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Abstract—In wireless scenarios where the channel condition may vary
drastically, visual communication systems using source and channel
coding generally suffer from threshold effect. An uncoded transmis-
sion scheme called SoftCast [1]-[3], however, was recently shown to
provide both graceful quality transition and competitive performance.
In SoftCast, image signal is directly modulated to a dense constellation
using proper power for transmission, solely after employing a transform
for energy compaction, leaving out conventional quantization, entropy
coding and channel coding. The received signal is lossy in nature,
with its noise level commensurate with the channel condition. This
paper presents a theoretical analysis for uncoded visual communication,
focusing on the role of transform and the quantitative measurement
of transform gain in a generalized uncoded transmission framework
with optimal power allocation. Our analysis reveal that the energy
distribution among signal elements plays an important role in the
power-distortion performance. Further analysis show that the energy
compaction capability of decorrelation transform can bring significant
gain by boosting the energy diversity in signal representation. Numerical
analysis results are reported for Markov random signals and natural
images, respectively. The performance of typical transforms, e.g. KLT,
DCT and DWT, and the effect of different transform sizes or levels are
evaluated. These analysis results are verified by simulations.

I. INTRODUCTION

A communication system based on source and channel coding
generally requires the channel statistics to be known at the time of
coding, in order to choose an appropriate source and channel coding
rate. Once the coding process is finished, it works optimally only for
a specific channel quality: if the actual channel quality falls below a
threshold, the decoding process tends to break down completely; if
the channel quality increases beyond that threshold, it cannot provide
any improvement in performance. This is known as the “threshold
effect”. For this reason, accurate channel estimation is desired.
However, channel condition may vary drastically and unpredictably,
especially in wireless communication scenarios. Therefore, existing
communications systems tend to utilize the channel conservatively.

Recently, a scheme called SoftCast [1]-[3] was proposed for wire-
less video. It is essentially a scheme with “lossless compression and
lossy transmission”, as illustrated in Fig. 1. The compression stage
is solely a transform to decorrelate the image signal, leaving out the
conventional quantization and entropy coding. The transmission stage
also abandons the conventional channel coding. Instead, it scales
each transform coefficient individually and modulates it directly to
a dense constellation for transmission. The scaling operation serves
the purposes of both power allocation and unequal signal protection
against channel noises. For practical optimization, SoftCast groups
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the coefficients into a set of chunks and perform scaling at chunk
level. At the receiver, the image is reconstructed by demodulating the
received signal and inverting the scaling and transform. The scheme
was shown to not only provide graceful performance transition in
wide channel signal-to-noise range, but also achieve competitive
performance compared with the state-of-the-art coding scheme.
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Fig. 1. The flowchart of SoftCast [1]-[3].

The impressive performance of SoftCast motivates us to consider
uncoded transmission as a promising direction for robust and efficient
wireless visual communication. This paper presents a theoretical
analysis for SoftCast, focusing on the role of transform and the
quantitative measurement of transform gain in a generalized uncoded
transmission framework with optimal power allocation. Our analysis
reveal that the energy distribution among signal elements plays an
important role in the power-distortion performance. Further analysis
show that the energy compaction capability of decorrelation transform
can bring significant gain by boosting energy diversity in signal rep-
resentation. Based on these analysis, the design of an uncoded visual
communication system is discussed. In particular, the performance of
different transforms (e.g. KLT, DCT or DWT) and different transform
sizes or levels are evaluated. The results are verified by transmission
simulations.

II. UNCODED TRANSMISSION WITH UNEQUAL PROTECTION
A. Distortion-Power Function of Uncoded Transmission

We consider a general uncoded transmission framework. Suppose
x = (z1,72,...,oTN) € RY is a random vector to transmit over
a noisy channel. Typically, each element x; may represent a single
pixel or a transform coefficient. To utilize the transmission power
efficiently, the encoder scales each signal element xz; by a factor
g: € R and sends out

Yi = gi " T4 (1)

directly using a dense modulation constellation. The signal that
arrives at the receiver (after demodulation) is

Ui = yi +n, 2)
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where n is channel noise, commonly assumed to be zero-mean
additive white Gaussian noise (AWGN). The decoder inverses the
scaling operation and gets an estimation of x; by:

&y = 9i/gi = ®i +n/gs. 3)
In the above process, the expected distortion in Z; is
D; = E[(&; —x:)°] = 02 /g:. (@)
The expected transmission power for sending x; is
P, = Ely;] = g7 - E[z]. ®)
Combining (4) and (5), we get the distortion-power relationship:
D;-Pi =05 -E[z}] or Di(P) = %ai “E[z7].  (6)

B. Unequal Protection via Power Allocation

To achieve optimal performance, the transmission power is allo-
cated among the elements {x;} by

(P1): minimize ZDi s. t. ZPZ' < Potal (@)

This optimization problem can be easily solved by setting the
distortion-power slopes of all elements to be equal:

D; — o2 . E[z?
ap = g = cons ®)

This determines the optimal power for sending x;:

P; = Cony/E[22] ©)

Here C' is used to control the total transmission power. Substituting
(9) into (5), the optimal scaling factors are

1/4 —1/4

g = VO (El?) " or g o< (El?)) (10)
C. Overall Performance
Recall the equations (6) and (9), we easily derive
D= Lowy/Bla?] (1)

Here, the normalization factor C' is determined by > i P; = Pl
so that C = Pow/(on Y>; \/Elz?]). Therefore, the total expected
distortion under optimal power allocation is

Dot = Z D; = (Z \/@)

Consider the definition of channel signal-to-noise ratio and the
peak signal-to-noise ratio of reconstructed signal, we have

2
PSNRgs = ¢ 4+ CSNRgs — 10log,, (Z \ /E[xf]) (13)

with ¢ = 10log10(2552N). We note that the reconstruction PSNR
increases linearly with CSNR with a ratio of 1 : 1. To reveal
the relationship between the signal statistics and the transmission
performance, we define

Hex) 2 3\ B

as the “activity” of a random source x. This is analogous to the
concept of “entropy”, in the sense that it measures the difficulty in
transmitting the signal over a noisy channel. For a fixed channel SNR,
higher activity H(x) in x means lower quality in the reconstruction
X.

2
g
= 12
Ptolal ( )

(14)
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Fig. 2. H(x) of two-variable random source x with E[z?] = XA; and

E[z2] = X2, subject to A1 + A2 = X. H(x) = V2 is reached when
A1 = Ag. In this figure A=1.
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Fig. 3. H(x) of three-variable random source x with E[z2?] = X;,i =

1,2,3, subject to A1 + A2 + A3 = A. H(x) = V3 is reached when

A1 = A2 = A3. In this figure A=1.

III. ENERGY DIVERSITY AND TRANSFORM GAIN

In this section, we reveal the advantages of employing decorrela-
tion transform in SoftCast. We show that a decorrelation transform
can bring significant performance gain in uncoded transmission by
boosting the energy diversity in signal representation.

A. Energy Diversity

We first study the mathematical property of definition (14). Obvi-
ously, f(x) = +/x is a strictly upper convex function. Therefore, we
have the following remarks: (suppose A is a constant, X\, \; € RT)

Remark 1 If Ay <= Ao, f()\l) +f()\2) > f(/\1 — 6) + f()\z -|—6)
holds for Ve > 0.

Remark 2 Subject to A1 + A2 = A, f(A1) + f(X2) achieves its
maximum value only when A1 = As.

Fig. 2 illustrates the H(x) value of two-variable random source
with different energy distribution. It is clear in Fig. 2 that a higher
diversity in the signal’s energy distribution corresponds to a lower
value in H (x).

The above conclusions can be extended to more general cases
of N-variable random source. If 3. X\; = A is constant, Y. f(\;)
achieves its maximum value only when all \;,7 = 1,2,..., N are
equal. The more diversified these A; values are, the smaller Y. f(\;)
is. Fig. 3 illustrates how the H(x) value varies with the energy
distribution of x, for the case N = 3.

B. Effect of Decorrelation Transform

Natural image signals usually exhibit strong correlation among the
neighboring pixels. This is commonly exploited in image coding by
decomposing the signal using a decorrelation transform. Karhunen-
Loéve Transform (KLT) is the optimal transform to use, when the
statistics of signal are known in advance. In practice, DCT is widely
used instead as it is a good approximation of KLT [4].
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Fig. 4. Transform gain of 1 X N KLT for one-dimensional first-order Markov
process with correlation coefficient p.
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Fig. 5. Transform gain of N X N KLT for two-dimensional first-order

Markov process with correlation coefficient p.

Typical decorrelation transforms for images, such as KLT, DCT and
DWT, etc., are orthogonal or approximately orthogonal. Therefore,
they do not change the total energy of a signal, as long as proper
normalization is used. What they change, however, is the distribution
of energy among signal elements. After decorrelation, the signal
energy is usually compacted to a small part of coefficients: a small
number of coefficients become large while most other coefficients
become close to zero. Therefore, energy distribution in the signal
representation becomes much more diversified after decorrelation.

Based on Section III-A and the above discussions, we infer that a
decorrelation transform can reduce the “activity” of a signal, which
subsequently leads to higher energy utilization efficiency in uncoded
transmission and better quality in reconstruction. For an orthonormal
transform 7 : X (i) — Y (u), we define the transform gain (in dB)
of 7 in the context of uncoded transmission by

H(X
G(X|T) = 20log,, ( HEY)) ) . 15)
To be concrete,
> )‘X(i)
G(X|T) = 20log,, (16)

2w/ Ay () 7

where Ay ;) = E[X(i)%], Ay(;y = E[Y (4)%].

IV. NUMERICAL RESULTS OF TRANSFORM GAIN ANALYSIS

In this section, we evaluate the transform gain defined in (16)
for some example signals. For this purpose, the knowledge of energy
distribution among signal elements is assumed to be perfectly known.

A. Markov Random Signals

First-order Markov random process is a simple but widely used
signal model for natural images. For a stationary first-order Markov
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Fig. 6. Transform gain of BDCT and DWT on Lena (512 x 512, gray).

process {X:}, ¢t = 1,2,..., N with correlation coefficient p, the
covariance matrix is

1 P p? pN-1
1 P pN-2
2 N-3
Ox = o% P P 1 P .an
pN-L pN-2 N3 1
The KLT transform result Y = KLT(X) has a covariance matrix

Cy = 0% - diag{\1, A2, ..., An}.

The diagonal entries {\;} correspond to the eigen-values of the
Toeplitz matrix in (17), which can be determined by (see [5]):

(18)

1-— p2 .
=P i=12,...N, (19)
1—2pcosw; + p?
where {w;} are the positive roots of
1—p*)si
tan(Nw) = — — (L= p7)sinw (20)

cosw — 2p + p2cosw’

Fig. 4 illustrates the KLT transform gain for one-dimensional
first-order Markov process and shows how the gain varies with the
correlation parameter p and the transform size N. For a fixed N, the
transform gain increases as p goes from 0 to 1 (from low correlation
to high correlation). That means applying KLT to a signal with
stronger correlation can provide higher transform gain. For a fixed
p, the transform gain generally increases with N. That corresponds
to the fact that a transform of larger size can exploit the signal
correlation at a larger scale. When p — 1, the transform gain
increases by 3.01dB each time N is doubled.

These remarks can be extended to signals of higher dimension. Fig.
5 illustrates the transform gain of N x N KLT for two-dimensional
signal which is first-order Markov in each dimension with correlation
p. When p — 1, the transform gain increases by 6.02dB each time
N is doubled.

B. Natural Images

For real-world natural images, we consider DCT and DWT (using
the 9/7 filter), which are employed in the still image coding standard
JPEG and JPEG2000, respectively. Fig. 6 illustrates the transform
gain for Lena (512 x 512, gray). Clearly, for both block-DCT and
DWT, the transform gain increases with transform block size or
transform level. For typical 512 x 512 natural images, the transform
gain can be as high as 20 ~ 25 dB. In addition, the performance
of m-level DWT is slightly better than that of DCT with block size
2™ x 2™,
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V. EXPERIMENTAL RESULTS.

We conduct SoftCast simulations using DCT and DWT for Lena,
Peppers, Elaine, Barbara, etc., to verify the analysis presented in
previous sections. To limit the overhead for sending energy distri-
bution information, the coefficients in each band are assumed to
have the same statistics, which are delivered to the receiver by
band-level meta-data. Results for all tested images exhibit similar
trend so that only the results for Lena are shown. Fig. 7 and Fig.
8 illustrate the reconstruction PSNR versus channel SNR curves,
for SoftCast using block-DCT with various transform sizes and
DWT with various transform levels. Obviously, there exists a linear
relationship between PSNR and CSNR (except at very low CSNR
region where the clip effect become visible). In addition, larger
block-DCT transform size or more DWT transform levels lead to
better transmission performance. The reconstructed images using
these transform configurations are shown in Fig. 9 and Fig. 10.
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Fig. 7. Simulated performance of block DCT using various transform sizes.
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Fig. 8. Simulated performance of DWT using various transform levels.

VI. CONCLUSIONS AND DISCUSSIONS

This paper presented a theoretical analysis for uncoded visual
communication and shown that decorrelation transform can bring
significant gain by boosting the energy diversity in the signal rep-
resentation. Larger transform size in DCT or more transform levels
in DWT produces higher energy diversity, but it also requires more
meta-data to describe such diversity. More efficient energy diversity
describing method will be studied in our future work.
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