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ABSTRACT

In this paper, we propose a compact yet discriminative local descrip-
tor which tackles the wireless query transmission latency in mobile
visual search. The descriptor captures gradient statistics of canoni-
cal patches over a log-polar location grid whose parameters are op-
timized using training samples. We quantize the resulting descriptor
using product quantization. The descriptor achieves about 95% bits
reduction compared with 128-Byte SIFT and allows adaptation of
descriptor lengths to support user required performance. Moreover,
accurate matching of descriptors with low complexity is allowed
within several table lookup operations. We perform a comprehensive
comparison with SIFT, GLOH and CHoG in the context of image
retrieval, image matching and object localization. We achieve com-
peting matching and retrieval performance with SIFT, GLOH with
much fewer bits. In particular, the descriptor outperforms CHoG at
the same bits on eight data sets contributed to MPEG Compact De-
scriptor for Visual Search(CDVS) Standardization.

Index Terms— Local descriptor, compact, product quantization

1. INTRODUCTION

With the popularization of mobile embedded camera, there is a great
potential for mobile visual search. In a typical scenario, the query
image descriptors transmission is over a bandwidth constrained
wireless network. Thus visual descriptor is expected to be com-
pact, discriminative and meanwhile efficient for matching to tackle
the server response latency. To improve descriptors’ discriminative
power, state of the arts [1, 2] divide canonical patches into several
spatial parts and calculate a sub-descriptor for each part. However,
the resulting descriptors have high dimensions which undoubtedly
increase the query transmission latency.

Robust local feature descriptors have been extensively studied
in recent years. Scale Invariant Feature Transform(SIFT)[1] is prob-
ably the most widely used one. Bay et al present Speeded Up Ro-
bust Features(SURF)[2] which allows fast computation of box type
convolution filters with integral images. Gradient Location Orienta-
tion Histogram(GLOH)[3], extending SIFT with log-polar location
grid is experimentally shown to be more robust than SIFT. Brown et
al[4] propose a general framework for optimizing parameters with
descriptor computation using direction set method.

More recent emphasis has been put on low bit rate descriptors
which can be classified into three groups. The first group applies di-
mension reduction. Ke[5] performs PCA on gradient patches and
only retains dimensions with large variance. Brown et al [4]use
Linear discriminant analysis(LDA) to map descriptors to a lower
dimensional space where match descriptors are drawn close while
non-match descriptors are kept apart.

Representing an image as a binary code is another popular prac-
tice in scalable image search. Torralba[6] uses machine learning

Fig. 2: Each row shows 4 projected patches from a 3D cloud point.
Pixels in inner regions vary slightly while outer regions vary largely.

techniques to convert the GIST descriptor to a compact binary code
to enable large scale image search. Strecha[7] proposes to multiply
descriptors by a projection matrix, being subtracted from a threshold
vector, and finally retain only the sign of the results. The projection
matrix and threshold vector are obtained by minimizing the in-class
variance and maximizing the covariance between classes as well.

The third class of techniques rely on quantization. In[8], SIFT
descriptor is quantized using only 4 bits per dimension, thus reduc-
ing the descriptor size to 512 bits. CHoG[9] applies tree-coding to
the lossy compression of probability distributions of SIFT-like de-
scriptors. Patch level experiment shows CHoG can largely reduce
bit rates but not deteriorate its discriminative power.

Towards low bit rate mobile visual search, we propose a compact
yet discriminative local descriptor PQ-WGLOH. It captures gradi-
ent statistics from the canonical patches over a log-polar location
grid. First, we learn an optimal weight for each dimension of the
descriptor and obtain a new descriptor named as WGLOH(Weighted
GLOH). Second, with product quantization, we divide WGLOH into
several segments and quantize each segment independently. Dif-
ferent from CHoG, the reproduction values of each quantizer are
learned in a data driven manner. We refer to our product quantized
descriptor as PQ-WGLOH(Product Quantized WGLOH).

Section 2 presents the proposed descriptor. In section 3, we dis-
cuss the experimental results. Section 4 concludes the work.

2. THE COMPACT DESCRIPTOR: PQ-WGLOH

We first construct a circular region r with radius R around each inter-
est point(Fig.1.a). Then the region r is partitioned into k subregions
ri by a log-polar grid. We learn three optimal radiuses of the log-
polar grid, R1, R2 and R3 in a discriminative way(Fig.1.b). For each
sub-region ri, magnitudes and orientations of image gradients are



Fig. 1: Flow chart of the proposed descriptor PQ-WGLOH.

accumulated to an orientation histogram hi with m bins. The local
descriptor h of the region r is finally composed of k m-dimensional
sub-region histograms: h = (h1, ..., hk)(Fig.1.c). We refer to each
sub-region histogram hi as a location bin of h. We assign a weight
to each location bin(Fig.1.d) and quantize the weighted location bin
with product quantization(Fig.1.e).

2.1. Radius R1, R2 and R3 learning

Brown[4] did patch level experiments to learn proper parameters of
descriptors. However, the descriptor that works well at the patch
level would not guarantee best performance at image level. Hence
we directly learn R1, R2 and R3 using image matching experiment.

We first extract local descriptors from each pair of images and
match them using the ratio test criterion[1]. With the number of
matched descriptors, we form two histograms, one for match im-
age pairs and the other for non-match image pairs. Integrating
the two histograms, we obtain a Receiver Operating Character-
istic(ROC) curve which plots correct match fraction against in-
correct match fraction. The area under the ROC curve is used
to measure descriptor performance. To maximize the ROC area,
we jointly search optimal R1, R2, R3 by multidimensional di-
rection set method. Experiment on PKU data set[10] shows that
R1 = 20% ∗R, R2 = 40% ∗R, R3 = 100% ∗R yields best result.
We fix R1, R2, R3 for remaining experiments in this paper.

2.2. Location bins weighting

We learn good choices of weights for each location bin using a train-
ing set consisting of patches from a multi-image 3D reconstruction
where accurate ground-truth matches are determined[4]. Each re-
covered 3D point Pi is projected back to images in which they were
matched to produce accurate virtual interest points. We extract a
patch sij of 64*64 pixels around the virtual interest point in image
Ij . Sample patches are shown in Fig.2.

We discover the sub-regions of matched patches have different
degrees of variance. Intuitively, the descriptor will be more robust
if the variance of matched descriptors is minimized. It encourages
us to weight sub-regions by a decreasing function of corresponding
variance. We first calculate variance vij of the jth location bin for
descriptors of the virtual interest points projected from ith 3D point,
which is the sum of variances of all dimensions of the jth location
bin. Variance vj of the jth location bin for all patches is set to the
average of vij , vj = 1

N
∗

PN
i=1 vij . N is the number of 3D points.

We conducted simulation experiments on PKU data set where
40, 000 3D points are generated. The result is shown in Fig.1.d
which tells us location bins at the same radius almost have the same
amount of variance. Innermost region has the least variance while

the 4 middle regions have the largest variance. We propose to put
the weight of the jth location bin as wk = exp(−vj).

2.3. Descriptor quantization

Vector quantization (VQ) is a lossy data compression method based
on the principle of block coding where all components of a vector are
quantized simultaneously. A disadvantage of VQ is that its encoding
complexity increases dramatically with the vector dimension[11].

Product quantization addresses the problem by dividing an input
vector into k segments and quantizing those segments independently
using k sub-quantizers qj where qj is a quantizer of low complexity
associated with jth segment of the input vector.

We employ product quantization to compress raw descriptor
h = (h1 = (h1

1, ..., h
m
1 ), ..., hk = (h1

k, ..., hm
k )), where n = m ∗ k

is the descriptor dimension. h is structured into k parts by location
bins, each part having m dimensions. We quantize the vectors of
the k parts independently using k sub quantizers. Sizes z of all
sub-quantizers’ quantization dictionaries are the same. In that case,
the whole representation space is given by zk.

A sub-quantizer q maps a m-dimensional vector hj to q(hj) ∈
C = {ci, ci ∈ Rm, i ∈ I}. I = {0, ..., z − 1}. C is a set of
reproduction values to represent original vectors. The quality of a
quantizer is measured by the mean squared error(MSE) between the
input vector and its reproduction value, MSE(q) = E(q(h) − h)2.
We greedily learn subquantizers by minimizing MSE using Lloyd’s
algorithm over raw descriptors extracted from training images. The
compressed descriptor is represented by a short code composed of
all sub-quantizers’ indices.

Parameter z decides quantization error as well as the size of
quantized descriptor. When we use fixed-length coding for the sub-
quantizers’ output, the bits needed for a descriptor is k ∗ log2z.

2.4. Descriptor distance calculation

Since descriptor h captures the probability distribution of gradient
magnitudes and orientations, we use Kullback-Leibler divergence to
compare descriptors. The distance between two descriptors x and y
is defined as dist(x, y) =

Pk
l=1 KL(xl, yl) where KL(xl, yl) =

Pm
d=1(x
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l

yd
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).

To accelerate distance computation, we approximate the exact
distance of descriptors using quantized descriptors as dist(q(x), q(y)) =
Pk

l=1 KL(q(xl), q(yl)). Distance between each pair of reproduc-
tion values q(xl) and q(yl) is pre-computed and stored in a table.
Thus the distance dist(q(x), q(y)) can be efficiently calculated with
k look-up table and addition operations.



Table 1: Details of 5 experiment data sets

category match
pairs

non-match
pairs

query
image

reference
image

mixed text+
graphics 3000 30,000 1500 1000

paintings 400 4000 400 100
frames 400 4000 400 100

landmarks 3805 48675 3514 11083
common objects 2550 25500 2550 7650

3. EXPERIMENTS

Following the evaluation framework of CDVS[10], we evaluate PQ-
WGLOH in the context of image retrieval, pairwise image matching
and object localization. We first compare PQ-WGLOH with SIFT,
GLOH and state of the art low bit rate descriptor CHoG. Then the
scalability of PQ-WGLOH is validated by continuously varying the
upper bound of total bits allowed for an image.

3.1. Experiment data sets

Eight data sets contributed to CDVS[10], including ZuBud, UKY,
Stanford, ETRI, PKU, Telecom Italia, Telecom SudParis and
Huawei are used in experiments. There are 30256 images in to-
tal which are assigned to 5 categories by contents, i.e. mixed text
and graphics, paintings, frames captured from video clips, land-
marks and common objects. All data sets provide the annotation
files of pairs of match and non-match images, query and reference
image lists. In addition, mixed text and graphics also provide bound-
ing boxes for each pair of match images for localization experiment.
Refer to Table.1 for more details about the data sets.

3.2. Pairwise matching

Matching operation is performed for each pair of images listed in
annotation files. We use KL divergence as distance measure for PQ-
WGLOH as well as CHoG, and L2-distance for SIFT and GLOH.
Feature descriptors across two images are compared using the ratio
test [1] with a threshold of 0.6. Potential feature matches are then
verified by geometric consistency checking with RANSAC.

3.2.1. Comparison of SIFT, GLOH, CHoG and PQ-WGLOH

We use the SIFT implementation provided by Vedaldi et al[12]
where each descriptor occupies 1024 bits. CHoG descriptors are
generated using the executable program published by Chandrasekhar[9].
One CHoG descriptor takes 72 bits. We implement our own GLOH
which occupies 576 bits. For PQ-WGLOH, we set k = 9, m = 8
and z = 256. Thus each descriptor eats up 72 bits.

As can be seen in Fig.3, PQ-WGLOH performs slightly worse
than SIFT and GLOH with 10 times fewer bits. Moreover PQ-
WGLOH outperforms CHoG descriptors at the same bits by 20%
in terms of true positive rate at a given false positive rate. The su-
periority of PQ-WGLOH over CHoG probably lies in the selection
of reproduction values. For CHoG, reproduction value vi of node i
is obtained as vi = 2−bi where bi is the depth of tree node i. PQ-
WGLOH, however, learns reproduction values in a data-driven man-
ner which minimizes MSE. Note that all sub-quantizers in our exper-
iments are learnt from 6000 images collected from Flicker. Hence

Fig. 5: ROC curve on PKU(left) and UKY(right)(1):Dictionary size
z varies from 2 − 256(top), (2): Descriptor number n varies from
100 − 1000(bottom).

we may claim sub-quantizers actually captured general structures
which are independent of test data.

3.2.2. Scalability

We validate PQ-WGLOH’s performance when the maximum bits
allowed for an image vary. Total bits for representing an image are
decided by the number of descriptors n and dictionary size z.

We first study the situations when z varies from 2 to 256. As
shown in Fig.5(top), the performance decreases slightly when z
varies from 256 to 16. When z is set between 8 and 16, matching
performance drops by about 10% but is still acceptable. If z < 8,
the performance decreases significantly.

We then set upper bounds, ranging from 100 to 1000, of the
number of selected descriptors for one image. Fig.5(bottom) shows
the pairwise image matching result. We find that 400 descriptors
are sufficient to produce satisfactory results. Moreover, performance
decreases dramatically when fewer than 200 descriptor are used.

3.3. Object localization

Each query image is with a bounding quadrilateral covering corre-
sponding regions of the reference image. The quadrilateral is speci-
fied by the coordinates of 4 vertexes.

For a pair of query and reference images, we first match descrip-
tors using ratio test. Based on locations of matched descriptors, the
homography transformation from reference to query image is esti-
mated. By the transformation, we project the four vertexes of ref-
erence quadrilaterals to query image. Localization accuracy is mea-
sured by a ratio: the overlapping area of back-projected and query
quadrilaterals versus the total area filled by both quadrilaterals.

The overlap ratio for PQ-WGLOH is 0.8604, which is slightly
worse than SIFT and GLOH, with 0.8902 and 0.8729 respectively.
CHoG achieves localization accuracy of 0.8134.



(a) painting (b) common (c) landmark (d) mixed (e) frame

Fig. 3: ROC curve of pairwise matching on 5 categories of images.

(a) painting (b) common (c) landmark (d) mixed (e) frame

Fig. 4: AP @ N curve of image retrieval on 5 categories of images.

3.4. Image retrieval

Our retrieval pipeline applies the state of art inverted indexing tech-
niques [13]. Instead of using K-means to construct visual vocabular-
ies, we employ scalable vocabulary tree(SVT) method[14] to speed
up vocabulary learning and descriptor quantization process. Branch
factors and depth of SVT are set to 18 and 4 respectively, produc-
ing about 104976 leave nodes. Given a query, TF-IDF scheme is
employed to score database images for retrieval. We adopt Average
Precision @N for performance measure.

Fig.4 shows the retrieval results on 5 categories of data sets.
SIFT and GLOH achieve about 10% higher AP @N than our PQ-
WGLOH. The poor performance of PQ-WGLOH may be attributed
to large quantization error from two-round quantization. CHoG suf-
fers from the similar problem as PQ-WGLOH, but the AP @N is
much lower than PQ-WGLOH on all data sets except video frames.

4. CONCLUSION

We proposed a compact yet discriminative local feature descriptor
PQ-WGLOH with product quantization. The compactness reduces
the load on wireless networks for visual search. Moreover, by pre-
computing a distance table, descriptor matching with low complexity
is allowed. Extensive experiments on 8 data sets in the context of im-
age retrieval, pairwise image matching and object localization show
that PQ-WGLOH achieves comparable performance with SIFT and
GLOH. In particular, PQ-WGLOH outperforms state of art CHoG.
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