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Abstract. Depth estimation from a single image is an emerging topic
in computer vision and beyond. To this end, the existing works typically
train a depth regressor from visual appearance. However, the state-of-
the-art performance of these schemes is still far from satisfactory, mainly
because of the over-fitting and under-fitting problems in regressor train-
ing. In this paper, we offer a different data-driven paradigm of estimat-
ing depth from a single image, which formulates depth estimation from
a search-based perspective. In particular, we handle the depth estima-
tion of local patches via a novel cross-modality retrieval scheme, which
searches for the 3D patches with similar structure/appearance to the 2D
query from a dataset with 2D-3D mappings. To that effect, a coupled dic-
tionary learning formulation is proposed to link the 2D query with the 3D
patches, on the reconstruction coefficients to capture the cross-modality
similarity, to obtain a rough depth estimation locally. In addition, con-
sistency on spatial context is further introduced to refine the local depth
estimation using a Conditional Random Field. We demonstrate the effi-
cacy of the proposed method by comparing it with the state-of-the-art
approaches on popular public datasets such as Make3D and NYUv2,
upon which significant performance gains are reported.

Keywords: Single image depth estimation · Cross-modality retrieval ·
Coupled dictionary learning · Contextual refinement

1 Introduction

Depth estimation from a single monocular image [24] is a fundamental prob-
lem in computer vision, with various applications in stereo vision, robotics, and
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Fig. 1. The framework of our method.

scene understanding [17,26]. In a typical setting most approaches [1,9,17,25]
use a standard regression or classification pipeline to predict the depth fitting,
orientation and plane fitting. Such pipeline consists of the calculation of dense or
sparse features, followed by an appearance feature representation and regressor
training. The responses of a classifier or a regressor are combined in a proba-
bilistic framework, and under very strong geometric priors the most probable
scene layout is estimated. Despite promising progress achieved, these methods
are still far from practical applications, with the conflict between the model
capability and the data scalability, resulting in over-fitting or under-fitting for
such learning-based paradigm.

Coming with the proliferation of 3D sensing devices e.g. Kinect and matured
3D modeling techniques e.g. Structure-from-Motion [5,7] and visual SLAM
[21,30], massive-scale 3D data such as point clouds and depth maps are available
nowadays, which can provide rich correspondences between 2D visual appearance
and 3D depth structures. Therefore, is it possible to take advantage of such rich
2D-3D correspondences towards a search-based paradigm in depth estimation?
In this work, we tackle the depth estimation from a different perspective with
traditional methods [11–13,16,17,25,26]. In general, we adopt a search-based
paradigm that leverages a dictionary-based cross-modality retrieval to robustly
and efficiently find best-matches 3D depth given a 2D query patch as the local
depth estimator. It is followed by a Taylor formula based contextual refinement
to achieve a consistent yet accurate global depth estimation at the image-level.

In particular, unlike the traditional approaches [25,26] that learn a regressor
from image to depth indirectly, we first perform joint dictionary learning to
bridge the similarity gap between 2D image patches and 3D depth maps to
facilitate cross-modal retrieval. Then, given an image patch, we search for the
corresponding 3D patches from a large reference set with the depth information
between 2D and 3D local patches. This approach provides key advantages in
both online efficiency and generalization ability.
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The above patch-wised local depth estimation is further integrated with spa-
tial contextual constraints using Conditional Random Field (CRF), as was com-
monly adopted in existing works [6,11,17,26]. To evaluate the performance of
the proposed method, we conduct experiments on the widely-used Make3D and
NYUv2 datasets. We compare the proposed method with several existing state-
of-the-art ones, including make3D [26], Semantic Labelling [17] and Depth Trans-
fer [11]. We report significant performance gain to demonstrate the advantages
of the proposed model. The main contributions of our work are three-fold:

– We propose a novel cross-modality retrieval paradigm that does not rely on
training depth regressors to tackle over- and under-fitting issues previously
existed;

– A novel coupled dictionary learning is introduced to bridge the similar gap
between 2D query and 3D references, with detailed analytical solutions for
fast yet accurate parameter learning;

– Adopting contextual refinement with Taylor expansion and CRF inference,
which also improves the generalization capability. Compared with traditional
methods [11,26], the proposed inference does not require parameter fitting on
the training set.

2 Related Work

Previous works [4,26] in depth estimation from a single monocular image typi-
cally follow a regression setting. In this setting, the image is first over-segmented
into superpixels, and then a pre-trained local depth regressor is applied on each
individual superpixel to estimate the corresponding local depth. Subsequently,
the Markov Random Field (MRF) or Conditional Random Field (CRF) [4] is
frequently employed to impose spatial constraints on the estimated local depth.
Such contextual cues usually include 3D location and orientation of the patch
[26], as well as the global context [25] among patches. For instance in [17], Liu
et al. partitioned depth estimation into two phrases, i.e., semantic segmenta-
tion [27] and 3D reconstruction, with the semantic labels guiding the 3D recon-
struction. In [20], Liu et al. modeled depth estimation as a discrete-continuous
optimization problem, where the continuous variables encode the depth of super-
pixels in the input image, and the discrete ones represent relationships between
neighboring superpixels. Karsch et al. [10,11] inferred the depth map by three
stages: candidate images discovery, point-wise alignment and optimization pro-
cedure. More recently, deep learning [6] was introduced for single image depth
estimation. For instance, Liu et al. [19] combined the Convolutional Neural Net-
work (CNN) and the CRF model for depth estimation, where the CNN learns the
geometric priors and the CRF model could further optimize the depth among
adjacent superpixels. Similar to [19], the method in [15] also extracted deep
CNN features for depth regression, which was combined with the CRF-based
post processing. The limitation of the state-of-the-art methods for single image
depth estimation is closely tied to the property of perspective geometry, which
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becomes a bottleneck for the current RGB-D based methods. In contrast, this
limitation severely affects methods based on 3D model, since the 3D model can
offer all stereo perspectives, which provides a new aspect to conquer this limita-
tion.

Cross-modality retrieval has also attracted vast research focuses in recent
years. In [34], Wang et al. built a cross-modality probabilistic graphical model
to discover mutually consistent semantic information among different modali-
ties. In [23], cross-modal correlations and semantic abstraction were employed
to jointly model the text and image components. Zhuang et al. [37] proposed a
SliM 2 model to formulate the multimodal mapping as a constrained dictionary
learning problem, where the label information [3] is employed to discover the
shared intra-modality structure. More recently, deep learning methods were fur-
ther employed in cross-modality retrieval [31,34] for the tasks of text-to-image
and image-to-text search. The main disadvantage of the existing cross-modality
retrieval methods is that they can not learn the structure information from
images and 3D models. However, we can rebuild the structure information of
image patches by sharing the reconstruction coefficients with coupled dictionary
learning.

Recent works have shown the effectiveness of coupled dictionary learning in
exploring inherent correlations between two data channels. Here, we introduce
the most relevant works to ours. Wang et al. [32] proposed a semi-coupled dic-
tionary learning (SCDL) method to conduct cross-style image synthesis. Yang
et al. [36] employed neural network to jointly learn dictionaries of different res-
olutions. To tackle the deblurring problem, Xiang et al. [35] trained dictionaries
on both clean and blurred images jointly, and Wang et al. [33] learned a dictio-
nary on deblurred intermediate results and blurred images jointly. Shekhar et al.
[28] established the identity of multi-source information by joint sparse repre-
sentation. And He et al. [8] jointly learned overcomplete dictionaries for one
single super-resolution image. Note that the above methods suppose that both
dictionaries are learned upon data with the same modality, which is very chal-
lenging to capture the cross-modality similarity using learned existing coupled
dictionary learning methods.

3 Cross-Modality Retrieval for Local Depth Estimation

The first step is to infer local depth from a single image. To this end, we first train
dictionaries from different modalities (i.e., 2D image patches and 3D models)
synchronously and then conduct cross-modality retrieval for each target patch.
Based on the retrieval results, we estimate the depth from the most correlated
3D model directly. Section 3 presents the details of the above process.1

3.1 Coupled Dictionary Learning

Our basic assumption is that if an object can be decomposed into a set of 3D
objects, its 2D projection should be able to decomposed in the same way, and
1 Contextual refinement will be further introduced in Sect. 4.
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vise versa. Therefore, given a set of 2D patches2 xj
im (j = 1, · · · , n) and the corre-

sponding 3D model xj
depth (j = 1, · · · , n), from a dictionary learning perspective,

we aim to obtain a pair of codes yj
im for xj

im and yj
depth for xj

depth based on two
dictionaries Dim and Ddepth. And these two codes are supposed to be similar
after the proper projection. This intuition leads to the following formulation:

min
Dim,Ddep

∑

j

∥∥∥xj
im − Dim · yj

im

∥∥∥
2

2
+ α

∥∥∥xj
dep − Ddep · yj

dep

∥∥∥
2

2

+ β
∥∥∥yj

dep − R · yj
im

∥∥∥
2

2

s.t. RT · R = I,

(1)

where yj
dep and yj

im are the reconstruction coefficients. Dim = [d1
im,d2

im, · · ·
,dc

im] ∈ �p×c is the dictionary 2D patches, while Ddep =
[
d1
dep,d

2
dep, · · · ,dc

dep

]
∈

�q×c is the dictionary of 3D models.. The first term in Eq. 1 is the reconstruction
error between the 2D image patches xj

im and their corresponding representation
results. The second term is 3D reconstruction error. And the third term is the pro-
jection error of coefficient yj

dep and yj
im. Through the projection matrixR, 3D and

2D coefficients are connected to enable cross-modality similarity matching.
However, it is not exactly proper to force projection matrix R to be orthog-

onal. Although orthogonality can guarantee R to be full rank and make the
coefficient spaces equivalent, such strict constraint may leads to a suboptimal
result. We therefore relax the constraint and merge the second and third terms
in Eq. 2 which is equivalent to Eq. 1, but less restrict.

min
Dim,Ddep

‖Xim − DimY ‖2F + α ‖Xdep − DdepY ‖2F . (2)

where Y =
[
y1,y2, · · · ,yn

]
is the coefficient matrix and Xim =

{x1
im,x2

im, · · · ,xn
im}, xi

im ∈ �p×1 is a set of n RGB image patches, whose corre-
sponding depth image patches3 are Xdep = {x1

dep,x
2
dep, · · · ,xn

dep}, xi
dep ∈ �q×1.

To solve Eq. 2, an alternative minimization approach is designed.

1. Fix D to optimize Y

min
Y

‖Xim − DimY ‖2F + α ‖Xdep − DdepY ‖2F , (3)

is an unconstrained optimization. And we can give the analytic solution as

Y =
(
DT

imDim + αDT
depDdep

)−1 (
DT

imXim + α · DT
depXdep

)
, (4)

2. Fix Y to update D, then Eq. 2 can be reformed as:

min
Dt

‖Xt − DtY ‖2F , t ∈ {im,dep}, (5)

2 We chose training patches by retrieving the most similar images from the database
with gist.

3 Without loss of generality, we take the depth image, the most popular 3D form in
single monocular depth estimation, as an example.
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Fig. 2. Visualization results of Dictionaries: The left four columns are visualized from
Make3D dataset and the right four columns from NYUv2 dataset. The first row consists
of test images, the second row and third row consist of RGB feature dictionaries and
depth dictionaries,respectively, which are trained by the candidate [22] images.

which can be solved by postmultiplication of Moore-Penrose generalized
inverse matrix [2] of Y 4 as

Dt =XtInverse (Y )

Inverse (Y ) =Y T
(
Y Y T + Iε

)−1
,

(6)

3.2 Cross-Modality Retrieval

So far, we have trained the dictionaries Ddep and Dim. Given a set of queries
Xθ

im of 2D patches, our goal is to get the corresponding 3D model Xθ
dep. The

optimal result can be obtained by Eq. 2 as

min
Y θ,Xθ

dep

∥∥Xθ
im − DimY

θ
∥∥2

F
+ α

∥∥Xθ
dep − DdepY

θ
∥∥2

F
. (7)

To accelerate the convergence in Eq. 7, we can initialize parameters using

Ŷ θ = min
Y

∥∥Xθ
im − DimY

θ
∥∥2

2
+ α

∥∥Xθ
dep − DdepY

θ
∥∥2

F
,

X̂θ
dep =DdepŶ

θ.
(8)

After obtaining the reconstruction coefficient Ŷ θ and the related 3D model
X̂θ

dep of image patches, we can optimize the entire image by setting initial depth
value X̂θ

dep
5.

4 Generally, Inverse (Y ) = GH
(
GGH

)−1 (
MHM

)−1
MH takes too much time, and

is replaced by Eq. 6. G, M are the row and column full rank matrices computed by
a full rank decomposition of Y ,respectively.

5 Further process will be explained in Sect. 4.
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4 Large Margin Structure Inference

We gather the initial depth patches (Sect. 3.2) to form the initial depth of the
entire image I0

dep. There are N images Ii
im (i = 1, · · · , N) from dataset that are

similar [22] with the query image I0
im in RGB space, whose depth images are

Ii
dep (i = 1, · · · , N). And the depth image, we want to infer, is Ĩdep.

The Algorithm 1. the Proposed Method�

Input
Query Image I0

im ∈ �w×h,
Candidate Images Ii

im ∈ �w×h (i = 1, · · · , N),
Corresponding Candidate 3D Models Ii

dep ∈ �w×h (i = 1, · · · , N) .

1. Cross-Modality based Prior Depth Inference

(a) Extract overlapped image patches xj
im ∈ �p×1 (j = 1, · · · , n) from Ii

im,

and corresponding depth map patches xj
dep ∈ �q×1 (j = 1, · · · , n) from Ii

dep, using

Eq. 4 and Eq. 6 to calculate Dictionary Dim ∈ �p×c and Ddep ∈ �q×c

(b) Extract non-overlapped image patches xk
im ∈ �p×1 (k = 1, · · · , m) from

I0
im, using Eq. 8 to calculate the corresponding initial depth map patches

xk
dep ∈ �p×1 (i = 1, · · · , m).

(c) Obtain the prior depth I0
dep of the entire image I0

im

2. Large Margin Structure Inference
To minimize Eq. 16, is equivalent to minimize

lnΨd

(
Ĩdep, Ii

dep, Ĩim, Ii
im

)
= lnΨds

(
Ĩdep

)
+ lnΨdp

(
I0
dep, Ĩdep

)

+ lnΨdd

(
Ĩdep, Ii

dep, Ĩim, Ii
im

)
.

(9)

Eq. 16 can be transformed into the following format

lnΨd

(
Ĩdep, Ii

dep, Ĩim, Ii
im

)
=
∑

r

∥∥∥Ar Ĩdep − br

∥∥∥ . (10)

To minimize Eq. 10, we can get the lth iteration solution of Ĩdep by gradient descent

Ĩl
dep =

⎛
⎜⎜⎝
∑
r,s

AT
(r,s)

A(r,s)√(
A(r,s)Ĩ

l−1
dep − b(r,s)

)2
+ ε

⎞
⎟⎟⎠

−1⎛
⎜⎜⎝
∑
r,s

AT
(r,s)

b(r,s)√(
A(r,s)Ĩ

l−1
dep − b(r,s)

)2
+ ε

⎞
⎟⎟⎠

(11)
where A(r,s) is the sth row of Ar, b(r,s) is the sth element of vector br and ε is 10−6

Output

The optimized depth map Ĩ∗
dep of image I0

im
�The overall time complexity is O(mn + p3 + p2q + N), in which m is the average
number of patches in a training image, n is the number of images used for dictionary
learning, p is the size of the codebook, and N is the size of the database to search,
assuming the patch size is q × q.
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The Taylor expansion of Ĩdep and Ii
dep at point (a, b) are

Ĩdep (x, y) = Ĩdep (a, b) + ∇xĨdep (a, b) · (x − a) + ∇y Ĩdep (a, b) · (y − b)

+
1
2
∇2

xĨdep (a, b) · (x − a)2 +
1
2
∇2

y Ĩdep (a, b) · (y − b)2

+
1
2
∇x,y Ĩdep (a, b) · (x − a) (y − b)

+
1
2
∇y,xĨdep (a, b) · (x − a) (y − b) + Rn (x, y)

(12)

and

Ii
dep (x, y) = Ii

dep (a, b) + ∇xIi
dep (a, b) · (x − a) + ∇yIi

dep (a, b) · (y − b)

+
1
2
∇2

xIi
dep (a, b) · (x − a)2 +

1
2
∇2

yIi
dep (a, b) · (y − b)2

+
1
2
∇x,yIi

dep (a, b) · (x − a) (y − b)

+
1
2
∇y,xIi

dep (a, b) · (x − a) (y − b) + Ln (x, y) ,

(13)

where Rn (x, y) and Ln (x, y) are the higher order infinitesimals. To make ĨD and
Ii
D similar, Eqs. 12 and 13 should also be similar. Then we can get the expression

of Gsim and Gsel as

Gsim =
N∑

i=1

∥∥∥Wi ·
(
ĨD − Ii

D

)∥∥∥ + α
∥∥∥Wi ·

(
∇xĨD − ∇xIi

D

)∥∥∥

+α
∥∥∥Wi ·

(
∇y ĨD − ∇yIi

D

)∥∥∥ + β
∥∥∥Wi

(
∇2

xĨ − ∇2
xIi

D

)∥∥∥

+β
∥∥∥Wi

(
∇2

y Ĩ − ∇2
yIi

D

)∥∥∥ + β
∥∥∥Wi

(
∇x,y Ĩ − ∇x,yIi

D

)∥∥∥

+β
∥∥∥Wi

(
∇y,xĨ − ∇y,xIi

D

)∥∥∥ ,

(14)

and

Gsel = γ
∥∥∥ĨD − I0D

∥∥∥ + α
(∥∥∥W0 · ∇xĨD

∥∥∥ +
∥∥∥W0 · ∇y ĨD

∥∥∥
)

+β
(∥∥∥W0 · ∇2

xĨ
∥∥∥ +

∥∥∥W0 · ∇2
y Ĩ

∥∥∥ +
∥∥∥W0 · ∇x,y Ĩ

∥∥∥ +
∥∥∥W0 · ∇y,xĨ

∥∥∥
)

.
(15)

where Gsim is used to calculate similarity between input RGB image and can-
didate images and Gsel is the self control item which guarantees that adjacent
points in an image have similar depth value.

Similar to the regular CRF, Gsim and Gsel can be reformed as traditional
MRF i.e. the smoothing term Ψds

(
Ĩdep

)
, the data term Ψdd

(
Ĩdep, I

i
dep, Ĩim, Ii

im

)

and the prior depth term Ψdp

(
I0
dep, Ĩdep

)
, defined as

Ψd

(
Ĩdep, I

i
dep, Ĩim, Ii

im

)
= Ψds

(
Ĩdep

)
Ψdd

(
Ĩdep, I

i
dep, Ĩim, Ii

im

)
Ψdp

(
I0
dep, Ĩdep

)
.

(16)
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Data Term. Depending on our basic assumption that similar image should have
similar depth map, we use similar [22] candidate images to infer our depth map
Ĩdep. We claim that this “similarity” should not only happen in the original RGB
images, but also in the gradient of RGB images. When comparing with pixels in
I0
im and Ii

im, the more similar they are, the less weight they have. Then we give
our formulation of Ψdd

(
Ĩdep, I

i
dep, Ĩim, Ii

im

)
as

Ψdd

(
Ĩdep, Ii

dep, Ĩim, Ii
im

)
=

N∏
i=1

exp(
∥∥∥Wi

(
Ĩdep − Ii

dep

)∥∥∥+ α
∥∥∥Wi

(
∇xĨdep − ∇xI

i
dep

)∥∥∥

+α
∥∥∥Wi

(
∇y Ĩdep − ∇yI

i
dep

)∥∥∥+ β
∥∥∥Wi

(
∇2

xĨdep − ∇2
xI

i
dep

)∥∥∥

+β
∥∥∥Wi

(
∇2

y Ĩdep − ∇2
yI

i
dep

)∥∥∥+ β
∥∥∥Wi

(
∇x,y Ĩdep − ∇x,yI

i
dep

)∥∥∥

+β
∥∥∥Wi

(
∇y,xĨdep − ∇y,xI

i
dep

)∥∥∥)
(17)

where Wi
6is the point-wise similarity diagonal matrix.7

Smoothing Term. We encourage neighborhood pixels have smooth depth esti-
mations. This is achieved in Ψds

(
Ĩdep

)
by setting self-adapting coefficient of

adjacent pixels smoothing. When the features of adjacent pixels are similar,
then the smoothing coefficient of that pixel pair would achieve a low smoothing
weight to make the pixel pair very smooth; meanwhile, when the adjacent pixel
features are dramatically different, then the smoothing coefficient will be very
high, which makes the smoothing term lose their efficacies. We come up with
the following design to characterize the above intuitions.

Ψds

(
Ĩdep

)
=exp(α

∥∥∥W0∇xĨdep

∥∥∥ + α
∥∥∥W0∇yĨdep

∥∥∥ + β
∥∥∥W0∇2

xĨdep

∥∥∥

+ β
∥∥∥W0∇2

yĨdep

∥∥∥ + β
∥∥∥W0∇x,yĨdep

∥∥∥ + β
∥∥∥W0∇y,xĨdep

∥∥∥)
(18)

where the first two terms in Eq. 18 are of first-order gradient smooth,
which cover the nearest four pixels neighbours; while the other terms in
Eq. 18 are second-order gradient smooth, which cover more further area.
∇x,∇y,∇2

x,∇2
y,∇x,y,∇y,x, are the gradient operator matrix, Ĩdep is a column

vector and W0 is the self-adapting smooth control (diagonal) matrix.

Prior Term. We also claim that the estimated prior should join in the depth
consistency potential as

Ψdp

(
Ĩdep, I

0
dep

)
=exp

(
γ

∥∥∥Ĩdep − I0
dep

∥∥∥
)

(19)

Comparing with traditional methods [11,26], there is no pre-trained parame-
ters in our model, which provides a highly generalization ability. Meanwhile, the

6 Wi (j, j) = sigmoid

(‖F0
im(j)−F i

im(j)‖−μi

σi

)
, F ∗

im is the SIFT [18] feature of image I∗
im.

And the elements of W0 in Eq. 18 are calculated with the same image but adjacent
point.

7 ‖·‖ is the one-norm.
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larger neighbourhood have been considered,8 without increasing time complex-
ity. We show the proposed algorithm and the entire framework in Algorithm 1
and Fig. 1, respectively.

5 Experiments

In this section, we report our experimental results on single image depth estima-
tion for both outdoor and indoor scenes. We use the Make3D [26] range image
data set and the NYUv2 [29] Kinect data set, as they are the largest open data
available at present.

5.1 Evaluation Protocols

For quantitative evaluation, we report errors obtained with the following error
metrics, which have been extensively used in [11,14,17,26].

– Mean relative error (rel): 1
L

∑
i

|d̂i−di|
di

;
– Mean log10 error (lg10): 1

L

∑
i |log10d̂i − log10di|;

– Root mean squared error (rms):

√
1
L

∑
i

∥∥∥d̂i − di

∥∥∥
2

2

where di is the ground truth depth, d̂i is the estimated depth, and L denotes
the total number of pixels in all the evaluated images.

In the training stage, we select 10 similar [22] images from dataset with the
query image, and use the patches(7 × 7 pixels, 3 pixels overlap) extracted from
these similar images to train RGB feature [26] dictionary and depth dictionary
simultaneously, whose dimensionality is 1024. And the balance parameter in
Eq. 2 is 1. In the testing stage, we extract non-overlapping patches of query
image to infer the prior depth image. And to optimize this prior depth image
with Eq. 11, we fix the parameter of Eqs. 17, 18 and 19 as γ for 0.5, α for 10 and
β for 0.1.

5.2 Performance on Make3D Dataset

The Make3D dataset consists of 534 images with corresponding depth maps.
There are 400 training images and 134 testing images. All images are resized to
460×345 pixels. It is worth noting that this data set is published a decade ago, the
resolution and distance range of the depth image is rather limited (only 55×305
pixels). Furthermore, it contains noise in the locations of glass window etc. These
limitations have some influence on the training stage and the resulting error
metrics. Therefore we report errors based on two different criteria in Table 1:
(C1) Errors are computed in the regions with ground-truth depth less than 70;

8 First-order derivation covers the nearest 4 points, and second-order derivation effect
as a two-level first-order derivation.



868 Y. Zhang et al.

Table 1. Result comparisons on the Make3D dataset.(C1) Errors are computed in the
regions with ground-truth depth less than 70; (C2) Errors are computed in the entire
image

Method Error(C1) (lower is better) Error(C2) (lower is better)

rel lg10 rms rel lg10 rms

Make3D [26] - - - 0.370 0.187 -

Semantic Labelling [17] - - - 0.379 0.148 -

Depth MRF�[25] - - - 0.530 0.198 16.7

Feedback Cascades�[16] - - - - - 15.2

DepthTransfer [11] 0.355 0.127 9.20 0.361 0.148 15.10

Ours 0.345 0.127 9.41 0.337 0.137 13.70
�Results reported in DepthTransfer [11].

(C2) Errors are computed in the entire image. We compare our method with the
state-of-the-art methods such as Make3D [26], Depth Transfer [11] and Semantic
Labelling [17].

In Table 1, we present a quantitative comparison of the depth estimation
between our method and these methods on representative images from Make3D
data set. Table 1 demonstrates that, in most cases, our method outperforms
those competing methods in terms of two evaluation criteria. Also, to make the
result visible, we show the depth prediction results achieved by our method in
Fig. 3. From Fig. 3, we can observe that the prediction results achieved by our
method are very close to the ground truth images, and are much better than
those obtained by the Make3D approach. To prove the validity of our methods,
we also compare our method with state-of-the-art in the “Prior Depth Inference”
and “Depth optimization”, respectively (Table 2 and Table 3). At last, we show
the influence of parameters in Table 4.

From Table 1, we can see that our method outperforms in most of the metrics.
Furthermore, comparing “Error (C2)” criteria with “Error (C1)”, our model
achieves more gains in far distance objects than the near ones. And comparing
with other methods, without pre-trained parameter [25,26] and supplementary
information [17], our model can still work well.

We also test our model with state-of-the-art in each stage. In Table 2 we assess
the effectiveness of the “Prior Depth Inference” stage, and test our model in
learned-dictionary and random dictionary. From the result we can see that, even
with a random dictionary our model still outperforms state-of-the-art methods.
Compared with Table 4, random dictionary performance is similar to learned-
dictionary of 5 pixels patch size. In Table 3, we assess the effectiveness of the
“Entire image depth inference” stage with the same prior depth value of [11].
From this table we can see that, our model have lower rms but higher rel which
means our method effective but slightly unstable.

In Table 4, we can see that the patch size parameter poses greater influence
than the other two. Generally speaking, mapping RGB to depth is an ill-posed
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Table 2. Result comparisons on the Make3D dataset without MRF to fine-tune.

Method Error(C1) (lower is better) Error(C2) (lower is better)

rel lg10 rms rel lg10 rms

Make3D [26] - - 14.79 - - 29.27

DepthTransfer [11] 0.936 0.217 12.01 0.903 0.247 20.49

Ours(with random
dictionary)

0.936 0.216 11.96 0.862 0.218 16.45

Ours 0.866 0.216 11.99 0.801 0.217 16.41

Table 3. Result comparisons on the Make3D dataset, with the same prior depth esti-
mation, different MRF to fine-tune.

Method Error(C1) (lower is better) Error(C2) (lower is better)

rel lg10 rms rel lg10 rms

DepthTransfer [11] 0.355 0.127 9.20 0.361 0.148 15.10

Ours 0.375 0.127 9.18 0.364 0.141 14.11

Fig. 3. Examples of depth predictions on the Make3D dataset.

problem that there may be many depth patches for a certain RGB patch. And
the larger the patch is, the more details can be learnt. However, due to the lack
of adequate images, the range of patch size is also limited. Based on this reason,
the dictionary size effects a little, which can also be seen in Fig. 2 that there are
lots of reduplicative feature in the trained dictionary.

From Fig. 3 we can see that our method reproduce the depth map well,
especially at shape controlling.

5.3 Performance on NYUv2 Dataset

The NYUv2 dataset contains of 1449 images, where 795 images are used as a
training set and 654 images are used as a testing set9. All images are resized

9 We only compare the result of standard data partition, when the code is not available.
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Table 4. Result comparisons on the Make3D dataset with different parameters. Patch-
Size is the size of extracted patches for “Coupled Dictionary Learning” and Dictionary-
Size is the capacity of Dictionary Dim and Ddep in Eq. 2.

Parameter Error(C1) (lower is better) Error(C2) (lower is better)

rel lg10 rms rel lg10 rms

PatchSize = 3 1.470 0.216 12.02 1.332 0.217 16.41

PatchSize = 5 0.936 0.216 11.99 0.862 0.217 16.41

PatchSize = 7 0.866 0.216 11.99 0.801 0.217 16.41

DictionarySize = 256 0.867 0.216 12.03 0.803 0.217 16.41

DictionarySize = 512 0.867 0.216 12.03 0.803 0.217 16.41

DictionarySize = 1024 0.866 0.216 11.99 0.801 0.217 16.41
�α = 0.1 0.866 0.216 11.99 0.801 0.217 16.41

α = 1 0.866 0.216 11.99 0.801 0.217 16.41

α = 10 0.866 0.216 11.99 0.801 0.217 16.41
�α is the balance parameter in Eq. 2

Fig. 4. Examples of depth predictions on the NYUv2 dataset.

to 460 × 345 pixels in order to preserve the aspect ratio of the original images.
In Table 5, we compare our method with state-of-the-art methods, including
Make3D [26], Depth Transfer [11] and so on.

As illustrated in Table 5, we present a qualitative comparison of the depth
estimation with these methods on representative images from NYUv2 data set,
which demonstrates the superior performance of our method. Also, to make the
result visible, we show our method in Fig. 4. The set of parameter in our method
is the same as in Sect. 5.2. Due to the similar experiment result (Sect. 5.2) and
the limitation of pages.

5.4 Comparison with Deep Learning Methods

It is well known that deep learning methods have obtained remarkable achieve-
ment in many research areas, due to their greater learning ability than most of
traditional methods. The proposed method has no advantage in model capability
or complexity, compared to deep learning.
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Table 5. Result comparisons on the NYUv2 dataset.

Method Error (lower is better)

rel lg10 rms

Make3D [26] 0.349 - 1.214

Depth Fusion�[12] 0.368 0.135 1.3

Depth Fusion(no warp)�[13] 0.371 0.137 1.3

DepthTransfer [11] 0.350 0.131 1.2

Ours 0.342 0.130 1.18
�Results reported in DepthTransfer [11].

However deep learning has a critical drawback that the training process usu-
ally takes a long time (weeks and even months), despite considerable efforts
have been taken to alleviate this problem. Most deep neural networks also heav-
ily rely on parameter tuning, with significant sensitivity on certain parameters
such as learning rate. This prevents deep learning approaches from being applied
in scenarios that require frequent and agile updating.

On the contrary, the proposed approach requires no traditional training stage
and few parameters. This greatly reduces the effort of adapting to a new dataset,
making the approach more flexible and reliable. Since these two methods are
designed for different scenarios, we do not conduct the experimental comparison.

6 Conclusion

In this paper, we propose a novel cross-modality retrieval method to estimate
the object depth value from a given 2D image. To our best knowledge, this is the
first method to estimate depth value by cross-modality retrieval. And to solve
the cross-modality problem, we propose a novel and effective coupled dictionary
learning method. Based on the local depth estimation from the cross-modal
retrieval using the dictionary, we further refine the depth of the entire image
by solving a convex optimization problem. From the depth estimation result
(Figs. 3 and 4), we can see that details are not well reserved in our method.
Because our method highly depends on the candidate images. When the images
do not describe the same scene as query image does, or the “bad” image win a
high similar score on pixel level, our method can not work well. In the future, we
plan to combine our model with the deep learning or other methods to improve
the robustness in handling real-world image transformation. Furthermore, we
plan to augment the performance by integrating the semantic information from
the recent development in CNN framework.
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