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ABSTRACT
In the past decade, SIFT is widely used in most vision tasks
such as image retrieval. While in recent several years, deep
convolutional neural networks (CNN) features achieve the
state-of-the-art performance in several tasks such as image
classification and object detection. Thus a natural question
arises: for the image retrieval task, can CNN features sub-
stitute for SIFT? In this paper, we experimentally demon-
strate that the two kinds of features are highly complemen-
tary. Following this fact, we propose an image representa-
tion model, complementary CNN and SIFT (CCS), to fuse
CNN and SIFT in a multi-level and complementary way. In
particular, it can be used to simultaneously describe scene-
level, object-level and point-level contents in images. Ex-
tensive experiments are conducted on four image retrieval
benchmarks, and the experimental results show that our
CCS achieves state-of-the-art retrieval results.
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1. INTRODUCTION
Scale-invariant feature transform (SIFT) [1] has been the

most widely-used hand-crafted feature for content-based im-
age retrieval (CBIR) in the past decade. Technologically,
SIFT is intrinsically robust to geometric transformations
and shows good performance for near-duplicate image re-
trieval [2] [3]. Meanwhile, there are also many works (e.g.,
Fisher vector [4], VLAD [5] and their variants [6] [7] [8]),
that attempt to construct semantically-richer mid-level im-
age representations so as to improve the retrieval perfor-
mance. However, in spite of significant efforts, it is still
difficult to fully bridge the semantic gap between such fea-
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Figure 1: The demonstration of our proposed com-
plementary CNN and SIFT (CCS). The CCS aggre-
gates three level contents, i.e., scene-level, object-
level and point-level representations.

ture representations and human’s understanding of an image
only with SIFT-based features.

Recently, deep convolutional neural networks (CNN) have
achieved the state-of-the-art performance in several tasks,
such as image classification [9] [10], object detection [11] [12]
and saliency detection [13]. Compared with hand-crafted
features, CNN features learned from numerous annotated
data (e.g., ImageNet [14]) in a deep learning architecture,
carry richer high-level semantic information. Several at-
tempts in CBIR [15] [16] [17] showed that CNN features
work well for image retrieval as a scene-level representation.
Gong et al. [18] proposed an approach called Multi-scale
Orderless Pooling (MOP) to represent local information by
aggregating CNN features at three scales respectively. Kon-
da et al. [19] and Xie et.al. [20] detected object proposals
and extracted CNN features for each region at the object-
level. Besides, there are also some researchers who paid
attention to deep convolutional layers to derive representa-
tions [21] [22] [23] [24] for image retrieval. Although CNN
features achieve good performance, we can not say that C-
NN will always outperform SIFT yet. Vijay et al. [25] had
showed that no one was better than the other consistently
and the retrieval gains can be obtained by combining the
two features.
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Figure 2: The overall performance comparison of
SIFT, CNN, and their naive combination.

Inspired by these pioneering works and our preliminary
experiments described in section 2, we demonstrate that C-
NN and SIFT features are highly complementary for image
retrieval tasks. Following this fact, a complementary CNN
and SIFT (CCS) image representation is proposed in this
paper. A similar work is Zheng et al. [26], which also fused
CNN and SIFT from multiple levels. But [26] utilized CNN
features derived from regional and global patches as auxil-
iary cues to BoW model to improve the matching accuracy
of local feature, while our method focuses on getting a uni-
fied and powerful representation integrating CNN and SIFT
coequally. As shown in Fig. 1, CNN features from scene and
object levels and SIFT features from point-level are fused to
form a compact image representation: First, features from
the top layer of CNN are utilized as the scene-level repre-
sentation. Secondly, we obtain the deep CNN features of
each region generated by the object proposal method, and
pool them to a fixed-length object-level representation with
VLAD. Note that the pooling method really influences the
power of object-level representation. It is demonstrated that
VLAD pooling outperforms other pooling in our experimen-
tal results. Thirdly, a VLAD representation of SIFT features
serve as the point-level representation. Finally, we concate-
nate all the three level representations and then leverage
PCA to reduce redundancies so as to obtain the final com-
pact representation.

Experiments are conducted on four image retrieval bench-
marks, i.e., INRIA Holidays [27], Oxford5K [28], Paris6K [29]
and UKBench [30]. Experimental results show that the
proposed CCS outperforms the state-of-the-art methods on
three datasets, and achieves comparable performance on the
INRIA Holidays dataset (the smallest one).

2. PRELIMINARY EXPERIMENTS
In this section, we qualitatively discuss the complemen-

tarity between CNN and SIFT through a preliminary ex-
periment. We conduct the experiment on the UKBench
dataset [30]. As a widely-used image retrieval benchmark,
this dataset consists of 10,200 images of 2,550 objects, each
containing 4 images. By using every image as the query,
the performance is reported as the average recall at top four
results.

We obtain CNN and SIFT features by using standard set-
tings. Specifically, we extract global activation values pro-
vided by the pool5 layer in GoogLeNet [10] as CNN fea-
tures. VLAD is adopted to aggregate SIFT features. The
two features hold the same dimension after adopting PCA
to compress the corresponding representations.

The overall result is shown in Fig. 2. From the results,
we can see that CNN and SIFT achieve nearly comparable

Figure 3: An image retrieval example from UK-
Bench. Each image has three most similar images.

performance. To investigate the complementarity, we con-
duct an experiment by simply concatenating CNN and SIFT
features, and the performance is significantly boosted.

An example of results is shown in Fig. 3. CNN and SIFT
return one similar image respectively. However, the returned
similar images are not the same one. Their naive combina-
tion returns two similar images, demonstrating that they
are indeed highly complementary. From another perspec-
tive, this example also shows that the naive combination of
CNN and SIFT may not work perfectly since one similar
image is also missed in this result.

3. CCS: A MULTI-LEVEL REPRESENTA-
TION OF COMPLEMENTARY CNN AND
SIFT

In this section, we describe the proposed CCS image rep-
resentation. As shown in Fig. 1, it mainly consists of three
level representations and a fusion method. In what follows,
we introduce each component in detail respectively.

3.1 Scene-level representation
Scene-level features are used to mainly capture global and

high level information for an image. It is well known that
the deep learning features, especially those from the high
layers, are suitable to represent semantic information [9]. In
this study, we obtain CNN features from the pool5 layer in
GoogLeNet [10], which is a recent deep convolutional net-
work that ranked as the top one at the image classification
task in ILSVRC 2014. Here, we denote the scene-level se-
mantic features as fs ∈ R1024.

3.2 Object-level representation
We obtain the object-level representation using the fol-

lowing three steps: First, we take advantage of an object
proposal approach to produce numbers of candidate object
regions. Secondly, we extract deep features for each selected
region. Finally, these features are pooled to a fixed-length
feature vector using an appropriate pooling method.

Object proposals. Considering the trade-off between
efficiency and effectiveness, we adopt edgebox [31] to pro-
duce a set of object proposals. Unlike [19] which achieved
good performance by choosing the best number of proposal
regions from 100 to 2,000, we choose only top 100 regions
ranked by their scores considering the computational effi-
ciency.

408



Features for regions. After obtaining the regions of
object proposals, we also extract CNN features from the
pool5 layer in GoogLeNet for them:

Fo =
{
fo1 , fo2 , fo3 , · · · , foN

}
, (1)

where Fo is the set of object features for an image, foi is the
CNN features of the i-th proposal region, N is the number
of proposals (100 in our experiments).

Pooling methods. We introduce three pooling meth-
ods i.e., max pooling, sum or average pooling and VLAD
pooling.

(1) Max pooling: Girshick et al. [11] have illuminated
that at the intermediate layers of the CNN, a high activation
of a node indicates a specific type of visual input. Therefore,
this pooling method mainly stores the high activation for
each visual content. It can be represented as

fo = [max{f (1)
on }

N
n=1, · · · ,max{f (D)

on }
N
n=1], (2)

where fo is the final representation after pooling the features

of all regions, max{f (i)
on }Nn=1 represent the max value at the

i-th dimension of all features, and D is the dimension of each
feature, which is also the final dimension in the component
(1024 in our experiments).

(2) Sum or average pooling: This pooling method
retains the sum/average activation for each visual content.
It pools CNN features by

fo = [

N∑
n=1

f (1)
on , · · · ,

N∑
n=1

f (D)
on ], (3)

where
N∑

n=1

f
(i)
on represents the sum value at the i-th dimension

of all region features. The formulation for average pooling

only needs to replace
N∑

n=1

f
(i)
on by 1

N

N∑
n=1

f
(i)
on .

(3) VLAD pooling: As for VLAD pooling, we first u-
tilize k-means to obtain c1, c2, · · · , ck of k visual word cen-
ters. For each image, a region feature foi is assigned to its
nearest center cm = NC(foi). After subtracting the corre-
sponding cluster center, the residuals of each region feature
are retained. An VLAD description for an image can be
represented as follows:

Fv = [
∑

NC(foi )=c1

(foi − c1), · · · ,
∑

NC(foi )=ck

(foi − ck)], (4)

where Fv is an aggregated feature after pooling all object-
level features for an image. And we represent the VLAD
features by accumulating the residuals on each visual word
center. Therefore, the dimensionality of such a representa-
tion is k ∗d, which is too high to describe an image efficient-
ly for retrieval. We subsequently apply L2 normalization
and PCA to obtain a fixed dimension, and then derive the
object-level representation fo.

3.3 Point-level representation
Preserving geometric invariance in image representation

is important for image retrieval, since some images are ob-
tained through scaling, rotating and other geometric trans-
formations. Additionally, considering that the hand-crafted
features can keep stable performance without the need of su-
pervised training on a large dataset, we introduce the SIFT
descriptor to represent point-level information.

RootSIFT [32] is adopted to generate the descriptors sur-
rounding interest points for an image, and then VLAD is
used to obtain the point-level representation. We also apply
post-processing methods on this VLAD representation, i.e.,
L2 normalization and PCA, to derive a fixed dimensionality.
Finally, the point-level representation is denoted by fp.

3.4 Fusing three-level representations
To fuse the three level features, we directly concatenate

them to generate the integrated representation f with

f = [fs, fo, fp]. (5)

Note that this integrated representation has relatively high
dimensionality (i.e., three times as much as each componen-
t). Aiming to represent an image more compactly, we con-
duct a series of post-processing operations on the integrated
representation. First, PCA and whitening are performed on
f after the L2 normalization, which can be represented as
below:

fwhiten = diag(1./sqrt(v1, v2, · · · , vh)) ∗ U ∗ f

||f ||2
, (6)

where U is the PCA transformation matrix, h is the number
of the retained dimensions after PCA, and vi is the ith corre-
sponding singular value. At last, L2 re-normalization is per-
formed to obtain the final compact representation ffinal =

fwhiten
||fwhiten||2

for an image.

4. EXPERIMENTS AND RESULTS
We perform extensive experiments on commonly used bench-

marks to show the effectiveness of CCS. Two sets of exper-
iments are conducted, including the evaluation of differen-
t pooling methods for object-level and the holistic perfor-
mance compared with state-of-the-art methods.

4.1 Datasets and evaluation
Four image retrieval benchmarks are used in experiments,

including INRIA Holidays [27], Oxford5K [28], Paris6K [29]
and UKBench [30]. Following the corresponding standard
evaluation protocols, we report the performance using mean
average precision (mAP) on INRIA Holidays, Oxford5K and
Paris6K, and report recall at top four results on UKBench.

4.2 Experiments of object-level pooling
In Sec. 3.2, we have introduced three pooling methods.

Obviously, the pooling method will remarkably influence the
retrieval performance. Compared with the other two meth-
ods, the VLAD pooling method needs more parameters. We
utilize k-means to generate 500 centers, and then adopt P-
CA to reduce the dimensionality to 1024 ultimately. In our
experiments, we follow [7] which uses the soft assignment to
get a more powerful representation.

We experimentally compared these pooling methods on
Holidays and UKBench datasets. The results are shown in
Table 1. We can see that the VLAD pooling method is the
best method to aggregate object-level semantic features. A
reasonable interpretation of the results is that VLAD can
capture the 0th and 1st order statistics as advocated in [5].
Whereas, max pooling and sum/average pooling lack 1st

order statistics. According to the experimental results and
the analysis, we adopt VLAD for aggregating object-level
CNN features.
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Table 1: Comparison of different pooling methods
aggregating object-level contents

Method Dimension Holidays UKBench
Max 1024 66.89 3.70

Sum/average 1024 62.89 3.62
VLAD 1024 71.66 3.77

Table 2: The retrieval results (mAP) on INRIA Hol-
idays dataset.

Dimension
Method 32 64 128 256 512 1024 2048
VLAD [5] 48.4 52.3 55.7 - 59.8 - 62.1
TE [6] - - 61.7 - - 72.0 -
NC [15] 68.3 72.9 78.9 74.9 74.9 - -

SPoC [21] - - - 81.8 - - -
MOP [18] - - - - 78.38 - 80.18
LC [22] - - 83.6 - - - -
SP [17] - - - 74.2 - - -
OC [19] 73.96 80.67 85.09 87.77 88.46 86.58 85.94
fs + fo: 68.87 75.09 78.57 80.39 80.56 79.34 79.46
fs + fp: 71.36 78.46 81.74 83.96 84.84 83.79 83.83
fo + fp: 67.94 75.57 81.08 83.21 84.86 82.25 82.56
ffinal 74.65 79.16 84.13 86.32 87.43 85.79 86.09

4.3 Comparison with state-of-the-arts
To make fair comparison, we evaluate the overall retrieval

performance at different dimensions from 32 to 2048. Since
the original dimension of our CCS image representation is
3072, we perform PCA on the CCS representation so as to
derive its low-dimension variants. The experimental results
are presented in Tables 2, 3, 4, 5. The best performance
at each dimension is shown in bold.

Several observations can be drawn from these results. First,
after performing PCA, features at relatively low dimensions
may achieve better performance since PCA eliminates the
influences of redundancies. Secondly, the combination of
two level features can approach or outperform the pervi-
ous state-of-the-art methods, demonstrating that multi-level
representation is very powerful. However, their performance
is slightly unstable. For example, fs + fp achieves better
performance on Holidays, but the other two combinations
achieve better performance on Oxford5K. Finally, compared
with two level features, our method almost outperforms all
the possible combinations of two level features on the four
datasets (apart from the Paris6K dataset at 512 and 2048 di-

Table 3: The retrieval results (mAP) on Oxford5K
dataset

Dimension
Method 32 64 128 256 512 1024 2048
VLAD [5] - - 28.7 - - - -
TE [6] - - 43.3 - - 56.0 57.1

gVLAD [8] - - 60 - - - -
NC [15] 39.0 42.1 43.3 43.5 43.5 - -

SPoC [21] - - - 59.3 - - -
LC [22] - - 59.3 - - - -
SP [17] - - - 53.3 - - -
OC [19] 40.1 48.02 56.24 59.78 60.71 59.42 58.92
fs + fo: 45.99 53.59 58.97 62.43 62.69 62.06 61.98
fs + fp: 43.98 50.19 55.02 58.14 59.59 60.46 60.04
fo + fp: 46.87 54.67 63.78 65.13 63.47 62.17 61.04
ffinal 48.71 56.78 64.84 67.62 67.26 66.41 65.43

Table 4: The retrieval results (mAP) on Paris6K
dataset

Dimension
Method 32 64 128 256 512 1024 2048

gVLAD [8] - - 59.2 - - - -
LC [22] - - 59.0 - - - -
SP [17] - - - 67.0 - - -
OC [19] 65.38 71.47 70.39 68.43 66.23 64.11 62.84
fs + fo: 74.84 76.67 75.14 72.71 70.44 69.44 69.46
fs + fp: 70.52 75.35 75.22 73.94 72.42 71.02 70.99
fo + fp: 66.17 68.54 65.76 61.76 58.55 56.49 55.91
ffinal 76.34 78.27 76.76 74.35 72.22 71.07 70.72

Table 5: The retrieval results on UKBench
dataset.(∗ indicates the recall result transformed from
precision at top 4.)

Dimension
Method 32 64 128 256 512 1024 2048
VLAD [5] - - 3.35 - - - -
TE [6] - - 3.4 3.45 3.49 3.51 -
SP [17] - - - 3.54∗ - - -

SPoC [21] - - - 3.65 - - -
NC [15] 3.3 3.53 3.55 3.56 3.56 - -
OC [19] 3.4 3.61 3.71 3.77 3.81 3.84 3.84
fs + fo 3.51 3.66 3.73 3.78 3.80 3.82 3.83
fs + fp 3.48 3.65 3.74 3.79 3.82 3.83 3.84
fo + fp 3.50 3.69 3.78 3.83 3.87 3.89 3.89
ffinal 3.61 3.75 3.81 3.86 3.89 3.91 3.91

mensionalities). Moreover, ours outperforms all these state-
of-the-art methods on the Oxford5K, Paris6K and UKBench
datasets. In particular, our CCS reaches 3.91 on the UK-
Bench dataset in term of recall. We also achieve comparable
performance on the Holidays dataset, which is the smallest
dataset containing only 1491 images.

5. CONCLUSION AND FUTURE WORK
In this paper, we verify the complementarity between C-

NN and SIFT features for image retrieval tasks. To ben-
efit from the complementarity, we propose the CCS model
to represent scene-level, object-level and point-level visual
content simultaneously. By compressing the CCS represen-
tation with simple PCA, it outperforms or achieves compa-
rable performance over several state-of-the-art methods on
four benchmarks. This paper also provides an insightful ob-
servation that the conventional hand-crafted features can be
integrated with deep learning features so as to obtain better
representation of an image. In the future, we will consider
a different strategy of feature combination instead of simple
PCA so as to further improve the performance for image
retrieval, e.g., bayesian fusion.
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