hardware Friendly Mode Decision Algorithm for High
Definition AVS Video Encoder. In: 2nd International Congress on Image and Signal
Processing, CISP 2009 (October 2009)

5. Wang, X., Zhu, C., Yin, H., Gao, W., Xie, X., Jia, H.: Fast Mode Decision Based on RDO
for AVS High Definition Video Encoder. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.-Y.,
Kuo, C.-C.J., Lew, M.S. (eds.) PCM 2010, Part II. LNCS, vol. 6298, pp. 62–72. Springer,
Heidelberg (2010)

6. An, D., Tong, X., Zhu, B., He, Y.: A novel fast DCT coefficient scan architecture. In: Pic-
ture Coding Symposium, pp. 1–4 (2009)

7. Huang, Y.-W., Hsieh, B.-Y., Chen, T.-C., Chen, L.-G.: Hardware Architecture Design for
H.264/AVC Intra Frame Coder. In: Proceedings of ISCAS 2004, May 23-26, vol. 2, pp. II-
269–II-272 (2004)

8. Yang, W., Yin, H., Gao, W., Qi, H., Xie, X.: Multi-stage motion vector prediction schedule
strategy for AVS HD encoder. In: 2010 Digest of Technical Papers International Confe-
rence on Consumer Electronics, ICCE (January 2010)

	An Efficient Zigzag Scanning and Entropy Coding Architecture Design
	1 Introduction
	2 Time Consumption Analysis
	2.1 Time Consumption Analysis of ZIGZAG
	2.2 Time Consumption Analysis of Entropy

	3 The Proposed Universal Architecture
	4 Implementation
	4.1 MD Pipeline
	4.2 Architecture Realization

	5 Experimental Results
	6 Conclusion
	References

