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Abstract: In this paper, we propose a novel multi-scale spatial error concealment algo-
rithm to combine the modeling strengthes of the parametric and nonparametric Bayesian
regression. We progressively recover missing blocks in the scale space from coarse to
fine so that the sharp edges and texture in the finest scale can be eventually recovered.
On one hand, in each scale, the nonparametric part of the methodology is used to exploit
the intra-scale correlation, which relies on the data itself to dictate the structure of the
model. In this procedure, the non-local self-similarity property is utilized as a fruitful
resource for abstracting a priori knowledge of images. On the other hand, the parametric
part is used to explicitly model the inter-scale correlation, in which the local structure
regularity is thoroughly explored to recover the sharp edges and major texture features
of images. It is not respected if only the nonparametric modeling is considering. We
achieve the best of both worlds within a multi-scale framework. Experimental results on
benchmark test images demonstrate that the proposed method achieves very competitive
performance with the state-of-the-art error concealment algorithms.

I. INTRODUCTION

Transmitting image and video over the wireless network is a challenging problem since
image and video may be seriously distorted due to fluctuating channel conditions, which
appear in the form of blocks loss. This is especially true in multicast and broadcast
situations where retransmissions are not permitted or are restricted. Due to this facts,
it is useful to develop error resilience (ER) and error concealment (EC) techniques to
control and recover from the errors in image and video transmission. Error resilience is
usually applied at the encoder side. The coding efficiency of an ER codec is lower than
a normal codec, because the encoder needs to introduce some redundancy to the stream.
Alternatively, error concealment is a post processing technique, which conceals the errors
utilizing the correctly received information at the decoder side without modifying source
and channel coding schemes.

According to the information utilized, error concealment algorithms can be categorized
into temporal approaches [1][2] and spatial approaches [3][4]. Temporal approaches
restore the corrupted blocks by exploiting temporal correlation between successive frames.
The spatial error concealment algorithms are normally applied in situations where infor-
mation from neighboring frames is not available (images or intra coded frames), hence
having to rely entirely on the information from intact neighboring macroblocks. In many
situations, temporal error concealment is preferred to spatial error concealment since the
temporal correlation between neighboring frames can be used to aid the blocks recovery.
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However, spatial error concealment is usually applied to conceal lost areas in intra-frames
of hybrid video codecs like H.264/AVC, for which temporal prediction is not possible or
prudent. Error concealment of these frames is very important in order to prevent error
propagation as well as to have a good playback quality and user satisfaction. In this
work, we will primarily be concerned with the recovery of missing blocks using spatial
prediction alone.

From a statistical perspective, spatial error concealment is essentially ill-posed, and
often can be formulated as an energy minimization or statistical inference problem in
which either the optimal or most probable configuration is the goal. The key to this
task is the prior knowledge about the properties that the target image should have. One
common assumption for natural images is intensity consistency, which means: (1) nearby
pixels are likely to have the same or similar intensity values; and (2) pixels on the
same structure are likely to have the same or similar intensity values. Note that the
first assumption means images are locally smooth, and the second assumption means
images are with non-local self-similarity. Accordingly, how to choose statistical models
that thoroughly explore such two prior knowledge directly determines the performance
of the proposed spatial error concealment algorithms.

One approach to learn statistical regularities is to formulate a probabilistic model of
how the data are generated and adapt its parameters to fit the observed distribution.
Early heuristic observation about the local smoothness of image intensity field has been
quantified by several linear parametric models, such as the piecewise autoregressive
(PAR) image model. Moreover, the study of natural image statistics reveals that the
second order statistics of natural images tends to be invariant across different scales,
and those scale invariant features are shown to be crucial for visual perception [5][6].
This observation inspires us to learn and propagate the statistical features across different
scales via parametric regression. On the other hand, the nonparametric kernel regression
approach was found to be able to exploit the non-local self-similarity property of images,
which in fact reflects the intra-scale correlation. Many follow-up studies have shown the
potential of nonlocal sparse representations in other image processing tasks [7][8]. All
those findings have strongly suggested intra-scale and inter-scale correlation are fruitful
resources for abstracting reliable priori knowledge of photographic images [9].

In this paper, we propose a novel multi-scale spatial error concealment algorithm
to combine the modeling strengthes of the parametric and nonparametric models. We
progressively recover missing blocks in the scale space from coarse to fine so that the
sharp edges and texture in the finest scale can be eventually recovered. On one hand,
in each scale, the nonparametric part of the methodology is used to exploit the intra-
scale correlation, which relies on the data itself to dictate the structure of the model. In
this procedure, the non-local self-similarity property is utilized as a fruitful resource for
abstracting a priori knowledge of images. On the other hand, the parametric part is used
to explicitly model the inter-scale correlation, in which the local structure regularity is
thoroughly explored to preserve the sharp edges and major texture features of images. It
is not respected if only the nonparametric modeling is considering. We achieve the best
of both worlds within a multi-scale framework. By combining intra-scale and inter-scale
correlation, we show that the proposed method can capture the local variation and the
global trend of image texture in corrupted regions. Experimental results on benchmark
test images demonstrate that the proposed method achieves more wonderful performance
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compared with the state-of-the-art error concealment algorithms.
The rest of this paper is organized as follows. Section II presents the framework of

proposed spatial error concealment method. Section III details the used nonparametric and
parametric regression technology in our method. Section IV presents some experimental
results and comparative studies. And Section V concludes the paper.

II. THE FRAMEWORK OF PROPOSED SCHEME

Fig. 1. Diagram of the proposed multi-scale spatial error concealment algorithm with hybrid Bayesian regression.
In this section, we present an overview of the proposed error concealment framework.

We build a multi-scale pyramid of the full-resolution corrupted image. Our goal is to
progressively recover missing blocks from coarse to fine scales (inter-scale), and progres-
sively restore image details within every scale (intra-scale). To give a clear illustration,
we summary the proposed multi-scale progressive error concealment algorithm in Fig.1,
where 22% macroblocks in the test image Lena are regularly missing.

First, the error image is directly downsampled 2 times (from scale 0 to scale 2, denoted
by Ĩ0, Ĩ1, Ĩ2 ) by averaging the existing pixels in a 2 × 2 neighborhood on higher
resolution. At the coarsest scale 2, the missing blocks in Ĩ2 can be recovered via the
nonparametric regression technique which will be detailed in Section III-A to get Î2.
And this nonparametric estimation can be computed iteratively by feeding the processing
results Î2 to the nonparametric estimator as a prior for computing the kernel distance. In
practice, two iterations was found to be effective in improving the processing results in
such type of operations.

The recovered image Î2 is then upsampled with the proposed parametric regression
method, which will be introduced in detail in Section III-B, to get Î1 using the following
steps: firstly, we collect basic function vectors [Φ(x1),Φ(x2),· · ·,Φ(xn)] for low-resolution
pixels and arrange them into the matrix Φ, where Φ represents the operator to pick up
the four 8-connected neighbors of the pixel from the context xi. And the observations
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[y1, y2, · · · , yn] are collected to construct the observation vector y. Secondly, the kernel
weights are computed for each available low-resolution pixels. Finally, the linear model
parameters for lower resolution image Î2 are computed from the kernel ridge regression.
With the derived model parameters, we construct the higher resolution image Î1.

The upsampled image Î1 can be used as a prior for calculating the weights in the
nonparametric model towards a refined estimate Î∗1 . The refined estimate can then be
upconverted to Î0 by the parametric model with the steps listed above. And the refined
estimate Î0 can be combined with Ĩ0 into another nonparametric recovery procedure
towards the final results Î∗0 . Using the above progressive recovery based on intra-scale
and inter-scale correlation, we gradually recover an image with few artifacts.

III. NONPARAMETRIC AND PARAMETRIC BAYESIAN REGRESSION

From the overall description of the proposed framework in Section II, we can find
nonparametric and parametric regression technologies play the central role in our method.
Both parts can be casted into a probability framework, generally known as empirical
Bayesian regression. In this section, a detailed description about the nonparametric and
parametric empirical Bayesian inference technologies used in our method is presented.

A. Nonparametric Bayesian Regression
The missing image block x(i) indexed by i is defined as x(i) := (xk, xk ∈ Λ) ∈ Rd

where Λ defines the
√
d ×
√
d square neighborhood, and the pixels in x(i) are ordered

lexicographically. The problem of recovering the missing block is to find the best estimate
of x(i), denoted as x̂(i), given the set of all the available pixels Ω. A subset of the
correctly decoded pixels geometrically around x(i) are formed into a vector y(i) ∈ Rl,
called the template vector. The key issue of spatial error concealment is how to infer the
true value of x according the information of y.

To compute the optimal Bayesian estimator for the vector x(i), it is necessary to define
an appropriate loss function L (x(i), x̂(i)) which measures the estimation loss associated
with choosing an estimator x̂(i). The optimal estimator x̂∗(i) is found by minimizing the
posterior expected loss:

E [L (x(i), x̂(i))] =
∑
x(i)

L (x(i), x̂(i))P (x(i)|y(i)). (1)

We define the loss function L (x(i), x̂(i)) is in a quadratic loss form, and the optimal
Bayesian estimator can then be formulated as:

x̂∗(i) = arg min
x̂(i)

∑
x(i)

‖x(i)− x̂(i)‖2 P (x(i)|y(i)). (2)

Taking the derivative with respect to x̂(i) and set it to zero, we can get the well known
Bayes least squares (BLS) estimator:

x̂∗(i) = EX|Y (x|y) =
∑

x(i)∈Ω

x(i)P (x(i)|y(i)), (3)

which can be further written as:

x̂∗(i) =
∑

x(i)∈Ω

x(i)
P (x(i),y(i))

P (y(i))
=

∑
x(i)∈Ω

x(i)P (y(i)|x(i))P (x(i))∑
x(i)∈Ω

P (y(i)|x(i))P (x(i))
. (4)
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As indicated in Eq. (4), to compute x̂∗(i), we would like to know P (y(i)|x(i)) and
P (x(i)) for each block i. Ideally, P (y(i)|x(i)) and P (x(i)) are obtained from a large
number of repeated observations for each patch x(i). Unfortunately, we only have one
image at our disposal, meaning that we have to adopt another way of estimating these
pdf s. According to the self-similarity property of natural images, alternatively, we choose
to collect some accurate observations of x(i) and y(i) from the correctly decoded pixel set
Ω. More formally, we have a set of n posterior samples Ψx = {x(i1),x(i2), · · · ,x(iN)}
and Ψy = {y(i1),y(i2), · · · ,y(iN)} taken in Ω.

First, let us consider the case of the coarsest scale Ĩ2, where we only have a corrupted
image as input. In this case, The collection can be realized through applying a threshold
to the `2 distance between the center template vector y(i) and its observation y(j), that
is

Ψx = {x(j)
∣∣∣||m(j)T · y(j)−m(i)T · y(i)||22 ≤ σ2};

Ψy = {y(j)
∣∣∣||m(j)T · y(j)−m(i)T · y(i)||22 ≤ σ2},

(5)

where σ is the threshold, for which we set a large value (e.g., 100) to incorporate enough
data samples in the observation set; m(i) and m(j) are masking vectors with 1s for
available pixels and 0s for missing pixels. In this way, we allow part of the sampling
vectors x(j) and y(j) to be missing pixels as long as the effective members of y(j)
and y(i) are close enough to each other on average. This is very useful when block loss
rates are high, such as consecutive block loss. Indeed, this is a procedure of template
matching.

From this posterior sample set Ψx, we start by examining the prior distribution P (x(i)).
It is an immediate choice of using Markov random field (MRF), field of expert [10] (FoE)
or other types of image models to capture interactions between pixels in the image patch,
but the MRF framework involves the computationally intensive estimation of additional
hyperparameters which must be likely adapted to each spatial position. For simplicity in
both analysis and computation, we just use a uniform prior in this paper:

P (x(i)) =
1

|Ψx|
=

1

N
. (6)

This means there is no preference to choose a vector x(i) in the set Ψx which is assumed
to be composed of N preliminarily selected similar patches. Therefore, we can propose
a reasonable estimator for x̂(i):

x̂∗(i) =

∑
x(i)∈Ω

x(i)P (y(i)|x(i))∑
x(i)∈Ω

P (y(i)|x(i))
. (7)

However, the true set {x(i)} is not available but only a spatially varying dictionary Ψx =
{x(i1),x(i2), · · · ,x(iN)}. Further changing Ω to Ψx we have the following reasonable
estimation for x̂(i):

x̂∗(i) =

iN∑
j=i1

x(j)P (y(i)|x(j))

iN∑
j=i1

P (y(i)|x(j))

. (8)
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In the above equation, P (y(i)|x(j)) measures the probability of the current template
sample set y(i) given a sampled image block vector x(j) ∈ Ψx. Since y(i) and x(j) are
with different shape and size, this probability is difficult to calculate directly. Alternatively,
this probability can be approximated as P (y(i)|y(j)), y(j) ∈ Ψy. Therefore, the above
equation can be rewritten as

x̂∗(i) =

iN∑
j=i1

x(j)P (y(i)|y(j))

iN∑
j=i1

P (y(i)|y(j))

. (9)

The accuracy of the final estimation mainly depends on P (y(i)|y(j)), which must be
carefully examined. We propose the following definition for the likelihood:

P (y(i)|y(j)) = exp

{
−(||m(i)T · y(i)−m(j)T · y(j)||2)

σ2
f

}
· exp

{
−(||xi − xj||2)

σ2
s

}
,

(10)
where xi ∈ R2 and xj ∈ R2 denote the center coordinates of the block i and j.

B. Parametric Bayesian Regression
With the result of nonparametric regression, we get a initial estimation of each scale.

Then, we try to progressively recover missing blocks in the scale space from coarse to
fine so that the sharp edges and texture in the finest scale can be eventually recovered.

In our scheme, we utilize the 2D piecewise autoregressive (2D-PAR) model to represent
the inter-scale relationship. The PAR model is chosen for the following reasons. Firstly,
the PAR model class is capable of fitting image waveforms ranging from smooth shades,
periodic textures to transients like edges [11][12]. Secondly, the piecewise linearity of the
PAR model makes the estimation problem convex, and hence, computationally amenable.

Let us assume that the data set from the previous scale to be interpolated is a set of
pairs X = {(x1, y1), · · · , (xn, yn)}, where xi ∈ R2 denotes the coordinates, yi ∈ R is
the corresponding intensity output, and i = {1, · · · , n} is a index running over the pairs.
What we want to do is to estimate a model to approximate these sample points, and
use this model to upsample the image of previous scale. In this way, statistical features
are learned and propagated from the previous scale to the current scale. To define a
linear parametric model, a set of k fixed basis function Φ = {φj(xi)} is chosen, then the
interpolated function f(xi) is assumed to have the form:

f(xi) =
k∑

j=1

wjφj(xi) = wTΦ(xi), (11)

where w is the k-dimensional model parameter vector, which is estimated on the fly
for each pixel using sample statistics of a local context. And the data set is modeled as
deviating from this mapping under some additive noise process:

yi = wTΦ(xi) + vi, (12)

where vi is the fitting error, which can be modeled as zero-mean Gaussian noise with
standard deviation σv. Then the probability of the data given the parameters w is:

P (X|w, β,Φ) =
exp[−βEX(X|w,Φ)]

ZX(β)
, (13)
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where β = 1/σ2
v , ZX = (2π/β)k/2, and EX is the data fitting term. P (X|w, β,Φ) is

called the likelihood. It is well known that finding the maximum likelihood parameters
wML may be an ill-posed problem. Therefore, we need a prior R to express the sort of
smoothness which we expect the interpolated function f(xi) to have. We define the prior
for the linear model with the following form:

P (f(x)|R,α) =
exp[−αEf (f(x)|R)]

Zf (α)
. (14)

where Ef is a regularization function, Zf =
∫

exp(−αEf )df , and α is the regularization
parameter to measure how smooth f(x) is expected to be. Such a prior can further be
written as a prior on the parameters w:

P (w|Φ, R, α) =
exp[−αEw(w|Φ, R)]

Zw(α)
, (15)

where Ew is commonly referred to as a regularizing function, and Zw =
∫

exp(−αEw)dw.
As a result, the posterior probability of the parameters w could be expressed as:

P (w|X,α, β,Φ, R) =
P (X|w, β,Φ)P (w|Φ, R, α)

P (X|α, β,Φ, R)
. (16)

Writing M(w) = βEX + αEw, which can be further written as

M(w) = EX + λEw, λ = α/β, (17)

the posterior becomes

P (w|X,λ,Φ, R) =
exp[−M(w)]

ZM(λ)
, (18)

where ZM(λ) =
∫

exp(−M)dw.
As stated above, the reconstruction process is converted to how to efficiently estimate

the model parameters w. To this end, there are some parts needed to complete, consisting
of a choice of basis function Φ, a data fitting term EX , a prior (regularizer) term Ew,
and the regularization parameter λ. Now let us consider how to define these elements:
• Φ(xi) is set as the intensity vector of the k-nearest neighbors of yi in the context xi

from all surrounding directions. In this way, the uncertainty of yi can be efficiently
resolved by estimating along the edge orientation based on geometric constraint of
edges.

• A reasonable assumption made with the natural image source is that it can be
modeled as a locally stationary Gaussian process, i.e., the neighboring samples
maybe have the same or similar transformation function. Following this assumption,
the optimal model parameter vector w is found by projecting the model onto the
neighboring measured examples. Accordingly, we define EX as the following moving
least square (MLS) error form:

EX =
n∑

j=1

θ(xi,xj)
∥∥∥yj −wTΦ(xj)

∥∥∥2
, (19)

where θ(xi,xj) is the similarity weight of the sample xj for the current interpolation
point xi. The kernel weight is driven by the distance

θ(xi,xj) =
∥∥∥mT · (x(i)− x(j))

∥∥∥2
, (20)
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where x(i) denotes a local block centered on xi, m is a masking vector indicating
existing pixels in x(i) and x(j). The moving least square can efficiently cancel the
influence of statistical outlier and lead to a robust estimator of local image structure.

• To design more stable empirical minimization, we define the regularization term Ew

as an additional estimator complexity penalty on EX .
Finally, maximum the posterior probability is equal to minimize the combined objective

function M :
M(w) =

n∑
j=1

θ(xi,xj)
∥∥∥yi −wTΦ(xj)

∥∥∥2
+ λ ‖w‖2 . (21)

This is also known as kernel ridge regression (KRR). The penalty term is stable because
it does not depend on data. By choosing λ properly, an appropriate amount of ridge’s
stability translates into good statistical properties of the KRR estimator. It is easy to see
that the solution of KRR estimator takes the form

w∗ = (ΦTΘΦ + λI)−1ΦTΘy, (22)

where y = (y1, · · · , yn)T , Φ = (φ(x1), · · · , φ(xn))T ∈ <n×k, and I is the identity matrix,
Θ = diag(θ(xi,x1), · · · , θ(xi,xn)) ∈ <n×n is a matrix with similarity weights on the
diagonal line. For the regularization parameter λ, we generalize the previous work on
spectral regression discriminant analysis [13] to the kernel version, and can derive a
data-adaptively optimal solution.

λ∗ =
1

L
Tr(ΦTΘΦ), (23)

where L is a normalized parameter to keep λ in (0, 1), which is set as 106 in the practice
implementation; Tr is the operator of the trace.

IV. EXPERIMENTAL RESULTS

In this section, experimental results are presented to verify the performance of the
proposed spatial error concealment algorithm. Given the fact that numerous error con-
cealment algorithms have been developed during the last two decades, it would be
virtually impossible for us to perform a thorough comparative study of the proposed
error concealment algorithm. Due to space limitation, here we choose to compare with
two state-of-the-art methods in the literature: (1) the nonlinear approximation based
image recovery technology using adaptive sparse reconstructions (SparseRec) proposed
by Guleryuz [3]; (2) the kernel regression (KR) based methods proposed by Takeda et
al. [4]. We select three popular 512× 512 images, Lena, Peppers and Boat, as test ones.

Let us examine the performance of compared methods on random block losses, where
the test images are subjected to 50% 8×8 blocks loss. At such a high block loss rate, the
error concealment task is more difficult since many missing blocks cluster together. Table I
illustrates the quantitative comparison on these the test images. It can be observed that
the proposed algorithm achieves the highest PSNR and SSIM values for all test images.
The PSNR gain compared with SparseRec is up to 1.31dB. Table I also gives processing
times results on a typical computer (2.5GHz Intel Dual Core, 4G Memory) of compared
algorithms. KR and the proposed method are run on Matlab, while SparseRec are run on
C since there is no Matlab source code available for it. Even running on C, the SparseRec
method needs about fifty minutes to process an image. This is due to the fact that the
SparseRec method is related to a nonconvex optimization problem. It has to rely on a
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iterative procedure to achieve convergence results, which is computationally expensive.
For the proposed method, we only need about 70 seconds to recover one image.

TABLE I
QUANTITATIVE COMPARISON OF THREE ALGORITHMS ON RECOVERY OF 50% RANDOM BLOCK LOSSES

Images Lena Peppers Boat
PSNR(dB) SSIM TIME(s) PSNR(dB) SSIM TIME(s) PSNR(dB) SSIM TIME(s)

KR 26.81 0.8676 108.47 26.11 0.8559 96 24.26 0.8281 108.19
SparseRec 26.40 0.8702 3037.89 26.68 0.8667 3037.89 24.85 0.8408 3653.63

Ours 27.71 0.8782 72.13 26.92 0.8711 71.95 25.09 0.8443 74.47

We also test the subjective quality comparison. As illustrated in Fig. 2, our method
produces the most visually pleasant results among all comparative studies. Even under
such high block loss rate, the proposed algorithm is still capable of restoring major
edges and repetitive textures of the images. It is noticed that the proposed method
can more accurately recover global object contours with severe losses, such as the
edge along the shoulder in Lena, the edge along the pepper in Peppers, and the edges
along the mast in Boat. It is easy to find that the edge across the region of heavy
consecutive block loss cannot be well recovered with the KR and SparseRec method. This
further demonstrates the power of the proposed multi-scale progressive error concealment
algorithm. The strength of the proposed approach comes from its full utilization of the
intra-scale and inter-scale correlations, which are neglected by the currently available
single-scale methods. And many large-scale structures can be well recovered based upon
the progressively computed low-level results, which is impossible for traditional single
level error concealment algorithms.

V. CONCLUSION

In this paper, we present a novel spatial error concealment algorithm by combining the
modeling strengths of the parametric and nonparametric regression. The framework we
use in the proposed method is a multi-scale pyramid, where the intra-scale relationship
can be modeled with the nonparametric approach while the inter-scale dependency can be
learned and propagated with the parametric model. In this way, both local and nonlocal
regularity constrains are exploited to capture the local variation and the global trend of
image texture in corrupted regions. Experimental results over a wide range of test images
demonstrate that our method achieves very competitive recovery performance compared
the state-of-the-art methods in both objective and subjective visual quality.
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