
GPU Based Sample Adaptive Offset Parameter
Decision and Perceptual Optimization for HEVC

Falei Luo∗†, Shanshe Wang†, Nan Zhang§, Siwei Ma†‡, and Wen Gao†‡
Email: falei.luo@vipl.ict.ac.cn sswang@jdl.ac.cn zhangnan@ccum.edu.cn swma@pku.edu.cn wgao@pku.edu.cn

∗Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
†Institute of Digital Media & Cooperative Medianet Innovation Center, Peking University, Beijing, China

‡Peking University Shenzhen Graduate School, Shenzhen, China
§School of Biomedical Engineering, Capital Medical University, Beijing, China

Abstract—In this paper, a graphics processing unit (GPU)
based sample adaptive offset (SAO) parameters decision scheme
is proposed for High Efficiency Video Coding (HEVC). Then, in
order to further improve the performance of SAO, a perceptual
based optimization scheme is provided according to the adjust-
ment of Lagrange multiplier aiming to improve the subjective
performance of SAO. Experimental results demonstrate that the
proposed GPU based SAO parameter decision scheme can achieve
average 0.76% and 0.78% BD-rate gain in terms of PSNR
(Peak Signal to Noise Ratio) and SSIM (Structure Similarity)
respectively. Combined with the perceptual optimization scheme,
the maximum BD-rate gain in terms of PSNR and SSIM can
be up to 1.77% and 3.3% with the average as 1.23% and
1.37%. Moreover, much computation complexity of SAO can be
distributed to GPU.

Keywords—HEVC, SAO, GPU, Lagrange multiplier, perceptual
optimization

I. INTRODUCTION

High Efficiency Video Coding (HEVC) significantly im-
proves the coding efficiency compared to the previous coding
standard H.264/AVC [1]. It is stated that in the same subjective
quality level, half more bits can be saved [2]. Nonetheless,
the traditional block based prediction and transform coding
scheme is utilized, thus artifacts like blur and blocking artifacts
still exist. In order to abate such artifacts, sample adaptive
offset (SAO) was creatively proposed in the HEVC standard-
ization process [3]. By applying independent offsets to samples
in different categories, distortion can be evidently reduced and
the coding performance can be significantly improved with
SAO. However, the traditional implementation of SAO is based
on objective rate distortion optimization (RDO). Since the final
video receiver is human eyes, perceptual based RDO procedure
can be expected to further improve the coding performance.

In the video coding optimization, perceptual based op-
timization is always a hot research topic for the optimiza-
tion of video coding standard. In the early video coding
standards, vision model has been considered [4]. However,
human visual system (HVS) is so complicated that it cannot
be represented accurately only by a simple model. In the
actual video coding, a practicable scheme is to incorporate
the perceptual distortion into the rate-distortion (R-D) cost for
mode decision. In the previous researches, many works focused
on the formulation of perceptual distortion. In [5], Structure
Similarity (SSIM) is proposed to be an effective subjective
video quality measurement. Based on SSIM, the perceptual

distortion is described as (1-SSIM), and then perceptual RDO
can be achieved [6][7]. In [8], Yeo et al. utilizes 1/SSIM as the
perceptual distortion, and propose a perceptual optimization
scheme based on the Lagrange multiplier (denoted as λ) for
HEVC. In recent researches, the divisive normalization theory
[6][9] is deeply investigated for the perceptual optimization. It
is stated that it can reflect the visual characteristics of human
eye at a certain extent [10]. In the image/video processing, the
divisive normalization is widely utilized [11][12]. However,
the calculation scheme for divisive normalized factor (DNF) is
somewhat different, e.g. the local characteristic based scheme
[12] and distribution model based scheme [10]. In [13], a
Lagrange multiplier based perceptual optimization scheme is
proposed to optimize HEVC coding, and much perceptual
improvement is achieved.

However, the perceptual based RDO procedure would
increase the computing complexity of HEVC encoder since
additional computation is necessary, which may not be suitable
for practical applications. In recent years, with the rapid
development of the Graphic Processing Unit (GPU), many
researchers tries to use General Purpose GPU (GPGPU) for
video codec optimization [14][15]. It can be attributed to that
modules like motion estimation is time consuming but can be
conducted in parallel, which is suitable for GPU with strong
computation ability for large scale concurrent computation.

In SAO parameter decision, the main aim is to determine
a suitable offset for each coding tree unit (CTU) in order to
improve the reconstruction quality. The final selected modes
and offsets are mainly determined by the reconstruction and
original picture, while other coding information like coding
unit partition has little effect. It inspired us to implement the
decision process on GPU platform to save the computation
burden of CPU. In this paper, a parallel mechanism for SAO
parameter decision on GPU is firstly designed based on the
Compute Unified Device Architecture (CUDA)[16], so the
computing complexity is reduced and time saving is achieved.
As numbers of threads can be provided on GPU, a more
accurate slice control for SAO is suitable to be conducted
and the coding performance can be improved. Furthermore, a
perceptual based optimization scheme which can be applied in
parallel is proposed based on perceptual R-D cost calculation
and more coding performance improvement is obtained.

The remaining of this paper is organized as follows. In
Section II, a brief introduction to SAO and its parameter
decision process in HEVC reference software is provided.
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Fig. 1. Sample categories for EO in SAO

Then in Section III, the proposed implementation on GPU is
detailed. And the experimental results are shown in Section
IV. Eventually, Section V summarizes the paper.

II. SAMPLE ADAPTIVE OFFSET IN HEVC

Two types of offset, edge offset (EO) and band offset
(BO) are used in SAO of HEVC [3]. In EO, as shown in
Fig. 1, samples are classified into five categories based on
the variation tendency from one direction. In BO, the sample
value range is divided into 32 bands evenly, and the category
of one sample is determined by its value. Therefore, the
computational complexity mainly focus on the judgment of
SAO category and offset calculation.

In order to reduce the computational complexity, a fast
parameter decision scheme is conducted in HEVC test model
(HM) as follows [3]. Firstly the distortion increment between
post SAO and pre SAO of samples with category i is repre-
sented as follows,

∆D =
∑4

i=1

(
Nihi

2 − 2hiEi

)
, (1)

where Ni is the number of samples in category i, hi is an offset
value, and Ei is the sum of difference between the original
samples and the pre-SAO samples for a specific category. Then
R-D cost increment ∆J can be obtained by

∆J = ∆D + λ ·R, (2)

where λ is the Lagrange multiplier, and R is the estimated
bits of coding the SAO parameters. Specially, when SAO
is disabled for one coding tree unit (CTU), the distortion
increment ∆D is zero and R-D cost increment is determined
by the bits needed for coding the essential syntaxes. By
comparing the R-D cost increment of each class and their offset
values, the best SAO type and offset values are finally selected.

In order to improve the coding efficiency of SAO, HEVC
adopts a switch to determine whether to execute SAO process
for a slice. A fast slice level SAO decision algorithm is
proposed [17][18] as follows. For a slice with none-zero
depth ND in a group of picture (GOP), a previous slice with
depth ND − 1 is set as the prediction slice. When more than
75% CTUs of the prediction slice disable SAO in luma or
chroma component, SAO for corresponding component would
be disabled for the current slice.
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Fig. 2. Thread allocation for the SAO variables calculation

III. PROPOSED SAO PARAMETER DECISION ON GPU

In this section, the proposed GPU based SAO parameters
determination scheme and the proposed perceptual optimiza-
tion scheme are elaborately illustrated.

A. GPU Based SAO Parameter Decision

The SAO parameter decision includes two aspects, the
CTU level decision and the slice level control decision. Both
decisions are proposed to be implemented on GPU, thus time
complexity reduction and coding efficiency improvement can
be expected.

1) CTU Level SAO Parameter Decision: As mentioned in
Section II, the decision of SAO parameters depends on many
corresponding variables, i.e. Ni, hi and Ei in (1). And the
CTU level decision consists of two steps, i.e. the calculation
of the above variables and the RDO process for SAO parameter
decision of each CTU.

In the first step, the calculation of the above variables for
all CTUs in one frame can be conducted at the same instant. In
order to obtain more acceleration, much data is stored on the
high speed shared memory on GPU, thus the number of threads
in one thread block NT is limited. It is mainly restricted as
follows,

NT × ST < SMAX , (3)

where ST denotes the size of shared memory needed per
thread, and SMAX is the maximum size of shared memory
for any thread block on a CUDA enabled GPU.
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During the calculation of Ni and Ei for each CTU in EO
class, 40 bytes of memory is needed for each thread since a
sample may be classified into 5 categories and 8 bytes are
needed to store the corresponding Ni and Ei pair. During
the calculation of variables for BO class, 32 × 8 bytes are
needed since a sample can be classed into any of the 32
bands. Therefore, at least 256 bytes are needed for each thread
on GPU. While SMAX is 48 KB for each thread block on
CUDA devices with capacity 2.0, so NT is limited to 192
for such devices. Due to such limitation, using one thread for
one sample is not realistic while utilizing one thread for one
column of samples is a better trade-off. As shown in Fig. 2,
in the proposed implementation, each thread block is allocated
for one CTU, and T threads are used for each thread block.
To decrease latency caused by synchronization in one CTU,
T and NT are both set to 32, same as the warp size of GPU.
Thus (M ·N ·T ) times speedup is expected in this step, where
M and N are the number of CTUs in width and height.

In the next step, the table-based bit estimation for CABAC
in HEVC is utilized for rate calculation [19]. Like the SAO
decision process in HM, only SAO syntaxes (merge flags, types
and offset values) are taken into account, thus the number of
contexts on GPU can be cut down to 2. At the same time, best
offset calculation for non-merge modes can be conducted in
advance since they do not depend on the neighboring data and
entropy coding status, which in turn brings in speedup for the
RDO procedure. Furthermore, the parameter decision of CTUs
in different CTU rows can be conducted at the same time on
GPU like wavefront parallel processing (WPP) [2], and some
times speedup can be expected.

2) Slice Level SAO Parameter Decision: Based on the sum
of R-D cost increment for all CTUs, an improved scheme
to determine whether to utilize SAO for a slice or not is
proposed. Firstly, the R-D cost increment for enabling only
luma or chroma and enabling both components are calculated
respectively as follows,

∆Jluma =

MN∑
i=1

∆Dluma(i) + λlumaRluma(i), (4)

∆Jchroma =

MN∑
i=1

∆Dchroma(i) + λchromaRchroma(i), (5)

∆Jall =

MN∑
i=1

∆Dall(i) + λallRall(i), (6)

∆Joff = 0, (7)

where ∆Jluma is the R-D cost increment of the slice when
executing SAO just on luma component, and it is achieved
from the SAO parameter decision resulting from the former
SAO parameter decision process. ∆Jchroma is the R-D cost
increment of the slice when applying SAO just for chroma
component. And ∆Jall is the R-D cost increment when SAO
for all components are enabled.

When the sum R-D cost increments as in (4), (5) and (6)
are all generated, the minimum R-D cost increment of a slice is
determined. If the minimum is negative, it is suitable to utilize
SAO for the slice. Then corresponding achieved parameters
should be encoded.

B. Lagrange Multiplier Based Perceptual Optimization

The shortcoming of traditional RDO as shown in (2) is
that the distortion D cannot reflect the characteristics of HVS.
However, it is intuitive that samples in some CTUs would have
more impact on the subjective quality and others may have
less. Thus, it is suitable to determine whether to turn on SAO
and determine the offset values on a subjective perspective.

In [13], a perceptual based RDO for a CU is presented as,

Jp = D + λp ·R, (8)

λp = λ · f2, (9)

where Jp denotes the perceptual based rate distortion cost, f is
relevant with the DNF. The detailed description of DNF can be
referred to our previous work [13]. The scheme in (8) cannot
be directly utilized for SAO since the processing unit of SAO
in HEVC is CTU.

In this paper, based on the scheme as in (8), a perceptual
based scheme for the decision of SAO parameters is proposed.
The calculation of f for a CTU is improved as follows,

f = 1.4 − 0.8f
′
, (10)

f ′ =

∑l
i=1 Fi

l · E (Fi)
, (11)

Fi =

√√√√∑N−1
k=1

(
2 · Igi (k)

2
)

N − 1
+ C, (12)

where f ′ is the DNF [6], denotes the Gaussian filtered coeffi-
cients and E(Fi) means mathematic expectation of Fi. From
(10), it can be seen that f is restricted in [0.6, 1.4]. Then the
rate distortion increment can be represented as

∆Jp = ∆D + λp,CTU ·R, (13)

where ∆Jp denotes perceptual based rate distortion increment
for one SAO class and λp,CTU is the perceptual optimized
Lagrange multiplier for current CTU. When the minimum ∆Jp
of all the SAO types is negative, it is suitable to utilize SAO
for the CTU.

IV. EXPERIMENTAL RESULTS

To evaluate the coding performance of the proposed
scheme, experiments are conducted on HEVC test model
HM16.2. The experiment was conducted on a desktop with
Intel i5 760 core in 2.80 GHz, 4 GB RAM and GTX 480
which has a CUDA capacity version 2.0 and clock rate 1.40
GHz. The operating system is Windows 7. During the test,
low delay P configuration with asymmetric motion partition
(AMP) off and 32 as largest coding unit size is adopted.

BD-rate [20] in terms of SSIM and PSNR are utilized
to assess subjective and objective performance respectively.
Speedup of SAO process is calculated as

Speedup =
Tanchor
Tpro

, (14)

where Tanchor and Tpro respectively represent the average time
consumption of SAO decision for one slice in HM16.2 and the
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TABLE I. CODING PERFORMANCE OF THE PROPOSED SCHEME

Sequence
GPU Optimization Perceptual based Optimization

BD-RATE BD-RATE Speedup BD-RATE BD-RATE SpeedupPSNR SSIM PSNR SSIM
Class A -0.78% -0.84% 2.56 -1.45% -1.65% 1.80
Class B -0.90% -0.83% 2.47 -1.74% -1.72% 1.79
Class C -0.90% -0.93% 2.16 -0.88% -1.06% 1.54
Class D -0.62% -0.22% 1.13 -0.42% 0.36% 0.77
Class E -0.54% -1.08% 2.56 -1.77% -3.32% 1.75
Average -0.78% -0.76% 2.18 -1.23% -1.37% 1.53
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Fig. 3. R-D curves comparison of the proposed scheme with HM

proposed implementation, including GPU execution time and
overhead for data transferring between CPU and GPU.

The coding performance is tabulated in TABLE I. It can
be observed that the proposed GPU implementation brings in
0.78% and 0.76% performance improvement on objective and
subjective quality. This can be attributed to the traversal of
all possible slice level switches. Although much speedup is
expected, only 2.18 times speedup can be achieved on average,
the computing capacity of a single GPU thread during RDO
and data transferring cost can be the limitation.

With the proposed perceptual based scheme, more objective
and subjective quality improvements can be achieved. As
shown in TABLE I, the objective coding gain is 1.23% and the
subjective coding gain in is 1.37% on average. Especially for
sequences in Class E, over 3.3% subjective coding gain can
be achieved, since more bits would be allocated in the regions
of interests by the proposed scheme. The R-D curves of the
proposed implementation are illustrated as shown in Fig. 3.

V. CONCLUSION

In this paper, a GPU based SAO parameter decision
algorithm is proposed. Moreover, an optimization scheme is
provided according to the divisive normalization to further
improve the coding efficiency of SAO. Experimental results
show that the proposed scheme can efficiently reduce the
time complexity of SAO and significantly improve the coding
performance.

ACKNOWLEDGMENT

This work was supported in part by the National Nat-
ural Science Foundation of China (61322106, 61571017),
National Basic Research Program of China (973 Program,

2015CB351800), and Shenzhen Peacock Plan, which are grate-
fully acknowledged.

REFERENCES

[1] I. Draft, “Recommendation and final draft international standard of joint
video specification (ITU-T Rec. H. 264— ISO/IEC 14496-10 AVC),”
Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVTG050,
vol. 33, 2003.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (HEVC) standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, no. 12, pp.
1649–1668, December 2012.

[3] C.-M. Fu, E. Alshina, A. Alshin, Y.-W. Huang, C.-Y. Chen, C.-Y. Tsai,
C.-W. Hsu, S.-M. Lei, J.-H. Park, and W.-J. Han, “Sample adaptive
offset in the HEVC standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1755–1764, 2012.
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