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ABSTRACT
In this paper, we address the problem of pair-wise image matching
which determines whether two images depict the same objects or
scenes. SIFT-like local descriptor-based matching is the most wide-
ly adopted method for this purpose and has achieved the state-of-
the-art performance. However, local descriptor-based methods usu-
ally fail when an image pair contains multiple similar local regions.
This problem becomes more serious when coming to limited com-
putational and storage resources. Although global descriptors, e.g.,
Fisher Vectors, can solve this issue, it is difficult for global descrip-
tors to distinguish images containing different objects of the same
class. Therefore, we propose a novel strategy to integrate local and
global descriptors for better matching accuracy. To further fulfill the
efficiency requirement of applications, we combine dimension re-
duction and product quantization to obtain compact descriptors and
speed up the matching process with pre-computed lookup tables. Ex-
tensive comparisons to the state-of-the-art methods demonstrate our
advantages in both matching accuracy and efficiency.

Index Terms— Image matching, SIFT, Fisher Vectors, Compact
descriptors

1. INTRODUCTION

Pair-wise image matching establishes correspondence between two
images and determines whether they depict the same objects or
scenes. Many research efforts have been focused on image matching
problem as it is a key component of many computer vision tasks[1],
such as image retrieval, object recognition, 3D reconstruction, etc.
Generally, image matching process is conducted as follow: descrip-
tors are first extracted from two images. Then, similarity of the two
images is computed according to the extracted descriptors. Final-
ly, the two images are determined match or not by comparing the
similarity with a pre-defined threshold.

Two factors need to be taken into account for pair-wise image
matching: the matching accuracy and efficiency. Matching accuracy
is usually affected by scale and viewpoint variation, deformation, oc-
clusion, clutters, etc. Diversity of target objects or scenes also pose
a great difficulty for image matching methods. Matching efficien-
cy is required by various applications. Recent applications based on
big data and mobile device bring new challenges to the efficiency
of image matching methods. To take good use of the limited com-
putational and storage resources, descriptors are compressed to low
dimensional vectors for fast matching while always losing perfor-
mance.

Most image matching methods are based on descriptors. Ex-
tensive research attempts on descriptors have been made to improve
both matching accuracy and efficiency. The existing descriptors can
be roughly categorized into two classes: local and global descriptors.
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Fig. 1. Failure example of SIFT descriptor: (a) Original images; (b)
SIFT descriptors extracted from the images; (c) Matching points.

Among local descriptors, Scale Invariant Feature Transform
(SIFT) [2] remains the most popular local descriptor for pair-wise
image matching. Other examples of local descriptors are Speeded
Up Robust Features (SURF) [3] and Gradient Location Orienta-
tion Histogram (GLOH) [4]. Unfortunately, these local descriptors
are high dimensional, for example 128 dimensions for SIFT, and
there are usually hundreds of local descriptors per image, which
costs much for storage and transmission. To save the cost, several
compression schemes have been proposed to reduce the bit rate
of local descriptors, e.g., hashing [5][6], transform coding [7] and
vector quantization [8]. Researchers also argue to generate compact
descriptors directly [9][10]. Furthermore, a subset of the extracted
descriptors can be adopted for each image. For instance, a fea-
ture selection criterion [11] has been presented to choose the most
promising local descriptors for subsequent image matching.

Although local descriptor-based methods have achieved the
state-of-the-art performance, they fail to deal with multiple similar
local regions. These local regions cannot be distinguished, since
they are described by similar local descriptors. When matching,
there will be a lot of mismatches of points and only few correct
matches remained as illustrated in Figure1. Due to low bit-rate
requirement, local descriptors are compressed to small codes and
few of them are selected for matching. As a result, poor discrimi-
native power further magnifies the issue. The performance of local
descriptor-based methods is greatly degraded.

Besides local descriptors, an alternative solution for image
matching is to generate global descriptors, one per image. Popular
global descriptors include color histogram, shape context [12] and
GIST [13]. Global descriptors can also be aggregated from local de-
scriptors. Bag of words (BOW) [14] uses a histogram of the number
of image descriptors assigned to each visual word to represent an
image. Recently, Perronnin et al. [15][16] introduced Fisher kernel



Fig. 2. Failure example of FV descriptor: The first image is a query
image. (a) is the inter-class non-matching image of the query with
similarity 0.299110; (b) is the intra-class non-matching image of the
query with similarity 0.438452; (c) is the intra-class matching image
of the query with similarity 0.401683

[17] to generate global descriptors. Given an image, Fisher kernel
aggregates the local descriptors to form a Fisher Vector (FV) repre-
sentation of fixed-length. Jegou et al. [18] proposed a simplified FV,
the Vector of Locally Aggregated Descriptors (VLAD). Subsequent-
ly, high-dimensional global descriptors are further compressed into
compact codes. Promising results have been reported [15][16][19]
for classification and retrieval tasks.

The global and contextual information of global descriptors per-
forms well when distinguishing images of objects from differen-
t classes (inter-class images). However, global descriptors may be
confused by images containing different objects of the same class
(intra-class images), especially for those ambiguous ones like doc-
ument images. As illustrated in Figure2, we take a document im-
age as query image and compute its similarities of FV with inter-
class non-matching image(a), intra-class non-matching image(b) and
intra-class matching image(c). We can observe that the similari-
ty with inter-class non-matching image(a) is relatively low, while
the similarity with intra-class non-matching image(b) is even high-
er than the similarity with intra-class matching image(c). Thus, it’s
difficult to determine whether an intra-class image pair is match or
not according to similarities of global descriptors. This is mainly
because attributes (such as color, edges or local features) statistics of
intra-class images may be similar no matter match or not.

In this paper, we propose a novel pair-wise image matching s-
trategy with compact descriptors, which enables local and global de-
scriptors to complement each other at low bit-rate requirement. The
proposed strategy includes two stages: first, we employ local de-
scriptors to conduct initial matching and obtain a set of matching
image pairs. Then, the unmatched image pairs of the first stage are
judged again by global descriptors. Thus, local descriptors guarantee
that the intra-class matching image pairs have been selected before
confusing global descriptors. Meanwhile, global descriptors find out
the matching image pairs with multiple similar local regions from the
unmatched image pairs of local descriptors. Considering the require-
ment of efficiency, we compress both local and global descriptors to
small codes before the matching process. To evaluate performance
of the proposed strategy, we use the state-of-the-art local and global
descriptors, i.e. SIFT and FV, in our implementation. Experimental
results demonstrate that the proposed strategy performs better than
solely using local or global descriptors at low bit rate, say hundreds
of bytes. For example, the True Positive Rate of the proposed strat-
egy over UKBench dataset is 93.73% versus 84.93% of compressed
SIFT and 88.55% of compressed FV in average of different low bit
rates, with 1% False Positive Rate.

This paper is organized as follows. Section 2 gives an formulat-
ed introduction of the proposed strategy. We give an exemplar im-
plementation with SIFT and FV in Section 3. Experimental results
is presented in Section 4.

2. A NOVEL STRATEGY FOR IMAGE MATCHING

To overcome the weaknesses of both local and global descriptors, we
propose a novel strategy, which combines compact local descriptors
with compact global descriptors.

The proposed strategy includes two stages: local descriptor-
based image matching and global descriptor-based image matching.
Local descriptor-based image matching is conducted first to find out
matching image pairs with relatively low false positive alarm. Then,
global descriptor-based image matching will further improve the
matching accuracy .

Given two images XA and XB , local descriptors LA, LB and
global descriptorsGA andGB are extracted from images respective-
ly, whereLA = {lA1, lA2, . . . , lAP },LB = {lB1, lB2, . . . , lBQ},
lAi, lBj ∈ Rn, GA, GB ∈ Rm, 1 ≤ i ≤ P , 1 ≤ j ≤ Q.
lAi ∈ Rn is the local descriptor for the ith interesting point of im-
age XA and lBj ∈ Rn is the local descriptor for the jth interesting
point of image XB . P and Q are the numbers of local descriptors
extracted from images XA and XB . To meet the efficiency require-
ment, both local and global descriptors have been compressed.

The similarity of the given images is first calculated according
to LA and LB . For each lAi, the nearest lBj is found by ratio test.
Geometric verification is subsequently applied to filter out outliers.
Finally, images XA and XB are determined match or not by com-
paring the score of inliers with a predefined threshold δ.

After the matching process with LA and LB , we get an initial
judgment about whether images XA and XB are match or not. If
XA andXB are determined match, we takeXA andXB as a match-
ing image pair and terminate; otherwise, we judge these two images
again based on GA and GB .

match (XA, XB) =


1 SLA,LB > δ

SLA,LB < δ and SGA,GB > θ

0 SLA,LB < δ and SGA,GB < θ

where match (·, ·) is an indicator function, if match (·, ·) = 1, the
two images are match, otherwise not match. SLA,LB represents the
similarity between LA and LB , i.e. the score of inliers and SGA,GB

represents the similarity between GA and GB , which is depending
on the distance between these two global descriptors. δ and θ are
predefined thresholds respectively.

3. AN EXEMPLAR IMPLEMENTATION

Scale Invariant Feature Transform (SIFT) [2] and Fisher vector (FV)
[18] are popular local and global descriptors respectively which
achieve the state-of-the-art performance. In this section, we give a
technical solution based on SIFT and FV employing the proposed
strategy. Targeted at compact descriptors, we employ Principle
Component Analysis (PCA) and Product Quantization (PQ) to com-
press SIFT and FV descriptors. Figure3 shows how SIFT and FV
implement the proposed strategy. As seen in Figure3, in the first
stage, SIFT descriptors are extracted from image pairs and com-
pressed for fast computing. The image pairs are then matched with
compressed SIFT descriptors. The unmatched image pairs of the
first stage are passed to the second stage. In the second stage, orig-
inal FV are generated for images pairs. PCA and PQ are applied to
original FV for compact codes. Finally, the similarity is computed
according to the compressed FV descriptors. Technical details are
discussed below.



Fig. 3. Exemplar Implementation with SIFT and FV

3.1. Local descriptor based image matching

To implement the image matching process of local descriptors, SIFT
descriptors are first extracted from images, for example, image XA.

PCA is applied to eliminate the correlation among the dimen-
sions of each SIFT descriptor. Then, a partition is given to divide the
transformed descriptor lAi

′ into S groups {g1, . . . , gS} consecu-
tively and the most important yet orthogonal dimensions are grouped
together.

The quantization of each group is designed in two phrases,
namely Multi-Stage Vector Quantization (MSVQ)[20]. The training
of the first-stage quantizer may resort to the state-of-the-art vi-
sual vocabulary techniques, such as [21][14] and their variances.
We adopt Hierarchical K-Means clustering to build the initial
codebook with dimension M1st. Given the s-th group of trans-
formed dimensions gs (lAi

′), we quantize it into the nearest word
wj (j ∈ [1,M1st]). In the second stage, we adopt PQ to further
quantize the residuals resulting from the codebook of the first stage.
More specifically, given the transformed dimensions gs (lAi

′) and
its corresponding quantization vector in the first stage wj , a residual
vector R (gs (lAi

′) , wj) is then formed:

R
(
gs
(
lAi
′) , wj

)
= gs

(
lAi
′)− wj

Subsequently, PQ is applied to each residual vector.
For points matching, the distance between compressed SIFT de-

scriptors of images XA and XB is calculated using a look-up table.
Geometric verification is followed to filter out outliers.

Finally, images XA and XB are determined match or not by
comparing the score of inliers with a predefined threshold δ.

3.2. Global descriptor based image matching

For global descriptor based image matching, we first generate origi-
nal FV by aggregating the compressed SIFT descriptors.

Let X = {xt}Tt=1 denote a set of T compressed SIFT descrip-
tors extracted from an image X , xt ∈ Rd, where d denotes the di-
mensionality of the compressed SIFT descriptor. The GMM param-
eters λ are learned over the training set of compressed SIFT descrip-
tors by the well-known Expectation-Maximization (EM) algorithm.
Then, Fisher kernel [17] is defined on the gradient vector represen-
tation. Let Gk denote the d-dimensional gradient vector with respect
to the kth Gaussian. The analytical form of Gk is derived by:

Gk =
∂L (X|λ)
∂µk

=
1√
Twk

T∑
t=1

γt (k)σ
−1
k (xt − µk)

where γt (k) = wkpk(xt)∑K
l=1

wlpl(xt)
denotes the probability of com-

pressed SIFT descriptor xt being generated by the kth Gaussian
component. Finally, the Fisher vector GX is formed by concatenat-
ing the aggregated gradient vectors Gk of all Gaussian components,
k = 1 . . .K. The dimensionalityM of GX isM = Kd. In practice,
power law may be applied to normalize each element of GX .

For the purpose of dimensionality reduction, we employ PCA
to project GX to a set of orthogonal bases U and get a lower, D-
dimensional vector GX ′ = UGX , where GX ∈ RM , GX ′ ∈ RD

and D < M .
We employ PQ to further reduce the length of GX ′. Given the

PCA-transformed descriptor GX ′, a partition divides it into S sub-
vectors gj(GX ′), 1 ≤ j ≤ S, of dimension D∗ = D/S, where D
is a multiple of S. The subvectors are quantized separately using S
distinct vector quantizers qj (gj (GX ′)). Each qj is associated with
a codebook Cj =

{
cji ∈ RD∗, i ∈ I

}
, where I is the index set.

gj(GX ′) is then assigned the index of its nearest center cji.
Finally, the similarity of images XA and XB is calculated as

follows:

SGA,GB = 1−
S∑

j=1

dist(qj

(
gj
(
GXA

′)) , qj(gj(GXB

′)))

We determine images XA and XB match or not by comparing the
similarity SGA,GB with a predefined threshold θ.

4. EXPERIMENT

We evaluate the proposed strategy in the context of pair-wise im-
age matching on publicly available MPEG Compact Descriptor Vi-
sual Search(CDVS) datasets [22][23][24][25][26]. We compare the
proposed strategy with two baselines at different bit rates: (1)com-
pressed SIFT (PCA+MSVQ) and (2)compressed FV (PCA+PQ). We
use the True Positive Rate(TPR) at fixed False Positive Rate(1%) as
evaluation protocol.

4.1. Experiment Datasets

Eight datasets contributed to CDVS, including ZuBud, UKBench, S-
tanford, ETRI, PKU, Telecom Italia, Telecom SudParis and Huawei,
are used in experiments. There are 30256 images in total which are
grouped to 5 categories by contents, i.e. mixed text and graphics,
paintings, frames captured from video clips, landmarks and com-
mon objects. All datasets provide the annotation files of matching
and non-matching images pairs. Refer to Table.1 for more details
about the datasets.



Data category Graphics Paintings Frame Landmarks Objects
] of

images 2500 500 500 13098 10200

] of
matching

image pairs
3000 364 400 4005 2550

] of
non-matching
image pairs

30000 3640 4000 48675 25500

Table 1. Details about the datasets

4.2. Experiment Setting

We extract SIFT descriptors using the VLFeat library. For com-
pressed SIFT, we apply different codebooks at different bit rates and
the SIFT descriptors are compressed to different length. Table2 gives
the number of bits per compressed SIFT descriptor at different query
length.

Query Length 256 512 1K 2K 4K 8K 16K
] of bits 28 28 28 52 72 108 144

Table 2. Compression Details of SIFT

FV is aggregated as follow: The PCA-compressed SIFT features
with dimension 32 are used. The GMM is set with K=512 Gaussian
components. For compressed FV, we apply PCA to reduce the di-
mension of original FV from M=16384 to D=2048. We segment the
transformed FV into S=256 consecutively groups of 8 dimensions,
and log2|Cj | = 8. The compressed FV is at a fixed length of 256
Bytes.

In practice, we need to store the transform matrix U, U ∈
RM×D . Hence, M × D × 4 Bytes memory is necessary. Taking
M = Kd = 512 × 32 = 16384, D = 2048 as an example, we
need 128MB in total to store the matrix. To meet the memory con-
straint of low bit-rate applications, we binarize the matrix according
to the sign of each element. When projecting, if an element is 1, we
multiply the corresponding dimension of GX with 1, otherwise -1.
Thus, we can reduce the memory cost to M × D × 1 bits (4MB),
which causes little performance loss.

The Euclidean distance and cosine distance are used respectively
to compute the distance between compressed local descriptors and
global descriptors. The predefined parameters δ and θ are set for
each dataset to make the False Positive Rate fixed.

4.3. Quantitative performance comparison

Figure4 represents a comparison of three methods with differen-
t query lengths on dataset UKBench (Objects), providing the TPR
of compressed SIFT (baseline(1)), compressed FV (baseline(2)) and
combination of these two descriptors with the proposed two-stage
strategy, where FPR is fixed at 1%. As we can see from Figure4,
compressed FV outperforms compressed SIFT a lot with the query
length of 256 bytes. And the proposed strategy performs better with
all query length. This is because the UKBench dataset consists of a
lot of images with multiple similar local regions as illustrated in Fig-
ure1. By combining these two descriptors, compressed FV helps to
find out the matching image pairs which make local descriptors fail.
As the query length grows, compressed SIFT become more discrim-
inative and helps to further improve the TPR with low FPR, reduc-
ing the FP caused by compressed FV. Figure 5 shows our approach
has achieved promising results at different bit rates over different
datasets.

Fig. 4. Performance comparison on UKBench dataset

Fig. 5. Performance of compressed descriptors on different datasets

Complexity Analysis. For local descriptor SIFT, we employ
MSVQ, which has significantly reduced the size of quantization ta-
bles. The total memory cost for compressing SIFT is 384KB. For
global descriptor FV, our implementation uses a binarized transform
matrix, which scarifies little performance but reduces the memory
cost to 4MB. PQ for FV uses 2MB to store codebooks for quantiza-
tion. Additional memory cost, including PCA transformation matrix
for compressing raw SIFT and the GMM model, is 49KB.

5. CONCLUSION

In this paper, we propose a novel strategy to combine compact local
and global descriptors, which is efficient and simple to implement.
The proposed strategy takes both accuracy and efficiency into con-
sideration to fulfill the requirements of various applications. Any
two descriptors can be combined using this strategy to complement
the weakness of each other.

We also provide an exemplar implementation of the proposed
strategy and better accuarcy and efficiency have been achieved. To
further save the memory cost, special strategy can be designed ac-
cording to the characteristics of descriptors when applying the com-
pression schemes.
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