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a b s t r a c t

Visual saliency is an effective tool for perceptual image processing. In the past decades,
many saliency models have been proposed by primarily considering visual cues such as
local contrast and global rarity. However, such explicit cues derived only from input
stimuli are often insufficient to separate targets from distractors, leading to noisy saliency
maps. In fact, the latent cues, especially the latent signal correlations that link visually
distinct stimuli (e.g., various parts of a salient target), may also play an important role in
saliency estimation. In this paper, we propose a graph-based approach for image saliency
estimation by incorporating both explicit visual cues and latent signal correlations. In our
approach, the latent correlations between various image patches are first derived
according to the statistical prior obtained from 10 million reference images. After that,
the informativeness of image patches and their latent correlations are jointly considered
to construct a directed graph, on which a random walking process is performed to
generate saliency maps that pop-out only the most salient locations. Experimental results
show that our approach achieves impressive performances on three public image bench-
marks.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Perceptual image processing, which aims to analyze
images as human being does, is now becoming a hot
research topic in the field of computer vision. In perceptual
analysis, a key step is to locate important image content
that demonstrates strong ability in capturing human visual
attention. Toward this end, visual saliency can be esti-
mated to quantize the importance of various image con-
tents. By processing visually salient content with high
priority, images can be efficiently analyzed, and the
analysis results can better meet human perception.

In the past decades, hundreds of approaches have been
proposed for visual saliency estimation. Among these
approaches, most of them computed visual saliency as a
kind of visual rarity, which were often measured by using
explicit visual cues such as center-surround contrast and
regional dissimilarity. For example, Itti et al. [1] proposed to
estimate visual saliency by fusing multi-scale center-sur-
round contrasts from multiple features. Harel et al. [2]
represented images as graphs and detected salient pixels
by defining the weights of graph edges as pixel dissimila-
rities. Moreover, some approaches tried to learn an optimal
mapping mechanism from explicit visual cues to real-valued
saliency scores. For instance, Navapakkam and Itti [3] pro-
posed an approach to optimally combine local contrasts by
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Fig. 1. Visual stimuli with distinct visual appearances may be inherently correlated. (a) A panda that consists of visually distinct parts; (b) the latent
correlations between the 8�8 patch marked with red and all other patches.
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maximizing the signal–noise-ratio. Zhao and Koch [4] pro-
posed a boosting approach to train visual saliency model by
fusing various visual features and their local contrasts. By
focusing on explicit visual cues such as contrast and dissim-
ilarity, all these approaches can pop-out targets and suppress
distractors to some extent. However, such explicit cues are
often insufficient to perfectly separate targets from distrac-
tors that share certain visual attributes. As a result, high
saliency values may be wrongly assigned to distractors,
resulting in “noisy” saliency maps.

To further separate targets from distractors, a feasible
solution is to refer to additional saliency cues beyond the
input image. By observing massive images, we find that
various image contents can be inherently correlated, and
such latent signal correlations actually link visually distinct
stimuli (e.g., various parts of a salient target, see Fig. 1 for
an example). In visual saliency estimation, such latent
signal correlations can work as a kind of prior knowledge
that helps to further distinguish targets from distractors.
Therefore, it is necessary to take such latent signal correla-
tions into account in image saliency estimation.

Inspired by this idea, we propose an approach to
estimate image saliency via random walk guided by
informativeness and latent signal correlations. In our
approach, the latent correlations between various image
patches are first mined according to the statistical prior
learned from 10 million reference images. These latent
correlations between image patches, together with the
patch informativeness, are then jointly considered to build
a fully connected graph with directed edges and asym-
metric weights. Under the guidance of informativeness
and latent signal correlations, we divide image patches
into three categories and adopt different random walking
strategies between different types of patches. In this
manner, the estimated saliency maps pop-out only the
most salient locations while distractors can be well sup-
pressed. Experimental results show that our approach
achieves impressive performances in the comparisons
with 13 approaches on three public image benchmarks.

Our main contributions are summarized as follows:
1.
 We incorporate latent signal correlations to facilitate
the separation of targets and distractors. By exploiting
the statistical prior obtained from 10 million reference
images, the latent relationship between image patches
can be well characterized so as to pop-out targets and
suppress distractors.
2.
 We propose a graph-based approach that estimates
image saliency via random walk guided by informa-
tiveness and latent signal correlations. In this approach,
we divide image patches into three categories and
apply different random walking strategies between
different types of patches. In this manner, estimated
saliency maps can pop-out only the most salient image
locations while distractors can be well suppressed.

The rest of this paper is organized as follows: Section 2
briefly reviews related work, and Section 3 presents the
learning process of latent signal correlations. In Section 4,
we describe the details of the proposed saliency model.
Experimental results are shown in Section 5, and the paper
is concluded in Section 6.

2. Related work

In the past decades, many approaches have been
proposed to estimate saliency in images and videos. In
this review, we mainly focus on image saliency estimation.
According to the visual cues used to estimate saliency,
existing approaches can be roughly grouped into two
categories, including the bottom-up category and the
top-down category. We will briefly review approaches in
these two categories from the perspective of visual cues
they ever used.

2.1. The bottom-up approaches

The approaches in the bottom-up category mainly
focus on the explicit visual cues that can be directly
extracted from the input visual stimuli (e.g., local contrast,
dissimilarity, entropy). For example, Itti et al. [1] first
extracted the multi-scale center-surround contrasts from
multiple features. These contrasts were then fused to
estimate image saliency. Similarly, Gao et al. [5] computed
image saliency as the discriminant power between center
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and surround regions. Vikram et al. [6] proposed to
estimate visual saliency by calculating the local difference
over randomly sampled rectangular regions in the Lab
color space. The visual cue used here was the difference
between the feature value of one pixel and the average
feature value of a local, which can be also considered as a
center-surround cue. Sen et al. [7] proposed to estimate
image saliency by measuring the perceptual distinctness of
patterns in the patches around pixels.

Instead of using these “local” features, some approaches
tried to estimate visual saliency in a “global” manner. In [2],
images were represented as fully-connected graphs while
the edge weights were defined as pixel dissimilarities. By
adopting a random walker on the graph, less visited nodes
can pop-out and become salient. Duan et al. [8] estimated
image saliency by jointly considering the dissimilarity,
spatial distance and center bias of all image patches. Riche
et al. [9] first extracted various visual features such as YCbCr
color channels and Gabor orientations. By assuming that
locally contrasted and globally rare features were salient,
they adopted a sequential framework to estimate visual
saliency. In [10], boolean maps were first generated via
simple thresholding operations. Impressive saliency maps
were then generated by analyzing the topological structure
of boolean maps. Lu et al. [11] proposed that the convexity
was a good indicator of saliency. By assuming that the
region on the convex side of a curved image boundary was
salient, they proposed a hierarchical framework to segment
salient image regions from the background. In [12], image
co-occurrence histograms were computed to capture the
patch unusualness, which can be viewed as global uncom-
monness or local discontinuity.

Beyond spatial saliency models, some approaches tried
to estimate saliency in the transform domain. For example,
Hou and Zhang [13] proposed to extract the spectral
residual over image intensity channel for estimating sal-
iency. By using the Fourier transform, visual irregularities
could be effectively extracted from the transform domain.
In the later work [14], such an approach was further
extended to detect salient locations from the sign function
of DCT coefficients. In recent studies, the quaternion (or
hypercomplex) Fourier transform was widely adopted in
[15–18] to detect the visual irregularities from the spectra
of multiple visual features. Besides, some approaches tried
to estimate regional saliency. For instance, Cheng et al. [19]
proposed an approach to segment images into regions and
computed visual saliency using the regional contrasts.
Perazzi et al. [20] first abstracted images into elements
and then estimated their rarities and spatial distributions
using the Lab color and Gaussian blurring kernels. Finally,
these cues were combined to estimate regional saliency.
Wo et al. [21] proposed to detect salient regions by
measuring the aggregation degree of color and texture.
Wang et al. [22] proposed to non-linearly combine various
visual cues so as to highlight the locations around salient
objects. In [23], the random forest regressor was trained to
map regional features to saliency scores, which achieved
impressive performance in detecting salient objects.

To sum up, the visual cues used in the bottom-up
approaches can be described as “explicit.” That is, these
approaches can estimate visual saliency using only the
information from the target image. Generally, the explicit
visual cues often have difficulties to distinguish targets from
distractors, which may also have rare visual appearance (e.
g., tv logos, ad banners), and it is very difficult to suppress
this kind of distractors without using the prior knowledge.

2.2. The top-down approaches

Compared with the approaches in the bottom-up
category, the top-down approaches also utilize the visual
cues derived from the prior knowledge (e.g., face detection,
visual dictionary and feature fusion strategy). The main
characteristic of top-down approaches is that some latent
cues are learned before processing the input visual signals.
For instance, many approaches adopted the face detector
and assumed human faces to be salient. For instance, Cerf
et al. [24] integrated the face conspicuity map with other
saliency maps to improve the performance of visual
saliency estimation. In [25,26], human face was treated
as a specific feature channel for estimating image saliency.
In fact, the face detector can be viewed as a specific latent
correlation model which can correlate the signals from
nose, eyes and mouth. However, such domain-specific
knowledge may not always work well in all scenes.

Another latent cue used in visual saliency estimation is
the visual dictionary. The intrinsic assumption is that targets
and distractors can be better distinguished after projecting
the input visual signals onto some new subspaces described
by the basis functions in the visual dictionary. In most
approaches (e.g., [27–33]) such visual dictionary is statisti-
cally learned from a large amount of images, while Yang and
Yang [34] proposed an approach to jointly learn the visual
saliency model and the visual dictionary. Given the learned
dictionary, the original visual features can be transformed
into the new subspaces (usually followed by the dimension
reduction). By using the new features, visual saliency can be
estimated by the same process in bottom-up approaches, e.g.,
graph representations and random walker [28], information
maximization [27], local and global rarities [30], coding
length increment [32]. Actually, it is sure that certain sub-
spaces (i.e., kernels, basis functions and codewords) have
some advantages in distinguishing targets and distractors.
However, whether the learned subspaces are optimal or not
is still unknown, especially for those subspaces learned by
applying independent component analysis (e.g., [27,28]) to
only thousands of images.

Beyond the face detector and visual dictionary, the most
popular latent cue is the feature fusion strategy. The intrinsic
assumption is, when high-dimensional visual features are
used, it is infeasible to manually adjust the contribution of
each feature dimension to visual saliency. Instead, the
optimal feature fusion strategy should be learned from the
user data in a supervised manner. For example, Navalpakkam
and Itti [3] proposed to learn the optimal feature weights by
maximizing the signal-to-noise ratio. Kienzle et al. [35]
adopted a Support Vector Machine (SVM) to seek a mapping
model from local intensity to saliency value, while Judd et al.
[25] introduced multiple low-level, mid-level and high-level
features to train the SVM. Similarly, Lu et al. [36] collected a
large number of visual features (e.g., local energy, saliency
values of existing bottom-up models, car and pedestrian
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detectors, face detectors, convexity maps). These features
were then used to train a context-aware model for image
saliency estimation. Zhao and Koch [4] proposed a boosting
approach to iteratively train weak classifiers from a large
feature pool. These weak classifiers are then fused with
linear weights to generate a visual saliency model. In [37],
the scene-specific feature fusion strategies were trained for
estimating visual saliency. Peters et al. [38] assumed that
there was a direct mapping from global features to saliency
maps. Thus they simply trained a parameter matrix to
transform global features directly to the fixation density
map. In general, these learning-based approaches demon-
strated promising performance by automatically fine-tuning
parameters w.r.t. user data. However, the latent signal
correlation is often ignored in these top-down approaches.
Without considering such inherent correlations between
various visual signals, targets and distractors are difficult be
separated when they may share certain visual attributes.

To solve this problem, we propose a novel approach for
image saliency estimation by jointly considering explicit
saliency cues (i.e., informativeness of image patch) and
latent saliency cues (i.e., latent correlations between image
patches). The system framework of our approach is shown
in Fig. 2. The main objective of our approach is to pop-out
only the most salient locations and suppress the others via
random walk guided by informativeness and latent signal
correlations. In the next two sections, we will first demon-
strate how to mine the latent signal correlations, followed
by the details of incorporating such correlation with
explicit visual cues in visual saliency estimation.
3. Mining the latent signal correlations

In visual saliency estimation, the latent correlations
between input signals may play an important role
to aggregate various visual cues from inherently related
Fig. 2. The system framework of our approach. We first model the latent correla
learned latent correlations, which indicate inherently correlated relations with p
negative ones, are then used to calculate visual saliency in a random walking fr
signals so as to separate targets from distractors. In this
study, we aim to infer such latent correlations in an
unsupervised manner by using the statistical prior derived
from massive images. We assume that the concurrence
attribute of visual signals can be an effective cue for
deriving such latent correlations. Toward this end, we
collect M¼10,240,000 non-duplicated images from Flicker.
Each image is resized to have a maximum side length of no
more than 320 pixels and the aspect ratio is preserved. For
each 8�8 macro-block in these images, we extract the
histogram of oriented gradients (HOG) using the approach
in [39] to characterize its visual appearance. Given all the
HOG descriptors extracted from all patches in 10 million
images, we group them using the k-means algorithm to
obtain Nw ¼ 1000 visual words, denoted as fW igNw

i ¼ 1.
Intuitively, two visual words can be inherently corre-

lated if they frequently appear (and disappear) in the same
images. To quantize such concurrence attribute of visual
words, we use Pij ¼ fW i;W jg to denote a pair of visual
words. Thus the probabilities of observing visual word W i

and visual word pair Pij in all the M images can be
calculated as

Pr W ið Þ ¼N ðW iÞ
M

; Pr Pij
� �¼N ðPijÞ

M
; ð1Þ

where N ðW iÞ is the number of images that contain visual
word W i and N ðPijÞ can be derived by counting the
number of images that contain both W i and W j.

Given the individual probabilities PrðW iÞ, PrðW jÞ and
their joint probability PrðPijÞ, we quantize the affinity
relationship (namely, the correlation coefficient) of two
visual words W i and W j using the approach in [40]

φ W i;W j
� �¼ log

PrðPijÞ
PrðW iÞPrðW jÞ

� �
; 8 ia j: ð2Þ

From (2), we can see that two different visual words
can be positively correlated (φðW i;W jÞ40), independent
tions between various types of visual signals using massive images. These
ositive correlation coefficients or suggest mutually exclusive relations by
amework along with explicit cues.



Fig. 3. The histogram of the latent correlation coefficients between all the 1000 visual words. Among all these visual words, most of them are independent
or only weakly correlated, while some visual words have demonstrated strong positive or negative correlations.

Fig. 4. Examples of the latent correlations between visual words. For each image, we show the latent correlations between the image patch marked with
red and all the other patches. All the latent correlation coefficients are normalized to [0, 255] for illustration purpose.
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(φðW i;W jÞ � 0) or negatively correlated (φðW i;W jÞo0). As
shown in Fig. 3, most visual words are independent or only
weakly correlated, while some of them show strong
positive or negative correlations. Moreover, 99.9% correla-
tion coefficients fall in the range of ½�1;1� and 93% fall in
½�0:2;0:2�. For the sake of simplification, we normalize
φðW i;W jÞ into the range of [�5, 5] if ia j so that most
correlation coefficients (about 93%) we may encounter fall
in ½�1;1�.
4. Saliency estimation with latent correlations

In this section, we will introduce how to estimate visual
saliency via random walk guided by informativeness and
latent signal correlations. The system framework of our
approach is shown in Fig. 2. As illustrated in this framework,
we will describe how to construct a graph with explicit
visual cues and latent signal correlation, followed by details
of image saliency calculation via random walking.
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4.1. Extracting explicit and latent saliency cues

Before estimating image saliency, we have to first
extract a set of explicit and latent saliency cues. Since
the latent correlations are modeled on down-sampled
images, we also resize each testing image to have a
maximum side length of no more than 320 pixels. From
each resized testing image, we extract K 8�8 image
patches, denoted as ffpigKi ¼ 1. For a patch pi, we calculate
a HOG descriptor hi and find the nearest visual word W in

using the ℓ-2 distance. As a consequence, the latent
correlation coefficient between image patches pi and pj
can be derived by φðW in ;W jn Þ. Some representative exam-
ples of such latent correlation can be found in Fig. 4. From
these samples, we conclude that
1.
 Patches in the same object often have positive correla-
tions since they are likely to co-occur at the same time.
2.
 Targets and distractors are often negatively correlated
since they rarely appear simultaneously.

Beyond the latent correlations, explicit cues play an
important role in visual saliency estimation as well. In this
study, we extract the wavelet energy bLðpiÞ, baðpiÞ and bbðpiÞ
as in [37] to evaluate the informativeness of the image patch
pi in three channels of CIE Lab color space. When a scene is
being viewed, highly informative patches are often attended
with high priority. Thus we can safely assume that image
patches with high informativeness are likely to be salient.
However, distractors, which can be also visually irregular,
may have large wavelet energy, leading to large informative-
ness. Therefore, it is necessary to combine informativeness
with latent correlations to separate targets from distractors
so as to pop-out only the most salient locations.
4.2. Constructing graph with latent correlations

After extracting the explicit and latent saliency cues,
three graphs are constructed by using the same latent
correlations and different patch informativeness obtained
from three color channels. For the sake of simplicity, we
take only the luminance channel as an example to show
how to build a directed graph for inferring saliency
through random walking while the other two color chan-
nels can be processed in the same way. For the sake of
simplification, we use bi ¼ bLðpiÞ and φij ¼φðW in ;W jn Þ for
short. Note that bi is normalized into ½0;1� for the purpose
of computational efficiency.

The constructed graph is denoted as G¼ 〈V ; E〉, where
V ¼ fvigKi ¼ 1 is the set of nodes (i.e., image patches) and
E¼ feijgia j is the set of edges. Each node vi can be
characterized with the informativeness bi and K�1 latent
correlations fφijgKja i

while each directed edge eij is
assigned a non-negative weight wij. Instead of defining
the weights of edges with a uniform strategy, we first
divide all the K image patches into three categories,
including
1.
 Probable distractors D: Considering the center bias
prior, distractors often distribute around image borders.
We randomly choose 0:2� K image patches with
informativeness lower than 0.3 from the border area
and treat them as probable distractors while the border
area is defined as the 70% image regions around image
borders.
2.
 Probable targets T: Most targets have the capability to
pop-out from simple background with simple features.
Thus we select the patches with informativeness higher
than ϵ¼ 0:8 as probable targets.
3.
 Other patches O: All the patches that are not included in
D and T are grouped into this category.

Note that such a division of image patches represents only
an initial guess for probable targets and distractors. As the
initial guess is often rough and inaccurate, we refer to a
random walking process to determine which patches can
become real targets and distractors and which cannot. In
the random walking, we propose to revise the weights of
edges between these patches according to their latent
correlations instead of heuristically adjusting the saliency
of the probable targets and distractors. To estimate the
weight wij, we have to consider which kinds of patches the
edge actually links. Intuitively, a patch that has strong
latent correlation with probable distractor will also be a
probable distractor, we weight the edge for a patch piAD

as

wij ¼ dij �maxðbj�φij;0Þ; 8 ia j; piAD; ð3Þ

where dij is a Gaussian distance weight that can be
computed as

dij ¼ exp �ðxi�xjÞ2þðyi�yjÞ2
2σ2

 !
: ð4Þ

Here ðxi; yiÞ and ðxj; yjÞ are the coordinates of image patches
pi and pj, respectively. σ is empirically set to 6% of the
average image width and height. With this weight, a patch
that is positively correlated with probable distractors will
be less visited (i.e., less salient), even though it has high
informativeness. On the contrary, a patch that is negatively
correlated with probable distractors will be visited for
more times under the guidance of informativeness and
latent signal correlations (i.e., more salient).

Similarly, a patch that has strong latent correlation with
probable target will also be a probable target. Thus we
weight the edge for a patch piAT as

wij ¼ dij �maxðbjþφij;0Þ; 8 ia j; piAT: ð5Þ

In this manner, a patch that is positively correlated with
probable targets will be visited more frequently even
though its informativeness is low. On the contrary, a patch
that is negatively correlated with probable targets will be
less visited, making it being suppressed in the random
walking process.

For the rest image patches, the edge weight only
depends on the informativeness of the destination node:

wij ¼ dij � bj; 8 ia j; piAO: ð6Þ

From these definitions, we can see that our approach
differs from existing graph-based saliency models mainly
from two aspects. First, we divide all image patches into
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three categories while the edges for nodes in different
categories are weighted with different strategies. Second,
the latent correlations are incorporated into graph con-
struction. In this manner, prior knowledge from human
observations and massive image statistics are reflected in
the graph structure, which can be used to guide the
random walking process so that only the most salient
locations can pop-out.

4.3. Estimating saliency via random walk

Based on the graph with fully-connected nodes and
asymmetric edges, a Markov random walking process can
be conducted to derive visual saliency. In the random
walking process, the transition probability from node pi to
node pj, denoted as Hij, is defined according to the non-
negative edge weights

Hij ¼
wijPK
ja i wij

: ð7Þ

In the random walking process, targets can be gradually
highlighted and distractors become suppressed while the
equilibrium distribution of the random walk is computed
to produce a visual saliency map. Note that we conduct the
random walking process twice to balance the computa-
tional complexity and performance.

By conducting the random walking on the three graphs
built from the informativeness of all the three Lab color
channels, we can obtain three saliency maps. For a patch
pi, we denote its saliency values from three saliency maps
as SLðpiÞ, SaðpiÞ and SbðpiÞ. Thus the final saliency map can
be obtained by linearly fusing the three saliency values:

SðpiÞ ¼ SLðpiÞþSaðpiÞþSbðpiÞ: ð8Þ
Finally, we normalize the estimated saliency map into the
dynamic range of [0,255] with the min–max normaliza-
tion. Different from many other approaches, Gaussian
smoothing is NOT used as a post-processing step in our
approach to ensure that only the most salient locations can
pop-out in the estimated saliency map.

4.4. Comparison with related work

Our approach is closely related to some existing
approaches such as [41,42], which also used the latent signal
correlations. Although in these approaches the correlations
between patches or superpixels are all learned from the
concurrence attributes, our approach differ remarkably from
[41,42] in how to use the learned correlations.

In our approach, the learned correlations play different
roles in linking different types of patches, while the patch
types are determined by both informativeness and loca-
tions. During the graph-based random walking, the same
degrees of latent correlations can either enhance or
weaken a graph edge, depending on which types of graph
nodes it actually links. In this manner, a patch positively
correlated with probable distractors (i.e., randomly
selected non-informative patches in border area) will be
inhibited, while a patch positively correlated with prob-
able targets (i.e., highly informative patches) will be
enhanced. On the contrary, the approach in [42] only
focuses on enhancing the patches that are positively
correlated with probable targets (i.e., patches popped-out
in the bottom-up competition). It may have difficulties in
performing the suppression operation due to its Bayesian
formulation. Moreover, in our approach the learned corre-
lations are only used to modulate the weights of graph
edges, and salient locations are detected by considering
both informativeness and such correlations. This is differ-
ent from [41] which detects salient targets by mining the
cohesive sub-graph from the graph formed only by the
affinity scores of superpixels in video.

5. Experiments

In this section, we conduct several experiments to
validate the effectiveness of our proposed approach. We
will first introduce our experimental settings. After that,
we will show the performance of our approach on eye
fixation benchmarks to demonstrate its ability to capture
the most attractive locations. At last, some extensive
experiments are performed to provide a detail analysis of
our approach.

5.1. Experimental settings

There exist various image benchmarks for visual sal-
iency estimation. In this study, we use three benchmarks
that are most frequently used in the literature:
�
 MIT1003: This benchmark was proposed by Judd et al.
[25] which consists of 1003 images. For each image, the
eye tracking data were recorded from 15 subjects in
free-viewing conditions. Images in this benchmark
often contain rich targets and distractors, making this
benchmark very challenging.
�
 Toronto: This popular benchmark was first presented in
[27]. It contains 120 images of indoor and outdoor
scenes. Eye fixations were recorded from 20 subjects
when each image was presented to each subject for 3 s.
�
 ImgSal: This benchmark was first proposed in [18]. It
contains 235 color images, including 50 images with
large salient regions, 80 images with intermediate
salient regions, 60 images with small salient regions,
15 images with cluttered background, 15 images with
repeating distractors and 15 images with both large and
small salient regions. We use this benchmark to analyze
the performances of various saliency models in proces-
sing salient regions at various scales.

On these three benchmarks, we compare our approach
with 13 state-of-the-art approaches. According to the
visual cues used in these approaches, we can roughly
categorize them into two groups:
�
 Bottom-up group: This group consists of eight bottom-
up approaches, including CS [1], GB [2], SR [13], RND
[6], CA [26], LG [30], HFT [18] and BMS [10]. These
approaches only utilize the explicit visual cues in visual
saliency estimation. Note that the winner-take-all com-
petition is not used in CS [1], and the face detectors are
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not used in CA [26];

�
 Statistical group: This group consists of five top-down

approaches that statistically learn the visual dictionaries
for visual saliency estimation, including AIM [27], SER
[28], SUN [29], ICL [32] and SP [42]. Note that the bottom-
up saliency maps used in SP are generated by CS.

In the experiments, the saliency map from each sal-
iency model is resized to have the same resolution of the
input image and normalized into [0,255]. To measure the
performance of these saliency models, we adopt two
different evaluation metrics. Toward this end, we first
adopt the area under the ROC curve [43], which is a classic
evaluation metric in visual saliency estimation. As a con-
sequence, the visual saliency model is treated as a binary
Fig. 5. Performance comparisons o
classifier by using all probable thresholds in f0;1;…;255g
to calculate ROC. On each threshold, the estimated saliency
maps are split into foreground and background regions to
calculate the number of True Positives (TP), True Negatives
(TN), False Positives (FP) and False Negatives (FN):

TP¼ #ðforeground & fixatedÞ;
TN¼#ðbackground & non�fixatedÞ;
FN¼#ðbackground & fixatedÞ;
FP¼#ðforeground & non�fixatedÞ: ð9Þ
where fixated locations are selected as all fixations
received by each image. To avoid the center bias effect in
the evaluation, the same number of non-fixated locations
is chosen from the unattended area according to the
overall fixation distribution on each benchmark. Note that
n MIT1003, Toronto and ImgSal.



Fig. 6. The representative examples of our approach and the other 13 approaches on the MIT1003, Toronto and ImgSal benchmark.

2 More details and explanations for the sampling process of non-
fixated locations and shuffled AUC computation can be found in [42].
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we avoid to sample non-fixated pixels that are near to
fixated pixels to avoid ambiguity. In this manner, fixated
and non-fixated locations have similar center-biased dis-
tributions to avoid favoring models that simply emphasize
only center regions. Consequently, the True Positive Rate
(TPR) and False Positive Rate (FPR) can be calculated as

FPR¼ FP
FPþTN

; TPR¼ TP
TPþFN

: ð10Þ

Given the TPR and FPR scores at each threshold, an ROC
curve can be generated using all the (TPR, FPR) pairs, and
the area under this curve is used to quantize the perfor-
mance of the visual saliency model, denoted as AUC. Note
that our sampling strategy of non-fixated locations
actually leads to a kind of shuffled AUC, which is different
from traditional AUC but still ensures the fixation density
map has an AUC of 1.0.2

Beyond AUC, we also use the Normalized Scanpath
Saliency (NSS), which is another frequently used metric.
NSS is defined as the mean response at fixations if the
estimated saliency map S is normalized to have zero mean
and unit standard deviation. Zero NSS means random
prediction, and higher NSS implies better performance.



Fig. 7. The variation of the affinity scores when statistics is performed on different number of images. In the tth iteration, the average and maximum
variations are computed according to the difference between the affinity scores derived from 2500� 2t images and 2500� 2t�1 images. We can see that
millions of images are used, both the average and the maximum variations are very low even if we double the number of images.

Fig. 8. The effect of random walking times on the AUC and the time cost. (a) The performance on three benchmarks; (b) the average time cost to process a
320� 240 image.
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Let P be the set of fixations, we compute NSS as

NSS¼ 1
jPj
X
pAP

SðpÞ�μS

σS
: ð11Þ

where μS and σS are the mean and standard deviation of all
saliency values in the saliency map S, respectively. jPj is
the number of fixations in P.
5.2. Performance comparison

The objective of this experiment is to demonstrate the
performance of our approach on locating targets and
suppressing distractors. Experimental results on the three
benchmarks are shown in Fig. 5. Note that a unified AUC in
Fig. 5 is derived for each model over the whole dataset,
while NSS is the average of NSS scores computed per
image. Some representative examples are shown in Fig. 6.

From Fig. 5, we can see that on Toronto andMIT1003 our
approach ranks the first place twice in terms of AUC. For
NSS, our approach ranks the second place and the third
place on Toronto and MIT1003, respectively. The main
reason is that our approach can utilize the prior knowl-
edge on the latent signal correlations that are learned from
massive images. Sometimes, targets and distractors can be
very difficult to distinguish only using the explicit visual
cues. In these cases, prior knowledge can help to pop-out
true target and suppress true distractor. On ImgSal, the
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performance of our approach becomes somehow unsatis-
factory in terms of NSS. This may due to the fact that our
approach only pop-out the most salient locations in the
saliency maps, which may have difficulties to process
images with several large salient targets. As illustrated in
Fig. 6, our estimated saliency maps are often much cleaner
than the other 13 approaches. Generally, there are two
reasons that can explain why our saliency maps are
cleaner. First, the latent correlations between various
patches are taken into account in visual saliency estima-
tion. In this manner, the targets can be distinguished from
distractors through the negative target–distractor correla-
tions. Second, graph nodes of image patches are divided
into three groups with respect to the location prior and
informativeness while the edges of nodes in different
groups are weighted differently under the guidance of
informativeness and latent correlations. By performing
random walking on the graph, targets will get enhanced
and distractors can be suppressed effectively.

5.3. Performance analysis

Beyond the performance comparisons, we also conduct
several small experiments to further demonstrate the
effectiveness and efficiency of our approach.

5.3.1. Robustness of the latent signal correlation model
One probable concern in calculating affinity scores of

visual words is whether ten million images are sufficient
for inferring the prior knowledge. To address this concern,
we conduct a small experiment. First, we generate
Nw ¼ 1000 visual words using 10,000 images newly
crawled from the Internet. Using these visual words, we
start from M0 ¼ 2500 images and iteratively estimate the
latent correlation coefficients. In the tth iteration, we
double the number of images (i.e., Mt ¼ 2Mt�1), and the
correlation coefficients are denoted as fφtðW i;W jÞ; ia jg.
Consequently, the average and maximum variation of
these coefficients in the t iterations can be calculated as

Δt
avg ¼

PNw
i ¼ 1

PNw
ja i jφtðW i;W jÞ�φt�1ðW i;W jÞj

N2
w�Nw

;

Δt
max ¼maxfjφtðW i;W jÞ�φt�1ðW i;W jÞj; ia jg: ð12Þ

From Fig. 7, we find that the learned latent correlation
coefficients may vary greatly at the first several iterations
(e.g., from 5000 images to 10,000 images). However, such
variation will gradually reduce to zero when we bring in
more images. In particular, we find that using five million
new images in the final iteration will only slightly change
such correlation coefficients. Therefore, we can safely
assume that the learned latent correlation coefficients is
statistically significant when ten million images are used.

5.3.2. The effect of random walk iterations
In our approach, a saliency map is calculated by

iteratively performing the random walking process on
graphs to highlight targets and suppress distractors. To
obtain more less “noisy” saliency maps, the random
walking process should be repeated several times, which
may lead to high computational cost.
To this end, we conduct two experiments to find out
the best number of random walking times to balance time
cost and model performance. In the first experiment,
saliency maps estimated with different iterations are
evaluated by AUC on three benchmarks to check the effect
of random walking times (as shown in Fig. 8(a)). In the
second experiment, we record the average time cost to
process a 320�240 image when the random walking is
performed 1–4 times (as shown in Fig. 8(b)). All the
experiments are conducted on a PC with 3.2 GHz CPU
and 4G RAM using the Matlab implementation of our
approach.

As shown in Fig. 8(a), the performance is already
impressive by taking random walking process for once,
which indicates that the proposed method can effectively
pop-out targets and suppress distractors. With twice
random walking, the AUC score slightly improves on all
the three benchmarks (from 0.725 to 0.728 on MIT1003,
0.806 to 0.808 on Toronto and 0.741 to 0.746 on ImgSal).
However, it will decrease in further random walking. The
reason could be that more iterations are useless after that
distractors get sufficiently suppressed.

On average, it costs about 0.85 s for calculating the
saliency map of a 320� 240 image by taking random
walking process for once. From Fig. 8, two iterations of
randomwalking are finally chosen in our approach to get a
better performance while the time cost is still acceptable
even with the Matlab implementation.
6. Conclusion

In this paper, we model the latent signal correlation by
using the statistical prior derived from ten million refer-
ence images. With the latent signal correlations, targets
can be distinguished from distractors as they often
demonstrate negative correlations. In addition, the asym-
metric and directed graphs are built by jointly considering
both the explicit and latent saliency cues to effectively
enhance targets and suppress distractors. Moreover, the
random walking process is iteratively applied on graphs
under the guidance of informativeness and latent correla-
tions so as to pop-out only the most salient locations.
Experimental results show that the latent correlation
model is statistically significant, and the proposed
approach achieves impressive performances on three
public image benchmarks.

In our future work, we will seek a better way to mine
the latent correlations, e.g., by incorporating images with
annotations. Moreover, we will also try to build task-
driven saliency models that incorporate such statistical
priors, which may be useful for applications such as scene
understanding.
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