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Abstract—In the video copy detection task, it is widely 
recognized that none of any single feature can work well for 
all transformations. Thus more and more approaches adopt a 
set of complementary features to cope with complex audio-
visual transformations. However, most of them utilize 
individual features separately and the final result is obtained 
by fusing results of several basic detectors. Often, this will 
lead to low detection efficiency. Moreover, there are some 
thresholds or parameters to be elaborately tuned. To address 
these problems, we propose a soft cascade approach to 
integrate multiple features for efficient copy detection. In 
our approach, basic detectors are organized in a cascaded 
framework, which processes a query video in sequence until 
one detector asserts it as a copy. To fully exert the 
complementarity of these detectors, a learning algorithm is 
proposed to estimate the optimal decision thresholds in the 
cascade architecture. Excellent performance on the 
benchmark dataset of TRECVid 2011 CBCD task 
demonstrates the effectiveness and efficiency of our 
approach. 

Keywords—Video copy detection, soft cascade 
architecture, multimodal features 

I. INTRODUCTION 
The explosive growth of multimedia content on the 

Internet is revolutionizing the way of content distribution and 
presenting new challenges to content security and copyright 
management. As an alternative solution to watermarking, 
content-based copy detection (CBCD) has drawn more and 
more attention in recent years. According to TRECVid, 
CBCD addresses the issue that automatically analyzes a 
query video’s content to determine whether it contains a 
copy from a given database of reference videos and if so 
from where the copy comes [1]. Therefore, besides digital 
right management, it also shows great value in many other 
video applications such as advertisement tracking, video 
content filtering, and so on. 

However, copy detection is pretty challenging primarily 
due to the fact that video copies often suffer from severe 
quality decrease and even change in content, which makes it 
difficult to extract largely invariant features from a copy and 
its original reference video. After years of practice, it has 
become a common view that there is no universal feature 
that keeps robust to all the audio-visual transformations. 
Actually, the TRECVid CBCD contest has required all the 
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participants to use both audio and visual features in their 
copy detection approaches [1]. Most of these approaches first 
compute several detection results through individual features 
and then fuse these results into final result. For example, 
detection results through audio and visual features are fused 
by picking up the video match with the highest similarity 
score [2, 3]. Queries asserted as copies by any two of four 
audio-visual features are accepted as copies, and queries 
asserted as copies by only one feature will be delivered to 
further verification [ 4 ]. Although such approaches could 
achieve good detection effectiveness, they also have two 
drawbacks. One is that the processing time will be at least 
the sum of time required by each detector. The other is that 
some thresholds or parameters involved in the late fusion 
will have to be manually tuned. 

To overcome these drawbacks, we introduce a soft 
cascade approach to combine multimodal features, which is 
shown in Fig. 1. Three basic detectors based on 
complementary audio-visual features are organized in a 
cascaded structure, and they process each query video 
successively until one detector asserts it as a copy. Since 
most copies can be correctly detected through the first two 
efficient detectors, a lot of processing time is saved. Besides, 
in order to automatically tune the decision thresholds i  
( 1, 2,3i ), which are used to determine whether a query is a 
copy or not, a learning algorithm is proposed. By iteratively 
adjusting the weights for all the training query videos, 
posterior detectors are forced to focus on those queries 
misjudged by anterior detectors, so that these detectors could 
complement each other as much as possible. 

The remainder of this paper is organized as follows. Sec. 
II describes the cascade architecture and the utilized basic 
detectors. Sec. III introduces the algorithm for learning the 
thresholds in the cascade. Sec. IV presents the experimental 
results and Sec. V concludes this paper. 

II. CASCADE ARCHITECTURE FOR CBCD 
To improve the efficiency of copy detection approaches 

which use several features, we introduce the cascade 
architecture [5] to the copy detection issue. Intuitively, a 
cascade is constructed by placing a series of detectors in a 
cascaded order. Efficient but ordinary detectors should stand 
in the front, while effective but complex detectors should 
locate in the rear. Generally speaking, a N-Stage cascade 
could be denoted as 1 2, , ,N ND d d d ,  where id  
( 1, 2, ,i N ) represents the i-th detector. During inquiry 
process, a query video q is processed by each detector 
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Figure 1. Overview of the proposed approach 

successively until one detector asserts it as a copy or all the 
detectors determine it as a non-copy. To be specific, q is first 
processed by 1d . A positive detection result, i.e. the returned 
reference video 1r  has a similarity 1vs  greater than or equal 
to a predefined threshold 1 , leads to immediate acceptance 
of q as a copy. Otherwise, the evaluation of 2d  on q will be 
triggered. Such process goes on until all the N detectors are 
executed. Only if q is asserted as a noncopy by all the 
detectors, will it be accepted as a noncopy. In this 
architecture, most copies can be detected through the first 
few detectors, thus saving a major part of processing time. 
Particularly, if the decision thresholds 1 2, , , N  
are set manually, they could be called “hard thresholds”, and 

the cascade architecture is therefore addressed as “hard 
cascade”. 

This section will then describe all the basic detectors with 
the corresponding preprocessing operations. Given a query 
video q, the preprocessing module is first utilized to extract 
audio clips and visual key frames from q. Then in each basic 
detector, one single feature is used to retrieve these audio 
clips or visual key frames from a database of reference audio 
clips or visual key frames. Finally the frame-level retrieval 
results are passed to temporal pyramid matching (TPM) 
module, where they would be aggregated into video-level 
detection result. 

A. Preprocessing 
During preprocessing, first audio frames are obtained by 

dividing the audio track into segments of 90ms with a 60ms 
overlap between consecutive frames, and 6-second-long 
audio clips are constructed by every 198 audio frames with a 
5.4-second overlap between adjacent clips. Then visual key 
frames are uniformly sampled at a rate of 3 frames per 
second. Finally, additional steps are dedicated to handle 
picture-in-picture (PiP) and flip transformations. Specifically, 
Hough transform that detects two pairs of parallel lines is 
employed to detect and localize the inserted foreground 
videos. For those queries with PiP, the foreground and 
original key frames will be processed respectively. Also 
queries asserted as noncopies will be flipped and matched 
again to deal with potential flip transformation. 

B. Frame-level retrieval 
Three independent basic detectors are constructed over 

one local visual feature, one global visual feature and one 
audio feature respectively. Each feature is briefly described 
as follows. 

1) Local visual feature: A dense color version of SIFT 
[ 6 ] (DCSIFT) is adopted mainly to cope with content-
altering visual transformations such as camcording, PiP and 
postproduction. The differences between DCSFIT and 
traditional SIFT reside in “dense” and “color”. “Dense” 
means the module of interest point detection is discarded 
and multi-scale dense sampling is used instead. “Color” 
implies the descriptor is calculated not from a grayscale 
image but from a color image. Concretely speaking, sub-
descriptors are computed from each LAB component and 
then concatenated to form the final descriptor. 

Furthermore, the bag-of-words (BoW) framework [7] is 
employed and boosted in our approach. Since vector 
quantization might degrade the descriptors’ discriminability, 
information of position, scale and orientation is also taken 
into account so that only features mapped to the same 
descriptor cluster and with similar position, scale and 
orientation will be regarded as matches. In particular, K-
means algorithm is conducted on a random subset (10M) of 
reference DCSIFT descriptors to obtain 800 clusters, thus 
each descriptor could be quantized into a cluster ID. Also 
position, scale and orientation are quantized into 4, 2 and 16 
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bins respectively. Consequently, the optimized visual 
vocabulary contains 800 4 2 16 102,400  visual words. 
To accelerate frame retrieval, all the reference DCSIFT 
features are quantized as visual words and stored in an 
inverted index during offline process. During online process, 
DCSIFT BoW is obtained from each query key frame 
through the same feature extraction and quantization method. 
By searching the inverted index, reference key frames that 
have similar appearance and spatial layout can be found 
efficiently. 

2) Global visual feature: A global feature denoted as 
“DCT” [4] is employed. Based on the relationship between 
low-frequency DCT coefficients of adjacent image blocks, 
DCT feature can effectively resist content-preserving visual 
transformations such as re-encoding, change of gamma and 
decrease in quality. Moreover, DCT feature is 
computationally efficient and compact (256 bits per image). 
Hamming distance is used as the distance metric. To speed 
up feature matching, all the reference DCT features are 
indexed by locality sensitive hashing (LSH) [8]. 

3) Audio feature: Weighted audio spectrum flatness 
(WASF) [9] is used to address audio transformations such as 
MP3 compression and multiband companding. WASF 
extends the MPEG-7 descriptor - audio spectrum flatness 
(ASF) [10] by introducing human auditory system (HAS) 
functions to weight audio spectrum, making the resulted 
feature more consistent with the outer ear and middle ear 
models of HAS. In brief, a 72-D WASF feature is extracted 
from each 6-second-long audio clip. Euclidean distance is 
adopted to measure the dissimilarity between two WASF 
features, and all the reference WASF features are stored in 
LSH for efficient feature matching. 

4) Results of frame-level retrieval: Given a query video 
q, a detector picks up the top 1 20K  similar reference key 
frames (audio clips) for each query key frame (audio clip), 
obtaining a collection FM  which contains a series of frame-
level matches fm : 

 , , , ,fm q t q r t r fs  (1) 
which means the key frame (audio clip) of reference video r 
at timestamp t r  is a match to the key frame (audio clip) of 

query video q at timestamp t q  with a similarity fs . 

C. Temporal Pyramid Matching 
Given the frame matches FM  of a query video, temporal 

pyramid matching (TPM) [4] is employed to pick up the 
most similar reference video clip. Note that the sequential 
pyramid matching (SPM) in [4] is renamed TPM here to 
avoid confusion with spatial pyramid matching [11]. 

Briefly speaking, a copy is detected through the 
following four steps. First, 2-D Hough transform, with one 
dimension representing reference video ID and the other 
representing t , is conducted on FM  to vote in 2 10K  
hypotheses ,r t , where t t q t r  specifies the 

temporal offset between a query frame and a reference frame. 
Second, for each hypothesis, the extent of copy in query 
video and reference video, denoted as ,B Et q t q  and 

,B Et r t r , are identified by picking up the first and the 

last matches fm  in FM  that accord with this hypothesis. 

Third, ,B Et q t q  and ,B Et r t r  are partitioned 
into increasingly finer segments and video similarities are 
computed at multiple granularities. In each resolution, only 
frames within aligned segments can be matched across two 
sequences. The video similarity vs  is calculated by 
accumulating the weighted similarities from multiple 
resolutions. And a candidate video-level match can be 
expressed as follows: 
 , , , , , ,B E B Evm q q t q t q r t r t r vs  (2) 

which means the sequence ,B Et q t q  of query q is a 

potential copy derived from the sequence ,B Et r t r  of 
reference r with a similarity score vs . Finally, the video 
match with the highest similarity vs  among all the 2K  
candidate matches is retained. Only if vs  is greater than or 
equal to a predefined threshold , will this detector asserts q 
as a copy. 

III. LEARNING SOFT THRESHOLDS 
It is obvious that hard cascade has several drawbacks: 

artificial adjustment of thresholds 1 2, , , N  can 
hardly reach optimal performance; it lacks in generalization 
ability and is very burdensome. To solve these issues, a 
learning algorithm is designed to automatically select the 
optimal thresholds 1 2

ˆ ˆ ˆˆ , , , N , which can be named 

“soft thresholds”. Accordingly, the cascade involving soft 
thresholds can be described as “soft cascade” and denoted as 

1 2
ˆ ˆ ˆˆ , , ,N ND d d d . For example, Fig. 1 is expressed as 

3
ˆ ˆ ˆˆ , ,WASF DCT DCSIFTD d d d . Next we’ll first define the error 

rate of a copy detection approach, and then present the 
threshold learning algorithm which aims at minimizing the 
error rate of the soft cascade. 

A. Optimization problem 
First of all, following the normalized detection cost rate 

(NDCR) measure used in TRECVid CBCD task [12], we 
define the cost of a single query video. For a given query q, 
supposing detector d with threshold  returns a video match 
vm q  like (2), the cost of q w.r.t. , denoted as c ,q , is 
calculated according to the following rules: 1) When q is 
actually a copy and also asserted as a copy by d, i.e. vs , 
a) if vm q  indicates the correct reference video clip, i.e. 
the reference video ID r is right and the copy extent 
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,B Et r t r  overlaps with the ground truth, then it is a 

true positive (TP) and c ,q  is set to zero; b) if vm q  
identifies a wrong reference clip, then it causes a false 
positive (FP) and a false negative (FN) simultaneously, and 
c ,q  is set to sum of FPc  and FNc , which represent the 
penalty for a FP and a FN respectively. 2) If q is a copy but 
asserted as a noncopy by d, i.e. vs , then vm q  is a FN 

and c ,q  is set to FNc . 3) If q is in fact a noncopy but 

asserted as a copy, then vm q  is a FP and c ,q  is set to 

FPc . 4) If q is a noncopy and also asserted as a noncopy, then 
vm q  is a true negative (TN) and c ,q  is set to zero. 
The above rules could be summarized as follows: 

 

0,

c , ,

,

,

FP FN

FN

FP

if C q vs T vm q

C q vs

q c c if C q vs T vm q

c if C q vs

c if C q vs

 (3) 

where C q  means q is indeed a copy, T vm q  denotes 

that vm q  recognizes the correct reference video clip. 

,FP FNc c  is determined based on the application profile. In 

this paper it is set to 2,0.2 , owing to our belief that a FP is 
much worse than a FN in applications such as copyright 
protection. 

The error rate of detector d on training set 
1 2, , , MQ q q q  w.r.t. threshold  is defined as the 

weighted sum of the cost of each query video: 

 
1

, ,
M

j j
j

Q w c q  (4) 

where 1 2, , , MW w w w  is the set of weights for each 
query video. The goal of threshold optimization is to 
minimize the error rate  of a soft cascade ˆ

ND . 

B. Threshold learning algorithm 
The threshold learning is grounded on two core ideas. 

One is that the optimal threshold should bring about a good 
tradeoff between FPs and FNs, and lead to the minimum 
error rate ˆ . For this purpose, ,Q  should be calculated 
at a range of thresholds, sweeping from the minimum video 
similarity returned by d  to the maximum similarity, so that 
the similarity score associated with the minimum error rate 
ˆ  is chosen as the optimal threshold ˆ . The other insight is 

that posterior detectors should focus on the queries which are 
incorrectly detected by anterior detectors, so that the overall 
system reaches its peak performance. To this end, weights of 

Figure 2. Algorithm for learning soft thresholds 

those misjudged queries should be augmented for posterior 
detectors. Such policy is inspired by the classifier learning 
approach [5] in the domain of object recognition. The 
learning procedure is summarized in Fig. 2. 

IV. EXPERIMENTS 
Experiments are conducted over the TRECVid 2011 

CBCD task [1, 12 & 13]. In this section, we’ll first describe 
the CBCD task and then present the experimental results. 

A. Data set & evaluation metrics 
CBCD adopts a 425-hour-long reference database 

composed of poor-quality web videos. According to [13], 
201 raw queries are first derived from the reference database 
and another non-reference database, among which a third is 
pure reference clip, a third is reference clip embedded in 
non-reference clip, and a third is non-reference clip. Then 
these queries are attacked by 8 7 56  transformations (c.f. 
TABLE I), creating 11,256 final queries, which are 
averagely 73 seconds long. 

Input: A hard cascade 1 2, , ,N ND d d d  

  and a training set 1 2, , , MQ q q q  

Output: Optimal thresholds 1 2
ˆ ˆ ˆˆ , , , N  

Solution: 

1. Initialize weights 1,
1

jw
M

 for 1, 2, ,j M . 

2. For 1, 2, ,i N  
2.1. Normalize the weights: 

  ,
1

M

i j
j

sum w , ,
,

i j
i j

w
w

sum
 for 1, 2, ,j M  

  so that iW  is a probability distribution. 
2.2. Evaluate id  on Q , record the detection results: 

  | 1, 2, ,i i jVM vm q j M  

  And collect the video similarities: 
  | , , , , , ,B E B E

i iVS vs q t q t q r t r t r vs VM  

2.3. Find the optimal threshold for id : 

  ˆ arg min ,
i i

i i i
VS

Q  

  And record the minimum error rate: 
  ˆˆ ,i i iQ  

2.4. Update the weights for 1id : 

  ,
1,

,

ˆ ˆ, , 0
ˆ1

,

i
i j i j i

ii j

i j

w if c q
w

w otherwise
 

3. Return 1 2
ˆ ˆ ˆˆ , , , N  
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Figure 3. Actual NDCR for BALANCED profile 

 
Figure 4. Actual MeanF1 for BALANCED profile 

 
Figure 5. MeanProcTime for BALANCED profile 

The evaluation metrics consist of three measures and are 
calculated separately for each transformation [12]. The 
primary measure is normalized detection cost rate (NDCR), 
which evaluates a system’s detection effectiveness. It is 
similar to the error rate defined by (3) and (4), except that the 
weights for different queries vary in (4) but are the same in 
NDCR. The second diagnostic measure is MeanF1, which is 
the average F1 for all the TPs. F1 evaluates a system’s 
accuracy in copy localization, that is to say, how much the 
asserted extent ,B Et r t r  overlaps with that in the 
ground truth. The last measure is MeanProcTime, i.e. the 
average time for a system to process a query. Since all the 
participants test their approaches under different 
environments, MeanProcTime is more useful to comparison 
between one participant’s different approaches. 

B. Performance of the proposed approach 
Seven approaches are evaluated, including three detectors 

discussed in Sec. II and another detector over traditional 
SIFT feature, a hard cascade 3 , ,WASF DCT DCSIFTD d d d  
denoted as “HardD3”, two soft cascades of 

3
ˆ ˆ ˆˆ , ,WASF DCT DCSIFTD d d d  and 2

ˆ ˆˆ ,WASF DCTD d d  denoted 

as “SoftD3” and “SoftD2”. Our testing environment is: OS-
Windows Server 2008; CPU-Intel X7550 2.00 GHz, 32 Core; 
Memory-32 GB. The best and median performances are 
picked up to reflect 40 approaches from 22 other participants, 
denoted as “BestOfOthers” and “MedianOfOthers” 
respectively. Note that BestOfOthers along with 
MedianOfOthers does not refer to one single approach, but is 
computed over each transformation separately. The average 
performances over 56 transformations are summarized in 
TABLE II. Detailed performances of SoftD3, SoftD2, 
BestOfOthers and MedianOfOthers are shown in Fig. 3, Fig. 
4 and Fig. 5. 

1) Performance of basic detectors: Experiments show 
that the selected three detectors are indeed effective and 
complementary. The complementarity lies in two aspects. 
One is that these detectors strike different balance between 
effectiveness and efficiency. DCSIFT obtains lowest NDCR 
at the cost of longest MeanProcTime (note that DCSIFT 
surpasses SIFT w.r.t. NDCR), while DCT and WASF gain 
higher NDCR within much shorter time. The other aspect is 
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TABLE I. TRANSFORMATIONS IN TRECVID 2011 CBCD 

Video 

V1-Simulated camcording 
V2-Picture-in-Picture (PiP) 
V3-Insertion of pattern 
V4-Strong re-encoding 
V5-Change of gamma 
V6-Decrease in quality 
V8-Post production 
V10-Rondom combination of 3 trans. out of V1-V8 

Audio 

A1-Do nothing 
A2-Mp3 compression 
A3-Mp3 compression and multiband companding 
A4-Bandwidth limit and single-band companding 
A5-Mix with speech 
A6-Mix with speech and multiband compress 
A7- Mix with speech, bandpass filter, and compress 

Mixed M[(i-1) 7 j] is composed of Vi and Aj 

TABLE II. PERFORMANCE SUMMARY 

a. One of other participants’ approaches could process a query 
video within 1.30 seconds, but it suffers from high NDCR 
( . 6.408Avg NDCR ) and low MeanF1 ( . 1 0.001Avg MeanF ). 

that these detectors are robust to different transformations. 
The complementarity between visual features and WASF is 
obvious. As for two visual features, detailed results prove 
that DCT is more robust than DCSIFT to severe blur and 
noise, while the overall robustness of DCSIFT is better than 
that of DCT. 

2) Performance of soft cascade: First, performance of 
HardD3 shows that by integrating complementary detectors, 
cascade architecture could dramatically improve detection 
effectiveness as well as efficiency (note that its average 
MeanProcTime is shorter than that of DCSIFT). Second, 
performance of SoftD3 indicates that the threshold learning 
algorithm could further enhance effectiveness and efficiency. 
Among all the approaches, SoftD3 achieves compelling 
performance: it wins 35 best NDCR, 3 best MeanF1 (others 
are close to the best ones), and its MeanProcTime are better 
than the median ones on most transformations. Finally, 
result of SoftD2 demonstrates the flexibility of soft cascade 
architecture. By using only two efficient detectors, SoftD2 
achieves competitive NDCR, excellent MeanF1 within 
pretty short MeanProcTime. 

V. CONCLUSION 
We have proposed a soft cascade video copy detection 

approach, which integrates multimodal detectors and learns 
optimal decision thresholds automatically. Extensive 
experiments over benchmark data set prove that our 
approach is both effective and efficient. Further endeavors 
will be devoted to introducing a transformation recognition 
model and learning ˆ  for each transformation. 
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Approach Avg. 
NDCR 

Avg. 
MeanF1 

Avg. 
MeanP.T. 

Basic 
Detector 

DCSIFT 0.117 0.955 249.636 
SIFT 0.210 0.953 138.550 
DCT 0.344 0.953 6.381 

WASF 0.206 0.949 5.486 

Cascade 
HardD3 0.060 0.951 172.291 
SoftD3 0.054 0.951 163.184 
SoftD2 0.178 0.950 9.752 

TRECVid 
Evaluation 

BestOfOthers 0.117 0.962 1.250 a 
MedianOfOthers 1.050 0.889 191.535 
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