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Abstract— The screen content images (SCIs) quality influences
the user experience and the interactive performance of remote
computing systems. With numerous approaches proposed to
evaluate the quality of natural images, much less work has
been dedicated to reduced-reference image quality assessment
(RR-IQA) of SCIs. Here, we propose an RR-IQA method from
the perspective of SCI visual perception. In particular, the
quality of the distorted SCI is evaluated by comparing a set of
extracted statistical features that consider both primary visual
information and unpredictable uncertainty. A unique property
that differentiates the proposed method from previous RR-IQA
methods for natural images is the consideration of behaviors
when human subjects view the screen content, which motivates
us to establish the perceptual model according to the distinct
properties of SCIs. Validations based on the screen content IQA
database show that the proposed algorithm provides accurate
predictions across a wide range of SCI distortions with negligible
transmission overhead.

Index Terms—Image quality assessment (IQA), reduced
reference (RR), screen content images (SClIs).

I. INTRODUCTION

ECENTLY, the popularity of screen virtualization has

been creating an ever-stronger demand for efficient
screen content image (SCI) compression and quality assess-
ment methods. In a variety of remote processing and virtual
desktop application scenarios, the refreshed screen is rendered,
compressed, and transmitted to the client side [1]-[3]. The
screen virtualization can be achieved by user interaction with
the local display interface, which is a mixture of natural image
regions and textual content generated by computers. In these
applications, objective image quality assessment (IQA) meth-
ods that are capable of accessing the perceived quality of SCIs
are highly desired, as they can not only be used to monitor
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the screen quality of remote computing systems, but also
provide a feasible way in devising and optimizing advanced
image/video processing algorithms [4]-[6].

IQA models that are capable of automatically predicting the
perceived quality of natural images have enjoyed popularity
for decades. Most of the existing IQA methods require the
full reference (FR) information, and popular FR methods
include the structural similarity (SSIM) index [7], feature-
similarity (FSIM) [8], gradient similarity (GSIM) [9], visual
information fidelity (VIF) [10], and visual saliency induced
index (VSI) [11]. However, SCIs exhibit quite different char-
acteristics when compared with natural images. For instance,
the computer generated SCIs are usually noise free and
composed of thin edges with a limited number of colors.
By contrast, natural images are composed of continuous-tone
structures [12]. Another interesting observation is that the
semantic information in SCI is mainly interpreted relying on
the eye movements in the textual content. However, for natural
images, the human visual system (HVS) is exquisitely adapted
to extract the conceptual information from visual input with
every new eye fixation [13]-[17]. These distinctive features of
SCIs motivate us to carry out a further investigation on their
perceptual characteristics, which are essential in developing
trusted SCI IQA models.

In view of the importance of SCI quality assessment, in [18]
a database of distorted SCIs with subjective quality rankings
has been created, which includes seven common distortion
types. It contains 980 distorted SCIs generated by corrupting
20 source SCIs in various scenarios. The results demonstrate
that there is still a lack of accurate SCI quality assessment
methods. This further inspires FR-IQA models that predict
the SCI quality based on novel weighting strategies [18]-[20].

However, in typical remote computing systems, the refer-
ence image is not available at the client side. Thus, devel-
oping IQA algorithms that only require significantly less
information of the original image is necessary and meaningful
for applications in real scenarios. Traditionally, these algo-
rithms can be categorized into reduced-reference (RR) and
no-reference (NR) methods. Typically, NR algorithms are
usually developed with the assumption of the distortion
process [21]-[23]. Due to the absence of the information
from the reference image, NR-IQA methods are usually less
efficient in providing accurate predictions of the subjective
quality. Fortunately, the RR-IQA achieves a good compromise
between the FR and NR algorithms by comparing a few fea-
tures [24]. Basically, the extracted features from the reference
image are transmitted to the client side. In the literature, vari-
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ous RR-IQA models have been proposed. In [25], the RR-IQA
was developed with a wavelet domain natural image statistic
model (WNISM). This idea was further extended to devise the
divisive normalization domain RR-IQA [26] (DNT-RR) and
SSIM-based RR-IQA [27] algorithms. In [28], the RR entropic
differencing-based IQA method was presented. In [29], the
VIF-based RR-IQA (VIF-RR) method was proposed, which
employs the autoregression model to extract the features that
summarize the perceptual information. By the analyses of the
distributions of discrete cosine transform (DCT) coefficients,
Ma et al. [30], [31] reorganized the DCT coefficients and
predicted the perceptual quality relying on their city-block
distance. In [32], a Fourier transform domain RR method
was proposed based on the phase and magnitude information.
In [33], the structural degradation model (SDM) was devel-
oped, where the image quality score was obtained based on
the structural information divergence between the original and
distorted images. However, most of these algorithms are still
designed based on natural images, making them difficult to be
straightforwardly applied in SClIs.

In order to develop an efficient RR-IQA method for SCIs,
there are several challenges that need to be considered. First,
the selected RR features should capture the perceptual prop-
erties of SCIs and be closely relevant with image distortions,
such that the perceptual quality degradation can be clearly
reflected by comparing these features directly. Second, the
extracted features should consume as few bits as possible.
Otherwise, they may impose a heavy burden to the SCI
transmission. Third, the computational complexity of the
RR feature calculation and comparison should be relatively
low, which makes it practical for real-time screen quality
monitoring.

Recent studies on human visual perception, including the
free-energy principle [34] and the Bayesian brain theory [35],
reveal that HVS actively infers the input scenes with the
internal generative mechanism (IGM). In particular, the brain
acts as an active inference system to understand the pri-
mary visual information [29], [36]. Here, the primary visual
information can be regarded as the features that account for
the high level tasks of HVS for scene understanding and
recognition. However, due to the hypothesis that the IGM
model could not be universal [34], there exists a gap between
the real scene and the prediction model from the brain. Such
a gap may cause “surprise” of the human subjects, and finally
lead to the unpredictable uncertainty. In other words, the
uncertainty indicates the information contained in the input
image that cannot be explained by HVS. As such, the amount
of uncertainty can be quantified by comparing the input with
the orderly signals that are from the inference procedure of
the brain.

Based on the IGM-based brain theory, it is reasonable to
hypothesize that the image quality is closely relevant to the
primary visual information and the amount of uncertainty [37].
Inspired by the SCI FR-IQA method proposed in [19],
we develop a novel RR-IQA model by formulating the quality
of SCI in terms of these two components. In particular, the
perception of SCI is modeled in a unique way by assuming
the HVS perception channel with both Gaussian blur and

motion blur to extract the orderly signals of SCIs. As such,
the amount of uncertainty can be quantified by the similarity
between the input and orderly signals. In particular, lower
similarity corresponds to larger amount of uncertainty and vice
versa. Consequently, the SCI quality is evaluated by comparing
the gradient-domain features that represent the primary visual
information and the similarities that evaluate the unpredictable
uncertainty. Experimental results demonstrate that the RR-IQA
method is capable of delivering highly competitive prediction
accuracy with relatively low overhead bits and computational
cost.

II. CHARACTERISTICS OF SCIs

It is widely acknowledged that the main functionality of
SClIs is to express the rich and meaningful information with
the textual content. Therefore, before the introduction of the
proposed algorithm, it is useful to discuss some interesting
properties of SCIs, which are meaningful in the development
of efficient IQA method.

To begin with, we study the characteristics of SCIs from the
perspective of edge profile representation. To investigate the
edge representation in textual content, we adopt the parametric
model [38]-[40], which promotes us to adaptively decom-
pose any edge profile and examine their properties in terms
of contrast and structure, respectively. In particular, in the
1D domain, a step edge xo can be represented by a unit step
function

u(x; b,l,x0) =1-U(x —x0)+b )

where U(-) is the step function, b is the edge basis, and
[ denotes the edge contrast. The actual edge composition in
SClIs can be treated as a smooth transition of the unit edge, and
this can be achieved by convolving the step edge u(x; b, [, x¢)
with Gaussian filter

l _
s(x;b,l,w,xo):bJrE(1+erf(x );0)) )

w

Here, erf(-) is the error function and w represents the edge
width. Such locally adaptive representation is able to explicitly
decompose any new edge profile into three physically mean-
ingful components. In particular, the parameter b specifies
the base intensity of an edge. The parameter [ represents
the strength of the edge, and higher / value indicates a
stronger edge. The edge structure is determined by w, and
smaller w corresponds to sharper edge profile. The parameters
are calculated by fitting (2) with local pixel values.

In Fig. 1, we demonstrate a typical SCI, together with
its local edge contrast and structure maps. We can observe
that the textual edges have higher contrast but thinner width
compared with the natural content. It suggests us to study the
quality of SCI by computing the gradient information, which
simultaneously captures the edge contrast and structure around
the edge regions. As such, the distortions that are sensitive to
HVS in the textual content can be efficiently detected.

Subsequently, the distinct viewing behaviors of SCIs are
briefly reviewed. Regarding the studies on the viewing behav-
iors of SCIs, Faraday’s visual scanning model [17] for Web
page images first explored how the visual information is
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Observers may be expert or non-expert depending on the objectives of the assessment. An expert
observer is an observer that has expertise in the image artefacts that may be introduced by the
system under test. A non-expert (“naive™) observer is an observer that has no expertise in the image.
artefacts that may be introduced by the system under test. In any case, observers should not be, or
have been, directly involved, ic.. enough to acquire specific and detailed knowledge, in the
development of the system under study.

Prior to a session, the observers should be screened for (corrected-to-) normal visual acuity on the
Snellen or Landolt chart, and for normal colour vision using specially selected charts (Ishihara, for
instance). At least 15 observers should be used. The number of assessors needed depends upon the
sensitivity and reliability of the test procedure adopted and upon the anticipated size of the effect
sought. For studies with limited scope, ¢.g.. of exploratory nature, fewer than 15 observers may be
used. In this case, the study should be identified as “informal”. The level of expertise in television
picture quality assessment of the observers should be reported.

A study of consistency between results at different testing laboratories has found that systematic
differences can occur between results obtained from different laboratories. Such differences will be
particularly important if it is proposed to aggregate results from several different laboratories in
order to improve the sensitivity and reliability of an experiment.
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Fig. 2. General framework of an SCI RR-IQA system.

organized in a typical Web page. In particular, the viewing
process is divided into two phases, including “searching”
and “scanning.” The “searching” phase takes place when the
viewer attempts to identify a salient point in the image, and
once the saliency point is detected, the “scanning” phase is
subsequently applied to extract the information. Based on
this strategy, Grier et al. [42] proposed a three-stage EHS
(Expected Location, Heuristic Search, Systematic Search) the-
ory to further explain the “search” procedure in typical Web
pages. Recently, in [16], a Web page saliency database was
created, and it is also observed that the textual regions in SCIs
contain rich information and salient stimuli. These studies
reveal that the SCIs have their own characteristics that make
the viewing behaviors of them distinct from those of natural
images.

III. REDUCED-REFERENCE SCI QUALITY ASSESSMENT

The idea of RR-IQA was first introduced in [43] as a prag-
matic approach to monitor the real-time image/video quality
over multimedia communication networks. We extend this
philosophy to the interactive screen remoting system, as shown
in Fig. 2. In particular, the server (sender side) and the client
(receiver side) communicate with each other over a network
through an interactive screen-remoting mechanism [1]. After
receiving the client input, the servers render the new screen
content and send the SCIs to the clients as a response.
At the receiver side, the screen update model refreshes the
display image with the received SCIs. Meanwhile, the features
extracted from the sender side are transmitted and compared

(b)

(©)

Analyses of edge contrast and width map based on (2) [41]. (a) SCI. (b) Edge contrast map. (c) Edge width map.
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-
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with that from the receiver side, such that the perceptual
degradations in the interactive screen-remoting systems can
be feasibly monitored. In particular, a feature extractor is
applied to the captured SCI signal at the sender side. The
extracted features are then transmitted to the receiver side
through an error-free ancillary channel. Typically, the data rate
in transmitting features as the side information is much lower
than that of the SCI transmission channel. When the clients
receive the distorted SCI via the error-prone channel, identical
feature extraction process resembles that at the sender side.
Finally, the divergence between the features that are extracted
from the SCIs of the sender and receiver sides is employed to
evaluate the image quality. As a result, the perceptual quality
can be accurately predicted by the feature comparison. It is
also worth mentioning that the RR-IQA methods for SCIs
are meaningful as the generated screen content at the server
side is usually noise-free. As such, the features extracted at
the sender side can be regarded as the faithful source of the
original SCI information. By contrast, the natural images are
usually captured by physical sensors, which may inevitably
introduce artifacts in the capturing process.

Given the distinct viewing behaviors of SCls, it is worth
mentioning that both statistics of natural images and properties
of unnatural SCIs should be considered in the design of the
proposed IQA model. The reason is that SCIs that serve as
the input signals are eventually perceived by HVS. Moreover,
it is widely believed that the natural environment is driving
the function of HVS in the evolution process. Therefore, the
natural scene statistics can be considered to account for the
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Illustration of the GM and significance maps, where the top row shows the SCIs, the middle row shows the corresponding GM maps, and the

bottom row shows the corresponding significance maps. (a), (f), and (k) Original. (b), (g), and (I) Gaussian noise. (c), (h), and (m) Gaussian blur.

(d), (i), and (n) JPEG compression. (e), (j), and (0) JPEG2000 compression.

properties of HVS, and the properties of unnatural SCIs should
be considered to model the input SCI signal.

The proposed RR-IQA approach is essentially based on
the IGM, which assumes that perceptual quality relies on
both the primary visual information and the uncertainty that
cannot be explained by the HVS. Generally speaking, the
primary visual information accounts for the high level vision
tasks, such as image understanding and recognition [37].
Therefore, the distortions on the primary visual information
may disturb the extraction of the information content, leading
to the difficulty in image understanding. On the contrary, dis-
tortions on the uncertainty may cause uncomfortable viewing
experience [29], [44]. The combination of primary visual
information and the uncertainty leads to the final visual quality.
Without loss of generality, in the following description, we
detail the feature extraction process for the original image X,
and identical operations are also valid for the distorted
image Y.

Based upon our analyses, the textual content contains abun-
dant high contrast edges, motivating us to study the quality
of SCIs in gradient domain. The gradient domain represen-
tation was found to be an effective mechanism to account
for the behaviors of HVS [8], [9], [19]. Moreover, many

high level vision tasks, such as object recognition and
visual cognition, have also benefited a lot from the gradient
information [45], [46], which coincide with the main func-
tionality of the primary visual information in IGM. Therefore,
we employ the gradient magnitude (GM) to characterize the
primary visual information

gX) = ,/g1(X) +g;(X) (3)

where
[+ 0 =3
gX(X)zhx(z@X:E +10 0 —10 [®X 4
| +3 0 -3
L [+3 +10 -3
gy(X)zhye@X:E 0 0 0 |®X. (5
| +3 —10 -3

Here, h, and h, denote the “Scharr” convolution masks that
extract the gradient information from the image [47]. The
GM maps for the original and distorted SCIs are shown
in Fig. 3(f)—(j), which confirm that the GM information is
capable of capturing the information loss caused by various
types of distortions, such as Gaussian noise, Gaussian blur,
JPEG, and JPEG2000 compression.
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Fig. 4.
input. (b) and (f) ¢ = 5.5. (¢) and (g) ¢ = 11. (d) and (h) ¢ = 1.0.

To incorporate the GM information in the RR-IQA algo-
rithm, we further distinguish the significant and insignificant
GMs by passing it through a nonlinear mapping. The design
philosophy is that the significant GM corresponds to 1 and
insignificant GM corresponds to 0. In this manner, the non-
linear mapping of the GM into the same dynamic range will
largely facilitate the subsequent feature comparison process,
such that the RR-IQA can be achieved in an efficient way
by only comparing the significant and insignificant feature
values. In general, the psychometric function with the sigmoid
shape [48], [49] can be adopted to achieve such functionality.
In this paper, we employ the Galton’s ogive [50], which takes
the form of a cumulative normal distribution function (CDF)

1 K N2
c(s) = «/E(?/ exp [—%} dt (6)

where c(s) denotes the detection probability density that dis-
tinguishes the significant and insignificant GMs. The input 7 is
the modulation threshold, s is the stimulus amplitude, and @ is
the parameter that controls the slope of detection probability
variation. In practical, # is set as a constant value 0.05.
Assuming the maximum gradient across the entire image to be

gmax = max{G(X)} @)

and then 7 is set as p - gmax to adapt the characteristics of the
input SCI. Here, p is chosen as 0.1 in practice.

Such a method has been widely adopted in the design of
comparing two signals with different signal strengths [51].
After passing the GM through CDF, the significance map of
the input SCI can be generated, which expresses useful infor-
mation regarding the local primary information distribution
across space. The significance map for the GM of the image X
is denoted as Cg(X). In Fig. 3(k)—(0), the local significance
maps are shown, and scrupulous observers may find that
distortions can be detected when comparing the significance
maps of the reference and distorted SClIs.

The uncertainty information is obtained by comparing the
input with the orderly signals that are generated from the
inference procedure of the brain. In the absence of any
particular distortions, it is typically assumed that the input
visual signal passes through the HVS channel before entering
the brain. In the image perceiving process, the lens acts as
a strong low-pass filter and high-frequency information may

()

Tlustration of S maps generated by comparing the input and the low-pass filtered SCIs with different parameters. (a) and (e) Distorted SCIs as the

get lost [52]. Pamplona et al. [53] also demonstrated the strong
low-pass filtering effect of the human eye using the power
spectra. This inspires us to model the human visual perception
process with low-pass filter. In particular, considering the
characteristics of the HVS and SCIs, both Gaussian and
motion low-pass filters are applied to quantify the uncertainty
information [19]. The reasons of adopting the combination of
such filters are manifold. First, the Gaussian filter is capable
of achieving high contrast edge smoothing, and distortions
around high contrast edges can be effectively reflected by
comparing the input and Gaussian filtered SCIs [54]. Second,
the motion blur is introduced to account for the viewing
behavior of textual content, which relies on scanning in terms
of eye movements to understand the information. Third, the
combination of the uncertainty from Gaussian and motion
blur channels characterizes how much uncertainty information
will be generated during the phases of eye “fixation” and
“saccade” [14], [15], [36].

Assuming the circular-symmetric Gaussian filter kernel

to be
. 1 i2 + j>
hg(z,])zmexp (—20—2) (3)
the Gaussian smoothed image is produced by convoluting it
with the input image X

X; = X ® hy. ©)

As such, the uncertainty information is computed by evalu-
ating the similarity between X and X;. Here, we adopt the
normalized version of gradient similarity [9], which holds
the properties, such as symmetry, boundedness, and unique
maximum

GX) - G(X,))°
G?(X)+ G2(Xy)
In general, Sg shall preserve the structure of the input SCI,
such that distortions in the further comparison process can
be well reflected. This requires the smoothing strength to be
neither extremely strong (e.g., ¢ > 10) nor extremely weak
(e.g., 0 < 1). In Fig. 4, we demonstrate the distorted SCIs
and their corresponding Sg maps using ¢ = 1.0,5.5,11.
One can discern that the S¢ map with ¢ = 1.0 cannot well
preserve the original textual structure, and the Sg map with

S(X) = f(X,X;) = (10)
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Fig. 5. Ilustration of the uncertainty maps from Gaussian blur and
motion blur, where the top row shows the SCIs, the middle row shows
the corresponding S maps, and the bottom row shows the corresponding
Sy maps. (a), (d), and (g) Original. (b), (e), and (h) Gaussian noise.
(¢), (f), and (i) Gaussian blur.

o = 11 may magnify the distortions. In this regard, here, the
standard deviation o is set to be 5.5 and the parameter sensitiv-
ities to the final quality prediction performance are evaluated
in Section IV.

In analogy to the Gaussian blur, the motion blurred
image X, is generated by applying the motion blur convo-
lution kernel m to the image X. In particular, the motion blur
convolution kernel is defined to be

R

(i -sin@ + j-cosf) =0; 2

m(i, j) =
0 otherwise

Y

where 6 indicates the specific direction of motion and
¢t denotes the amount of motion in pixels. As such, only
the pixels along the motion direction are considered in the
convolution process. The parameter values are empirically set
ast=9and 0 = 1.
Again, the uncertainty information from motion blur chan-
nel is given by
(GX) — G(Xn))*
G2 (X) + G*(Xm)
In Fig. 5, we provide the SCIs and corresponding
Sg and Sy maps. Two typical distorted SCIs are used

for demonstration, which are Gaussian noised and Gaussian
blurred versions of the original SCI. One can discern that the

SuX) = fX, X) = (12)

uncertainty maps Sg and Sy, exhibit strong correlation with
image distortion.
Consequently, the uncertainty information is computed by
averaging Sg (X) and Sy (X) [19]
S6(X) + Su(X)
> .
Again, the uncertainty information is passed into the CDF to
generate the significant and insignificant uncertainty, resulting
the corresponding significance map Cg(X). Finally, the visual

primary information and uncertainty are combined together for
quality evaluation

Q(X) = Cc(X) o Cs(X)

SX) = 13)

(14)

9

where “o” denotes the Schur product [55] in terms of the
entrywise operation. It ensures a local combination to reflect
the quality over space.

The uncertainty information caused by the encountered
surprise when perceiving the real scene is highly relevant to
the “saliency” and “information content.” In particular, for
textual content, the high contrast edges that convey mean-
ingful information and meanwhile produce high perceptual
contrast are also obvious in the uncertainty map. Although
the captured uncertainty may not be as accurate as specifi-
cally designed saliency prediction algorithms in predicting the
saliency points, the concept of uncertainty lays a perceptually
meaningful groundwork for saliency modeling [56]. In this
manner, combining the maps of primary visual information
and uncertainty can also be interpreted as using the “saliency”
or “information content” to weight the primary visual
information.

In analogy to the feature extraction for the original image X,
identical operation can be applied to the distorted image Y
to obtain Q(Y). However, it is difficult to transmit the Q(X)
directly to the receiver side for comparison, which may impose
a high transmission burden in terms of the RR data rate.
Therefore, to achieve a good compromise between prediction
accuracy and the RR data rate, we establish the histogram that
represents the distribution of Q. In particular, the range of Q
([*min» 'max]) is divided into n equal sized intervals, and the
histogram bin corresponding to each interval is determined by
the number of elements in set y;

hi = xil, xi = {x1Q(x) € I;} (15)
where
I = |:rmin+(i_l) : (V:lnax—’”min)’rmin 4 i (’"maz_’”min)) )

(16)

As such, the established histogram for image X is deter-
mined by

i
Z?=1 hj '

In words, each bin value belonging to the histogram represents
the corresponding probability of the interval. The established
histogram for image Y [Hy(i)] is calculated in the same

Hx(i) = (17)
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Fig. 6. Diagram of the proposed SCI RR-IQA model.

manner, and the final score of the proposed RR-IQA algorithm
is computed by comparing the two histograms as

|Hx (i) — Hy(i)]
B Hx(i)+HY(i)+8) (19

where ¢ 1is introduced to avoid the
Hx(i) + Hy(i) is close to zero.

The diagram of the proposed method is shown in Fig. 6.
Identical feature extractions of the reference and distorted
SCIs are performed at the sender and the receiver sides,
respectively. To extract the features, first, the GM map is
created. Subsequently, the similarities between the input
SCI and the Gaussian/motion blurred versions are computed
to generate the uncertainty information. The significance
maps of the GM and uncertainty information are combined
together, and the histogram of the combined significance map
is established to facilitate the feature transmission. At the
receiver side, the two histograms are further compared to
obtain the final quality score.

n

DX, Y) = %Z (1

i=1

instability when

IV. VALIDATIONS

A. Performance Evaluation on SIQAD

To validate the performance of the proposed algorithm, the
screen IQA database (SIQAD) [18] that is collected from
SCIs, including Web pages, slides, and Portable Document
Format (PDFs), is employed. In particular, SIQAD includes
980 distorted images based on 20 references in total. Each
reference image is distorted with seven distortion types at
seven distortion levels. The distortion types include Gaussian
noise, Gaussian blur, motion blur, contrast change, JPEG
compression, JPEG2000 compression, and layer segmentation-
based coding.

We compare the proposed method with both FR and
RR IQA algorithms. The popular FR algorithms include
SSIM [7], peak signal-to-noise ratio (PSNR), FSIM [8],
VSI [11], GSIM [9], VIF [10], and visual signal-to-noise
ratio (VSNR) [57]. The specifically designed screen content

image perceptual quality assessment (SPQA) [18] is included
in the comparison as well. It is also worth noting that the two
versions of SSIM implementations are compared, which are
denoted to be SSIM; [58] and SSIM; [59]. The difference
between them lies in whether to employ the appropriate
scale to preprocess the reference and distorted SCIs. Prac-
tical RR-IQA methods, such as the WNISM [25], DNT-
RR [26], VIF-RR [29], Fourier transform based (FTB) [32],
and SDM [33], are compared as well. As suggested in [32], the
fifth score of FTB is employed (le)ase)’ which approximately
requires 1/4096 of the reference image information. In the lit-
erature, these algorithms can efficiently achieve high accuracy
prediction of natural image quality. Five evaluation metrics
to assess the performance of IQA measures are reported,
including Spearman rank correlation coefficient (SRCC), Pear-
son linear correlation coefficient (PLCC), mean absolute error
(MAE), root mean-squared error (RMSE), and Kendall’s rank
correlation coefficient (KRCC). A better objective IQA mea-
sure should have higher PLCC, SRCC, and KRCC, while
lower MAE and rms values.

A nonlinear mapping between objective and subjective
scores is performed to compute PLCC. In particular, assuming
the objective score to be r, the logistic regression func-
tion is applied to obtain the mapped score, which is given
by [60] as

1

1
q(r) = p (E—W)‘f‘ﬂﬂ‘f‘ﬁs (19)
where f1—f5 are the model parameters obtained numerically
using a nonlinear regression process. Assuming that the total
number of images is N, the mapped score for the ith image
is g;, and the corresponding subjective score is o;, the PLCC

is then computed to access the accuracy of the prediction
2.i(gi —q) - (0i —0)
i@ — a7 0 - o)

PLCC = (20)
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TABLE I
PERFORMANCE COMPARISONS WITH RR AND FR ALGORITHMS
SIQAD [ PSNR  SSIM;  SSIM:» VIF SPQA FSIM VSI GSIM  VSNR [ DNT-RR  VIF-RR  WNISM FTB SDM Proposed
SRCC 0.5608 0.5836 0.7566 0.8069 0.8416 0.5819 0.5381 0.5483 0.5703 0.5054 0.6082 0.5188 0.4575 0.6020 0.7655
PLCC 0.5869  0.5912  0.7561  0.8206  0.8584  0.5902  0.5568  0.5686  0.5966 0.5291 0.5758 0.5857 0.4691  0.6034 0.8014
KRCC 0.4226 0.4235 0.5583 0.6082 0.6591 0.4250 0.3874 0.4054  0.4381 0.3615 0.4431 0.3540 0.3268 0.4322 0.5756
RMSE 11.590 11.545 9.3676 8.1795 7.3421 11.555 11.890 11.775 11.487 12.147 11.703 11.602 12.641 11414 8.5620
MAE 9.0393  9.0934 73133 65261 57213  9.0116  9.2875  9.1663  8.8284 9.7913 9.5197 9.4566 10.132  9.0139 6.8021
TABLE 11
STATISTICAL SIGNIFICANCE EVALUATION BASED ON PLCC
IQA Model | PSNR  SSIM; SSIM2  VIF  SPQA FSIM VSI  GSIM VSNR | DNT-RR  VIF-RR  WNISM FTB SDM
a = 0.05 1 1 1 - 0 1 1 1 1 1 1 1 1 1
a=0.01 1 1 - - 0 1 1 1 1 1 1 1 1 1

where g and o represent the mean score of g and o over the
test set.

After converting the objective scores, MAE and RMSE
are calculated to measure the prediction accuracy, which are
given by

1
MAE = = > Ig: = oil

RMSE = ,/% > (g — o).

SRCC is employed to evaluate the prediction monotonicity.
Assuming that the difference between the ith image’s ranks in
subjective and objective evaluations is v;, it is defined as

21

63N 02
SRCC =1 — L. (22)
N(N2 —1)
Moreover, the KRCC is given by
2(Ne — N,
KRCC = 2(Ne = Na) (23)
N(N — 1)

where N. and N; denote the number of concordant and
discordant pairs in the database, respectively.

Here, all the 980 distorted images are included in the
evaluation. The test results are given in Table I. To reduce
the transmission overhead, the number of bins 7 is set to be 5,
indicating that only four feature values need to be transmitted,
as the sum of the probability in all of the bins equals to
unity. In particular, we quantize each feature into 12 b, and
in total, the additional overhead for each SCI is only 48 b.
As such, the number of the overhead bits is among the lowest
in the RR-IQA methods. To the best of our knowledge, only
the VIF-RR method requires less transmission bits than our
approach, which costs 30 b to transmit the features. From
Table I, it can be seen that the proposed scheme clearly
outperforms the RR-IQA algorithms with the state-of-the-art
performance. Since FR and RR-IQA algorithms are applied
in different scenarios and RR algorithms require much less
information than the FR methods, it is usually unfair to directly
compare the RR method with the FR method. However,
the FR-IQA algorithms can still supply us useful references
on the current status of the SCI IQA research. It is also
interesting to find that the proposed method outperforms most
of the FR-IQA algorithms, and is only inferior to VIF and
SPQA. The performance improvements originate from the

design philosophy, in which the characteristics of SCIs are
considered.

B. Statistical Significance Analyses

Following the standardized procedures in [61], we carry out
the statistical significant analyses to obtain the significance of
the difference in terms of the PLCC and RMSE based on the
statistical hypothesis testing, respectively. The motivation of
conducting these evaluations is to know whether the confi-
dence in the estimation of the proposed algorithm’s perfor-
mance allows us to draw the statistically sound conclusion
of superiority or inferiority compared with the state-of-the-art
methods.

The significance of the difference between the cor-
relation coefficients is obtained by performing Fisher’s
z-transformation to convert the PLCC into the normally dis-
tributed variable [62]. The hypothesis testing is performed by
hypothesizing that there is no significant difference between
the proposed and one of the compared methods. Two sig-
nificance levels are applied, and the corresponding o values
are set to be 0.05 and 0.01, respectively. The results are
demonstrated in Table II, where a symbol “—” indicates that
two IQA methods are statistically indistinguishable with each
other, “1” denotes that the proposed IQA method is statisti-
cally better than the corresponding one in the column, and
“0” denotes that the IQA method of the column is better than
the proposed one. It can be observed that the proposed method
is statistically superior to all RR-IQA algorithms, inferior
to SPQA, and indistinguishable with the VIF method when
a = 0.05. Moreover, when the o value is lowered down to
0.01 to decrease the probability of type I error, the proposed
method is also statistically indistinguishable with SSIM;.

Subsequently, following the method described in [61],
we perform the statistical significance analyses on the dif-
ference between RMSE. In particular, the F-distribution is
employed to compare whether the two methods are statistically
significantly different. Again, we use the same notations
as in PLCC significance test, and the results are provided
in Table III. It can be observed that the proposed model is
statistically superior to the RR IQA algorithms. Compared
with the FR-IQA algorithms, for both & = 0.01 and a = 0.05,
the proposed method is statistically superior to most of the
FR-IQA methods, inferior to SPQA, and indistinguishable
with VIE.
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TABLE IIT
STATISTICAL SIGNIFICANCE EVALUATION BASED ON RMSE
IQA Model | PSNR SSIM; SSIMy VIF  SPQA FSIM VSI GSIM VSNR | DNT-RR VIF-RR WNISM FTB SDM
a =0.05 1 1 1 - 0 1 1 1 1 1 1 1 1 1
a=0.01 1 1 1 - 0 1 1 1 1 1 1 1 1 1
TABLE IV

DISTORTION TYPE BREAKDOWN FOR PLCC AND SRCC COMPARISONS

Gaussian Noise Gaussian Blur Motion Blur Contrast Change JPEG JPEG2000 Layer Coding
PLCC SRCC | PLCC SRCC | PLCC SRCC | PLCC SRCC | PLCC SRCC | PLCC SRCC | PLCC SRCC
DNT-RR | 0.8189 0.8211 | 0.8946  0.8875 | 0.7928 0.7903 | 0.7846 0.6719 | 0.4697 0.4328 | 0.6060 0.5849 | 0.5585  0.5555
VIF-RR | 0.8657 0.8479 | 0.8830 0.8715 | 0.7350  0.7214 | 0.7570 0.6493 | 0.6912 0.6803 | 0.7647 0.7588 | 0.7321  0.7347
WNISM | 0.8570 0.8442 | 0.8524 0.8370 | 0.6618 0.6606 | 0.7402 0.6142 | 0.2627 0.1742 | 0.3543  0.2810 | 0.2551  0.1880
FTB 0.7185  0.7165 | 0.7358  0.7400 | 0.5984 0.5866 | 0.5207 0.1112 | 0.5696 0.5474 | 0.5122 0.5155 | 0.5498 0.5213
SDM 0.8694 0.8635 | 0.7836 0.8199 | 0.5434 0.5307 | 0.7831 0.6617 | 0.7203 0.7331 | 0.6635 0.6292 | 0.7092  0.7496
Proposed | 0.8798 0.8664 | 0.8810 0.8715 | 0.8465 0.8434 | 0.6812 0.5291 | 0.7638 0.7605 | 0.6807 0.6617 | 0.7110 0.7116
100 100¢ 100
90 90t 90
80 80t 80
70 70r 70
8 60 8 60F 8 60
s ® GN s e GN s e GN
g 50 e 2 % - e g 5 . o8
40 ¢ MB 401 ¢ MB 40 ¢+ MB
A CC A cc 4 cc
30 v JPEG 30 v JrEG 30 . v JPEG
20 > JP2K 20Hf » JP2K 20 B JP2K
< LsC 4 LsC 4 LsC
"o 20 30 40 50 60 70 80 %0 100 Yo 20 30 40 s0 60 70 80 90 100 "o 20 30 40 50 60 70 80 90 100
NT-RR VIF-RR WNISM
() (®) ©
100 100 100
90 90t 90
80 80t 80
70 70t 70
8 60 8 60f 8 60
s e GN S ol e GN e GN
B8 % «cs 5 % . on = sof o oM
401 ¢ MB 40F ¢ MB 407 ¢ MB
A CC 4 CC A CC
30 v JPEG 307 v JPEG 30 v JPEG
20f > JP2K 20t > JP2K 20f > JP2K
< LsC < LSC < LsC
1("'10 20 30 40 50 60 70 80 90 100 1q0 20 30 40 50 60 70 80 90 100 1("'IO 20 30 40 50 60 70 80 90 100
FTB SDM Proposed
(d) (e ®

Fig. 7. Scatter plots of the difference mean opinion score versus objective RR-IQA scores (after nonlinear regression) for all SCIs. (a) DNT-RR, (b) VIF-RR,

(c) WNISM, (d) FTB, (e) SDM, (f) Proposed.
C. Performance Comparison on Individual Distortion Types

In this section, the breakdown prediction performance is
examined for individual distortion types. The performance
is provided in Table IV. It can be observed that in most
of the cases, the proposed method is among the best from
the perspectives of prediction accuracy and monotonicity.
The scatter plots between human ratings and the objective
scores after nonlinear regression are demonstrated in Fig. 7.
Different colors are used for different distortion types. One
can discern that the proposed method has stronger ability
in cross-distortion! quality prediction, which further verifies

L«Cross-distortion quality prediction” indicates that the IQA measure is able
to achieve good prediction performance when different distortion types are
involved. It requires the IQA model to be general and flexible to handle
broader types of distortions.

the robustness and efficiency of the algorithm. Moreover,
the scatter plots for the compressed SCIs (JPEG, JPEG2000,
and layer segmentation-based coding) are shown in Fig. 8,
which suggest that the proposed algorithm is capable of
delivering trusted quality prediction scores on the evaluation
of compression artifacts.

D. Performance Comparison on Individual Content Types

In SIQAD, the 20 source SCIs can be further divided into
three types from the perspective of application scenario: Web
page, slides, and PDF files (digital magazines). The SCIs
belonging to each content type are shown in Fig. 9. Moreover,
the IQA performance is further examined by comparing the
proposed method with the state-of-the-art RR-IQA algorithms.
The results are illustrated in Table V, and we can see that
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Fig. 9.

SCIs belonging to different content types. Red rectangular: Web page. Green rectangular: PDF. Blue rectangular: slides.

TABLE V
PERFORMANCE COMPARISONS WITH RR-IQA ALGORITHMS ON INDIVIDUAL CONTENT TYPES

SCI DNT-RR | VIF-RR | WNISM FTB SDM Proposed
SRCC 0.5353 0.6579 0.5556 0.4592 0.5301 0.8411
PLCC 0.5606 0.6186 0.6008 0.4647 0.5528 0.8619
Webpage | KRCC 0.3888 0.4892 0.3846 0.3257 0.3838 0.6521
RMSE | 11.6564 11.0605 | 11.2526 | 12.4642 | 11.7301 7.1387
MAE 9.4685 9.1471 9.0649 10.0879 | 9.2630 5.7670
SRCC 0.4703 0.5993 0.5772 0.4883 0.7042 0.7427
PLCC 0.5234 0.6488 0.6862 0.5396 0.7112 0.7997
Slides KRCC 0.3365 0.4437 0.4045 0.3721 0.5082 0.5659
RMSE | 12.2494 10.9388 | 10.4570 | 12.1029 | 10.1056 8.6315
MAE 9.9742 8.4214 8.6821 9.6359 7.8479 7.0576
SRCC 0.4645 0.5578 0.4950 0.4459 0.6291 0.7064
PLCC 0.4892 0.5673 0.5884 0.4695 0.6249 0.7514
PDF KRCC 0.3289 0.3999 0.3343 0.3255 0.4499 0.5181
RMSE | 12.3638 11.6737 | 11.4618 | 12.5161 | 11.0666 9.3532
MAE 9.9008 9.3657 9.4657 9.8397 8.8083 7.3986

the proposed algorithm can achieve the best quality prediction
performance for all of the three content types.

E. Parameter Sensitivity Evaluation

Generally speaking, a trusted quality measure should be
able to tolerate small parameter value changes. Therefore, we

conduct an experiment to investigate the impact of the parame-
ters used in Gaussian and motion blur on the quality prediction
performance. First, the standard deviation in the Gaussian
smooth kernel ¢ is examined by varying it from 3.5 to 7.5,
and the results are tabulated in Table VI. We can observe
that the performance of our IQA measure is barely affected.
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TABLE VI
PARAMETER SENSITIVITY TESTING WITH THE VARIATION OF ¢

o 3.5 4.5 5.5 6.5 7.5
SRCC | 0.7617 | 0.7649 | 0.7655 | 0.7653 | 0.7651
PLCC | 0.7972 | 0.8008 | 0.8014 | 0.8013 | 0.8014
KRCC | 0.5705 | 0.5746 | 0.5756 | 0.5750 | 0.5749
RMSE | 8.6421 | 8.5729 | 8.5620 | 8.5635 | 8.5621
MAE | 69130 | 6.8299 | 6.8021 | 6.8235 | 6.8004

TABLE VII

PARAMETER SENSITIVITY TESTING WITH THE VARIATION OF ¢

t 7 8 9 10 11
SRCC | 0.7531 | 0.7567 | 0.7655 | 0.7658 | 0.7625
PLCC | 0.7874 | 0.7943 | 0.8014 | 0.8041 | 0.8015
KRCC | 0.5612 | 0.5664 | 0.5756 | 0.5770 | 0.5721
RMSE | 8.8246 | 8.6958 | 8.5620 | 8.5089 | 8.5600
MAE | 7.0773 | 6.9795 | 6.8021 | 6.7546 | 6.8236

TABLE VIII

PARAMETER SENSITIVITY TESTING WITH THE VARIATION OF

0 -3 -1 1 3 5
SRCC | 0.7666 | 0.7629 | 0.7655 | 0.7665 | 0.7667
PLCC | 0.8023 | 0.7993 | 0.8014 | 0.8028 | 0.8025
KRCC | 0.5759 | 0.5718 | 0.5756 | 0.5765 | 0.5766
RMSE | 8.5452 | 8.6026 | 8.5620 | 8.5350 | 8.5408
MAE | 6.8349 | 6.8813 | 6.8021 | 6.8295 | 6.8198

Subsequently, the parameters used in the motion blur are
examined by changing ¢ from 7 to 11 and # from —3 to 5.
From Tables VII and VIII, it can be seen that the proposed
method is able to achieve considerably stable performance.
These results further provide useful evidence that the proposed
method is robust and tolerant to the varying parameter values
used in Gaussian and motion blur.

F. Performance Evaluation on Transmission Loss

Furthermore, we evaluate the performance of the
proposed method using the distorted SCIs degraded by
the transmission loss. In particular, two data sets are built
together with the subjective testing results. Distortion types
in the two data sets are JPEG and H.264/Advanced
Video Coding (AVC) transmission  errors. The
20 reference SCIs in SIQAD are employed. To create
the distorted versions of these SCIs, each SCI is first
compressed by the two codecs, JPEG and H.264/AVC, and
then the coding blocks are randomly discarded. The mean
pixel values from surrounding blocks are used to infer the
discarded block. To be consistent with the compression
process, the discarded block sizes are 8 x 8 and 16 x 16
for JPEG and H.264/AVC, respectively. Four distortion
levels depending on the probability of the transmission
loss are included, from 10% to 40% with an interval of
10%. In total, 80 distorted SCIs are generated from the 20
reference SCIs for each data set. Twenty human subjects
were invited to participate. In particular, they were asked
to view the distorted SCIs with a viewing distance around
2-2.5 screen heights, and ten-category discrete scale was
employed to record the subjective opinions. This process

11

TABLE IX

PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART RR-IQA
ALGORITHMS FOR JPEG TRANSMISSION LOSS

RRDNT  VIR-RR ~ WNISM FTB SDM Proposed
SRCC 0.8550 0.9016 0.6693 0.6343  0.8496 0.9171
PLCC 0.8687 0.9328 0.6737 0.6489  0.8503 0.9343
KRCC 0.6561 0.7069 0.4978 0.4533  0.6529 0.7565
RMSE 0.8153 0.5931 1.2166 12526  0.8664 0.5870
MAE 0.6580 0.4824 0.9413 1.0442  0.6922 0.4300
TABLE X

PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART RR-IQA
ALGORITHMS FOR H.264/AVC TRANSMISSION LOSS

RRDNT  VIR-RR ~ WNISM FTB SDM Proposed
SRCC 0.8670 09114 0.4640 0.5756  0.8802 0.9488
PLCC 0.8934 0.9545 0.4913 0.6355  0.8541 0.9608
KRCC 0.6535 0.7077 0.3083 0.4089  0.7000 0.8070
RMSE 0.6765 0.4493 1.3118 1.1628  0.7832 0.4176
MAE 0.5188 0.3583 1.0954 09126  0.6532 0.3135

is in consistent with that in developing the SIQAD. After
collecting the raw scores, the average values are calculated to
generate the final MOS for each distorted SCI.

The experimental results compared with the state-of-the-art
algorithms are tabulated in Tables IX and X, from which we
can observe that the proposed algorithm achieves superior per-
formance in terms of both prediction accuracy and monotonic-
ity. These results further demonstrate strong quality prediction
capability of the proposed method for SCI distortions.

G. Complexity Comparison

Table XI tabulates the execution time of different IQA meth-
ods. In particular, these IQA methods are run on the SIQAD.
The testing environments are Intel 17-4790 CPU@3.60 GHz,
8-GB random access memory, and MATLAB R2014 platform.
The average running time is recorded. For the RR-IQA meth-
ods, the computation of feature extraction at both the sender
and receiver sides, and the feature comparison operations
are included. One can discern that that the computational
complexity of the proposed model is among the lowest in
the compared IQA methods. Moreover, compared with the
other RR-IQA algorithms, our method significantly saves the
computational time, which enables its applications in real
scenarios.

H. Comparisons of the RR Data Rate to the SCI Data Rate

We have conducted an experiment to compare the data rate
of transmitting the features to that of transmitting the SCI.
As explained in Section IV-A, the RR data rate (Rrr) used
to transmitted the features is 48 b per picture. Assuming that
the coding bits of each SCI are Rscy, then the percentage of
the data rate used in transmitting the feature information is
computed by

_ RRrr
Rscr + Rrr-
In practice, we use the High Efficiency Video Coding screen

content coding extension codec (HM — 15.0 + RExt — 8.0 +
SCM — 2.0rcl) to compress each reference SCI in SIQAD

Prr (24)
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TABLE XI
RUNNING TIME OF DIFFERENT IQA METHODS

IQA Model | PSNR  SSIM  FSIM VSI GSIM ~ VSNR | DNT-RR  VIF-RR  WNISM  FTB SDM | Proposed
Time (s) 0.002  0.016 0.279  0.156  0.020 0.240 4314 12.731 1.867 0.531  0.391 0.197
TABLE XII

PERCENTAGE OF THE BIT RATE PRR USED IN TRANSMITTING THE FEATURE INFORMATION FOR EACH SCI IN SIQAD

CIM1 CIM2 CIM3 CIM4
QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40
0.008% | 0.016% | 0.036% | 0.008% | 0.013% | 0.026% | 0.008% | 0.013% | 0.031% | 0.008% | 0.014% | 0.029%
CIM5 CIM6 CIM7 CIMS
QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40
0.000% | 0.015% | 0.029% | 0.006% | 0.011% | 0.027% | 0.012% | 0.021% | 0.037% | 0.010% | 0.021% | 0.050%
CIMO CIMI0 CIMI1 CIM12
QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40
0.006% | 0.012% | 0.032% | 0.008% | 0.014% | 0.031% | 0.006% | 0.013% | 0.031% | 0.005% | 0.009% | 0.021%
CIM13 CIM14 CIMI5 CIMI6
QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40
0.000% | 0.017% | 0.037% | 0.007% | 0.013% | 0.035% | 0.007% | 0.012% | 0.024% | 0.006% | 0.012% | 0.030%
CIM17 CIMIS CIMI9 CIM20
QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40 | QP=20 | QP=30 | QP=40
0.011% | 0.022% | 0.050% | 0.006% | 0.012% | 0.025% | 0.006% | 0.012% | 0.029% | 0.008% | 0.016% | 0.036%

(CIM1~CIM20) at three QP points (QP = 20, 30, 40),
ranging from high bit rate to low bit rate coding. Advanced
coding tools that have been specifically developed for SCI
compression are enabled, such as intra-block copy and palette
mode [63]. The results are shown in Table XII, from which
we can observe that Prr is 0.02% on average. As such, the
RR data rate can be regarded as negligible in the transmission
of SCI stream.

1. Discussion

Practically, deploying the SCI RR quality assessment
method in the interactive screen-remoting system requires the
algorithm to be both effective and efficient, especially in the
trend of increasing proliferation of high-volume screen visu-
alization data for the purpose of real-time quality monitoring
and high-fidelity display maintaining. Though it is difficult
to simultaneously achieve both of them, we can observe that
our model is able to achieve a good compromise from the
validations. In particular, the proposed method outperforms the
state-of-the-art methods for the overall database and most of
the individual distortion types, while the transmission overhead
is only 48 b/pic and the computational complexity is among
the lowest.

As one of the first attempts on this topic, the proposed
method also has several limitations that should be improved in
the future. First, the current method is applicable to the SCI.
In practice, how to extend it to screen content video should be
further investigated. In particular, the high correlation among
screen video frames may further reduce the transmission and
computational overhead of the extracted features by exploiting
the inter-prediction like techniques for feature prediction.
Second, it is worth mentioning that the design of RR method
does not make any assumption on the image distortion types,
making it have the potential to be used for general-purpose
applications. However, currently, the testing is based on eight

distortion types. In the future, more distortion types will be
involved for verification as well. Moreover, statistical features
that exhibit more robust cross distortion type prediction will
be studied in the future. Third, the methodology of selecting
the model parameters from the functionalities of HVS is
worth further exploring. Though the investigation of viewing
behaviors for the particular screen content is still at the starting
stage, the fundamentally interesting differences between SCIs
and natural images from the perspective of psychological
studies may bring more inspirations to the model parameter
selection in the future. Finally, how to design screen content
enhancement algorithm using the statistical features from the
proposed RR-IQA algorithm is a topic worth further investigat-
ing. This poses new challenges to IQA and restoration research
for SCIs and opens up new space for future exploration.

V. CONCLUSION

We have specifically developed an RR-IQA model that
automatically predicts the quality of SCIs. Statistical features
obtained from the primary visual information and the amount
of uncertainty are combined in an efficient way to reflect the
perceived quality. The RR data rate (48 b/pic) is negligible
compared with the compressed SCI bitstream, and the compu-
tational complexity is among the lowest in the state-of-the-art
IQA algorithms. Experimental results show that the proposed
method is well correlated with subjective evaluations of SCI
quality, suggesting that it is promising at handling computer
generated unnatural images.
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