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ABSTRACT
Facial expression recognition (FER) is a very challenging problem
due to different expressions under arbitrary poses. Most conven-
tional approaches mainly perform FER under laboratory controlled
environment. Different from existing methods, in this paper, we
formulate the FER in the wild as a domain adaptation problem, and
propose a novel auxiliary domain guided Cycle-consistent adver-
sarial Attention Transfer model (CycleAT) for simultaneous facial
image synthesis and facial expression recognition in the wild. The
proposed model utilizes large-scale unlabeled web facial images as
an auxiliary domain to reduce the gap between source domain and
target domain based on generative adversarial networks (GAN) em-
bedded with an effective attention transfer module, which enjoys
several merits. First, the GAN-based method can automatically gen-
erate labeled facial images in the wild through harnessing informa-
tion from labeled facial images in source domain and unlabeled web
facial images in auxiliary domain. Second, the class-discriminative
spatial attention maps from the classifier in source domain are
leveraged to boost the performance of the classifier in target do-
main. Third, it can effectively preserve the structural consistency
of local pixels and global attributes in the synthesized facial images
through pixel cycle-consistency and discriminative loss. Quanti-
tative and qualitative evaluations on two challenging in-the-wild
datasets demonstrate that the proposed model performs favorably
against state-of-the-art methods.
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Figure 1: Facial expression recognition under laboratory
controlled environment (a) and in the wild (b). The FER in
thewild ismore challenging due to arbitrary pose variations,
spontaneous expressions, and illumination changes.

1 INTRODUCTION
As an essential way of human emotional behavior understanding,
facial expression recognition (FER) has drawn a great deal of at-
tention from the multimedia research community in recent years.
The FER has tremendous impact on a wide-range of applications
including psychology, medicine, security, digital entertainment, and
driver monitoring, which make it become a core component in the
next generation of artificial intelligence [5, 6, 16, 41, 54].

The FER aims to analyze and classify a given facial image into
several emotion types, such as, fear, angry, disgust, sad, happy and
surprise [9]. To achieve this goal, numerous methods [24, 31, 34]
have been proposed for the FER during the past several years. How-
ever, most of the existing methods [10, 45, 59] recognize facial ex-
pressions on the datasets recorded under laboratory controlled envi-
ronment, which is far away from real-world scenarios. As shown in
Figure 1(a), the facial images are usually captured under laboratory
conditions with controlled poses, illuminations, and deliberately
acted expressions. However, in the practical scenarios as shown
in Figure 1(b), extensive complicated environments would signifi-
cantly degrade the performance of the recognition methods that
deserve working well for the FER on the well-designed datasets. As
a result, the FER in the wild is largely unexplored. Different from
existing methods, we focus on the FER in the wild, which is to per-
form the FER by identifying or authorizing individual expressions
with facial images captured in real scenarios without any controlled
conditions. Therefore, it is more challenging and more applicable.

However, it is not easy to perform the FER in the wild. As shown
in Figure 1(b), the FER in practical scenarios would suffer from
illumination changes, arbitrary pose variations, spontaneous facial
expressions, unconstrained background, and many other unpre-
dictable and challenging situations. Besides, most publicly available
FER datasets in the wild have insufficient training data. As shown
in Table 1, the Static Facial Expressions in the wild (SFEW) dataset
[8] contains only 700 images while the EmotioNet [2] has only
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Table 1: Details of existing benchmarks for the FER.

Dataset Pose Expression Training Samples
SFEW arbitrary 7 700

EmotioNet arbitrary 6 1,141
BU-3DFE 143 7 185,900

1,141 images. Therefore, a great and common strategy to conduct
the FER in the wild is gathering sufficient annotated facial images
in the wild. However, labeling such facial images is labor-intensive
and time-consuming. An avenue for overcoming the lack of labeled
training data is to adopt transfer learning, which can apply knowl-
edge learnt from one domain to other related domains. For the
FER, it is easier to collect a large-scale dataset under laboratory
controlled environment. As shown in Table 1, the BU-3DFE [49]
has more than 185, 000 labeled images. This inspires us to conduct
the FER in the wild by using transfer learning with the large-scale
labeled data captured under laboratory controlled environment.
Here, we take the dataset with sufficient training samples captured
under laboratory as the source domain, and the dataset in the wild
with limited samples as the target domain. Then, numerous transfer
learning methods can be utilized to boost the performance for the
FER in the wild. In the context of deep learning, fine-tuning a deep
network pre-trained on the dataset with sufficient training samples
[14] or conducting domain adversarial networks [48] are the fre-
quently used strategies to learn task specific deep features. However,
since the ratio between the number of learnable parameters and the
number of training samples still remains the same, these methods
also need sufficient training samples or to be terminated after a
relatively small number of iterations [12]. To overcome this issue,
attention transfer has been proposed and successfully adopted in
several domain adaptation tasks [30, 51], which attempts to trans-
fer attention knowledge from a powerful deeper network that is
trained with sufficient training samples to a shallower network that
can be trained with limited training data with the goal of improving
the performance of the latter. However, it is still challenging to train
such a high-quality cross-domain model for the FER in the wild due
to the large domain shift in the images. As shown in Figure 1, the
facial images captured under laboratory controlled environment
only consist of faces without any background, but the facial images
in the wild usually have complex background.

To deal with the large domain shift between source domain and
target domain for the FER, we can adopt the data in source domain
to synthesize facial images as similar as the data in target domain
by using generative adversarial networks (GAN) model, which
has been proven to generate impressively realistic faces through
a two-player game between a generator G and a discriminator D.
However, these GAN basedmethods usually require sufficient input-
output image pairs for training, which is not available for FER in
the wild with limited samples in the target domain. Fortunately,
we can easily collect large-scale web images, which are similar to
the facial images in target domain, as auxiliary data by querying
widely available commercial search engines. Therefore, this inspires
us to resort to the GAN for transforming labeled facial images in
source domain so that they look like images captured in the wild
(target domain) through harnessing information from the web facial
images in the auxiliary domain. The basic idea is shown in Figure 2.
For the GAN model, there are many promising image-to-image
translation developments [23, 32, 60], but they do not necessarily

Figure 2: The basic idea of the proposed model, which takes
the large-scale unlabeled web facial images as the bridge to
alleviate the domain gap between source and target domain,
and can recognize facial expression in thewild with the help
of facial images under laboratory.

preserve key attributes, such as expression, pose in the FER task.
Although the generated image may “look” like it comes from the
auxiliary domain, some crucial semantic information may be lost.
For example, a model transforming a labeled facial image in source
domain to generate an image in auxiliary domain may lose the
expression attributes, which cannot be straightforwardly applied to
the FER task. Consequently, the desired model for our task is that it
can generate facial images which should simultaneously preserve
the expression attributes in source domain and transform helpful
content information in auxiliary domain as shown in Figure 2.

Inspired by the above discussions, we propose a novel Cycle-
consistent adversarial Attention Transfer (CycleAT) model with
the guiding of auxiliary domain, which is able to not only syn-
thesize labeled facial images in the wild, but also conduct FER in
the wild. Specifically, we first train an auxiliary domain guided
cycle-consistent GAN to generate labeled facial images in the wild,
which can be further divided into two stages. At stage-I, we use
a pixel cycle-consistency constraint in the facial image generator
to preserve the local structural information of the facial images
in source domain, which can guarantee the quality of generated
images. At stage-II, we add a classifier fW into the generator by ex-
ploiting the global attribute-level consistency, which can preserve
the expression attributes in the generated facial images, thus ensur-
ing the label consistency. Then, a target classifier fT is trained by
taking advantage of the sufficient labeled generated facial images.
Unlike previous approaches that distill knowledge through class
probabilities [19], we do so by attention transfer strategy, which is
helpful to train an effective classifier with limited training samples.

The major contributions of this work can be summarized as
follows. (1) We propose an auxiliary data guided learning model
for simultaneous facial image synthesis and FER in the wild by
harnessing information from labeled facial images captured under
laboratory controlled environment and unlabeled web facial images
from the Internet. (2) The class-discriminative spatial attention
maps from the classifier in source domain are leveraged to boost
the performance of the classifier in target domain. (3) The local
and global structural consistency of the synthesized facial images
has been effectively enforced through pixel cycle-consistency and
discriminative loss. (4) The proposed model achieves state-of-the-
art results on the SFEW [8] and EmotioNet [2] datasets for facial
expression recognition in the wild.
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2 RELATEDWORK
In this section, we mainly discuss methods related to FER, domain
adaptation, and generative adversarial network.
Facial Expression Recognition. Extensive efforts have been de-
voted to facial expression analysis [5, 53, 55, 61]. Most of existing
approaches on the FER study the expressions of six basic emotions
including happy, sad, surprise, fear, angry and disgust because of
their marked reference representation in our affective lives and
the availability of the relevant training data [52, 64, 65]. Gener-
ally, most existing FER methods mainly include two stages, i.e.,
feature extraction and expression recognition. In the first stage,
features are extracted from facial images to characterize facial ap-
pearance/geometry changes caused by activation of the expression.
According to whether the features are extracted by manually de-
signed descriptors or by deep learning models [11, 56–58], they can
be categorized into engineered features [10, 39, 63] and learning-
based features [16, 22, 24, 31, 54]. For the engineered features, it can
be further divided into texture-based local features, geometry-based
global features, and hybrid features. The texture-based features
mainly include HOG [14], SIFT [63], Histograms of LBP [66], Haar
features [44], and Gabor wavelet coefficients [46]. The geometry-
based global features are mainly based on the landmark points
around eyes, mouth, and noses [37, 38]. The hybrid features usually
refer to the features that combine two or more of the engineered
features [10]. For the learning-based features, most methods are
based on deep neutral networks [31, 36]. After feature extraction,
in the second stage, the extracted features are fed into a supervised
classifier[18, 22, 36] to train an expression recognizer for FER. Al-
though a handful of methods on the FER have been proposed, most
of these studies are conducted in “lab-controlled” environment, i.e.,
the faces are captured under laboratory conditions and the expres-
sions are deliberately acted. Different from existing methods, we
mainly focus on the FER in the wild, which is more challenging
because the facial images are usually collected from real scenarios
with spontaneous expressions and poses, and complex backgrounds.
Domain Adaptation. Domain adaptation is a very active research
area and has been widely studied for multimedia data analysis. Its
major issue is how to deal with domain shift, which refers to the
situation where data distribution differs between source and target
domain, causing the classifier learnt from source domain to perform
poorly on target domain. A large number of domain adaptation algo-
rithms have been proposed to address this issue [13, 30, 43, 48], and
the key focus is to learn domain-invariant feature representations.
For example, Bousmails et al. [4] adopt domain separation networks
that explicitly model the unique characteristics for each domain,
so that the invariance of the shared feature representation can be
improved. Timnit et al. [13] study fine-grained domain adaptation
to overcome the domain shift between easily acquired annotated
images and the real world. They show that while the first layers of a
Convolution Neural Network (CNN) can learn general features, the
features from the last layers are more specific and less transferable.
Therefore the CNN needs to be fine-tuned on sufficient labeled
target data to achieve domain adaptation. Very recently, attention
maps have been studied as a mechanism to transfer knowledge [51].
Its basic idea is as follows. Assume that we have a test image x , a
target expression k , a trained CNN model, and the corresponding

J feature maps Aj of a CNN layer. The image x is first forwardly
propagated through the trained CNN model, then a spatial atten-
tion map is constructed by computing statistics of the feature maps
across all the J channel dimension:

F (A) =
∑J

j=1 |A
j | (1)

The key focus of this work is to learn knowledge transfer from a
deeper network to a shallower network within the same domain.
More details of the activation-based attention transfer can be found
in [51]. Li et al. [30] extend this work for cross-domain knowledge
transfer from web images to videos.
Generative Adversarial Network. The Generative Adversarial
Network (GAN) is introduced in [15]. The goal is to train generative
models through an objective function that implements a minimax
two-player game between a discriminator D (a function aiming to
tell apart real from fake input data) and a generator G (a function
that is optimized to generate input data from noise that ‘fools’ the
discriminator). Through this game, the generator and discriminator
can both improve themselves. Concretely, D and G play the game
with a value function V (D,G):

min
G

max
D

V (D,G) =Ex∼pd (x )[logD(x)]+

Ez∼pz (z)[log(1 − D(G(z)))]
(2)

The two parts,G and D, are trained alternatively. Researchers have
successfully applied GAN-based approaches to various applications
such as image generation [7, 32, 62], object detection [29] and im-
age classification [3, 47]. Recent models [40, 60] adopt conditional
GAN [35] for image-to-image translation problems, but they re-
quire input-output image pairs for training, which is in general
not available in domain adaptation problems. More recent methods
focus on incorporating consistent constraints in the image genera-
tion process by translating images back to their original domains
while ensuring that they remain identical to their original versions.
For example, Zhu et al. [67] produce compelling image translation
results by Cycle-Consistent Adversarial Network (CycleGAN) such
as generating photorealistic images from impressionism paintings
or transforming horses into zebras at high resolution using the
cycle-consistency loss. Our motivation comes from such findings
about the effectiveness of the cycle-consistency loss, but differs from
them. We propose an auxiliary domain guided cycle-consistent ad-
versarial attention transfer learning model for simultaneous facial
image synthesis and FER in the wild. On the one hand, we can
distill knowledge from the sufficient facial images in source domain
through attention transfer. On the other hand, labeled facial im-
ages are synthesized by harnessing information from large-scale
unlabeled web facial images in auxiliary domain.

3 PROPOSED METHOD
In this section, we first give a brief overview of the proposed Cy-
cleAT model. We then describe the learning process and show the
difference with existing models.
3.1 Cycle-Consistent Adversarial Attention

Transfer for FER
As previewed in Section 1, it is an onerous task to collect large-scale
facial expression images in the wild with correct labels. However,
it is easier to build such dataset under laboratory controlled envi-
ronment. Therefore, we formulate the FER in the wild as a domain
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Figure 3: The architecture of the proposed cycle-consistent adversarial attention transfer model for simultaneous facial image
synthesis and FER in the wild. The part (a) shows data from source, auxiliary, and target domain. The part (b) is for cycle-
consistent adversarial image synthesis guided by auxiliary data. Here, for simplicity, we only show the generated process
from source domain to auxiliary domain. It is the same for the process from auxiliary domain to source domain. The part (c)
shows the attention transfer module.
adaptation problem. Here, the dataset captured under laboratory
controlled environment is source domain, and facial images in the
wild with limited samples are used as target domain. However, it is
challenging to bridge source domain and target domain due to their
representation gaps, such as background, color, lighting, poses. To
deal with this issue, we resort to large-scale unlabeled facial im-
ages in the web as auxiliary domain, and propose an auxiliary data
guided cycle-consistent adversarial attention transfer model for
simultaneous facial images synthesis and facial expression recogni-
tion in the wild.

Figure 3 shows the overall pipeline of the proposed CycleAT
model which transfers attention knowledge from the labeled im-
ages in source domain to target domain by harnessing information
from large-scale unlabeled web facial images in auxiliary domain.
Specifically, before passing an image into our model, we first per-
form face detection using a lib face detection algorithm with 68
landmarks [50]. After the preprocessing, we pre-train a classifica-
tion model fS on source domain. Then a facial image generator
is learnt between the source domain and auxiliary domain by a
GAN-based method with cycle-consistency and discriminative loss.
Specifically, we introduce a mapping GSW from source domain to
auxiliary images and train it to produce facial images that fool an
adversarial discriminator DW . Then, we introduce another map-
ping GWS constrained by a cycle-consistency loss to guarantee
that the generated image can be mapped back to the original image,
which can preserve the local structural information of generated
facial images. Furthermore, a classifier fW is incorporated into
the generator by exploiting the global attribute-level consistency,
which can preserve the expression attributes in the generated facial
images, thus ensuring the label consistency. Finally, a shallower
classification model fT is trained on the target domain by distilling

attention knowledge from fW . Thus, in our model, fW is like a
bridge that can alleviate the domain gap between source domain
and target domain.
3.2 Learning
Cross-domain setting: There are three kinds of data used in our
method, i.e., source domain, target domain, and auxiliary domain. In
the source domain, we are givenns facial imagesXS with associated
labels YS . Similarly, the target domain consists of nt facial images
XT with associated labels YT . The number of labeled images in the
source domain is much larger than the number of labeled images
in the target domain, i.e., nt ≪ ns . All the labeled images belong
to K expressions. In the auxiliary domain, it contains large-scale
web images. Here, it has nw facial images XW without labels.
Source domain learning: We start with learning a source model
fS that can perform the classification task on source data. Residual
network following the architecture of [51] is adopted here, tak-
ing XS as inputs. The images belong to K categories. We use a
typical softmax cross-entropy loss for the source model fS , which
corresponds to

LS (fS , XS , YS ) = E(xs ,ys )∼(XS ,YS ) −
K∑
k=1

1[k = ys ]loд(σ (f (k )S (xs ))),

(3)
where σ denotes the softmax function. While the learnt model
fS will perform well on the source data, typically large domain
shift between the source and target domain leads to reduced per-
formance when evaluating on target data. To mitigate the effect
of domain shift, we learn to synthesize samples from source to
auxiliary images, which share similar content distribution with the
target images.
Auxiliary domain learning: In this part, we first introduce a map-
ping from source to web facial images GSW and train it to produce
images that fool an adversarial discriminator DW . Conversely, the
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adversarial discriminator attempts to classify the real web data from
the source generated data. This corresponds to the loss function
LGAN (GSW , DW , XW , XS ) =Exw∼XW [loдDW (xw )]+

Exs∼XS [loд(1 − DW (GSW (xs )))]
(4)

However, with large enough capacity, a network can map the face
images in the source domain to any random permutation of images
in the auxiliary domain. As a result, it is undesirable in the FER
task, where we have to ensure the quality of the generated faces.
Thus, we introduce another mapping from web to sourceGWS and
train it according to the same GAN loss, i.e.,
LGAN (GWS , DS , XS , XW ) =Exs∼XS [loдDT (xs )]+

Exw∼XW [loд(1 − DT (GWS (xw )))].
(5)

We then require that mapping a source sample from source to
web and back to the source reproduces the original sample, thereby
enforcing cycle-consistency and preserving local structural infor-
mation of the facial images in source domain. In other words, we
wantGWS (GSW (xs )) ≈ xs andGSW (GWS (xw )) ≈ xw . This is done
by imposing an L1 penalty on the reconstruction error, which is
referred to as the cycle-consistency loss:
Lcyc (GSW , GWS , XS ,XW ) = Exs∼XS [ | |GWS (GSW (xs )) − xs | |1]

+ Exw∼XW [ | |GSW (GWS (xw )) − xw | |1].
(6)

Futhermore, we add a discriminative loss into the GAN by training
a classification model fW on the generated facial images. In the case
of generation, it can be used to penalize the generator loss, which
is helpful for preserving the global attributes of the source data,
thus ensuring the label consistency. In the case of classification,
it attempts to classify the expression, bridging the domain gap
between source domain and target domain. To take advantage of
the labeled images in source domain, we train fW by distilling
knowledge from fS . Unlike previous work that distills knowledge
through class probabilities, we do so by attention transfer, which
has been proven in [30] that attention is a more transferable feature
compared with the features from the last layers of the networks.
This corresponds to the loss function
LW (fW , GSW (XS ), YS ) =

E
(GSW (xs ),ys )∼(XW

′
,YS )

−

K∑
k=1

1[k = ysi ]loд(σ (f
(k )
W (GSW (xs ))))

+
β
2
∑
j∈I

| |
Q j
S

| |Q j
S | |2

−
Q j
W

| |Q j
W | |2

| |2 .

(7)
Here, the first item is a typical softmax cross-entropy loss, which
is the same as Eq (3). The second item is the attention transfer loss
where Q j

S = vec(F (A
j
S )) and Q

j
W = vec(F (A

j
W )) are respectively

the j-th attention maps pair of the classifier fS and fW in vector-
ized form, and F (·) is calculated according to Eq (1). XW

′ are the
synthesized facial images from source domain to auxiliary domain.
β is the weight of the attention transfer loss.

Taken together, the loss function for the cycle-consistent adver-
sarial image synthesis and FER task is defined as in equation (8) by
considering Eqs (4), (5), (6), and (7).
Lsum (fW , XS , XW , YS , GSW , GWS , DS , DW )

= LW (fW , GSW (Xs ), Ys ) + LGAN (GSW , DW , XW , XS )

+ LGAN (GWS , DS , XS , XW ) + Lcyc (GSW , GWS , XS , XW ).

(8)

This ultimately corresponds to solving for a classification model
fW according to the optimization problem

f ∗W = arg min
fW ,GSW ,GWS

max
DS ,DW

Lsum . (9)

Target domain learning: Once we obtain the classification model
for the synthesized facial images, we can better address the do-
main shift problem with limited training data in target domain by
transferring attention knowledge from the deeper network fW to a
shallower network fT , which is the same objective function as Eq
(7),

LT (fT , XT , YT ) =E(xt ,yt )∼(XT ,YT ) −

K∑
k=1

1[k = yti ]loд(σ (f
(k )
T (xt )))

+
β
2
∑
j∈I

| |
Q j
W

| |Q j
W | |2

−
Q j
T

| |Q j
T | |2

| |2 .

(10)
Ultimately, the optimization function for the target model fT can
be defined as

f ∗T = argmin
fT

LT . (11)

Based on the learnt fT , the FER in the wild with limited training
samples is implemented.

3.3 Discussion
There are numerous methods about domain adaptation and image
generation. In this section, we comment on the differences of the
proposed model with three most relevant methods in [20, 30, 67].
(1) In the CycleGAN [67], the cycle-consistency is proposed mainly
for image generation, but is agnostic to any particular task. Differ-
ent from the CycleGAN, our model explicitly incorporates a task-
specific classifier to enforce the global attribute-level information.
(2) The CyCADA [20] extends the CycleGAN for cross-domain
image classification. The authors use the cycle-consistency loss
to encourage the cross-domain transformation to preserve local
structural information and a semantic loss to enforce semantic
consistency. It is mainly used for digit classification and semantic
image segmentation, which have sufficient training samples in both
source domain and target domain. Different from the CyCADA,
we only have limited training samples in target domain. Thus we
incorporate attention transfer into our model to distill discrimina-
tive knowledge from a FER model trained with sufficient samples.
(3) In [30], the authors transfer knowledge from web images for
video recognition. Different from this method that directly utilizes
a noisy collection of web images for recognition tasks, we use a
variation of GAN to automatically generate facial images in the
wild with the correct category, which can bridge the domain gap
between the source domain and target domain.

4 EXPERIMENTAL RESULTS
In this section, we show experimental results of our method for
FER in the wild and facial image synthesis. For the former task,
we quantitatively evaluate the expression recognition performance.
For the latter one, we show qualitative results of the generated
facial images.
4.1 Datasets
To demonstrate the effectiveness of the proposedmodel, we perform
extensive evaluations on a number of popular datasets. For all
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experiments, we use the 3D facial expression dataset BU-3DFE
[49] as source domain, and the static facial expressions in the wild
dataset SFEW [8] and EmotioNet [2] as target domain. The Web
image dataset (auxiliary domain) is the combination of the Large-
scale CelebFaces Attributes (CelebA) dataset [33] and the Labeled
Faces in the Wild (LFW) dataset [21]. The images in CelebA and
LFW are mainly collected from Internet. The details are as follows.
BU-3DFE: The BU-3DFE dataset has 100 subjects with 3D models
and facial images. It contains images depicting seven facial ex-
pressions of Anger (AN), Disgust (DI), Fear (FE), Happiness (HA),
Sadness (SA), Surprise (SU) and Neutral (NE). With the exception
of NE, each of the six prototypic expressions includes four levels
of intensity. We render 2D facial images from the 3D models at
levels 3 and 4 of the expression, and in 143 discrete poses including
11 pan angles (0◦,±5◦,±15◦,±25◦,±35◦,±45◦), and 13 tilt angles
(0◦,±5◦,±10◦,±15◦,±20◦,±25◦,±30◦), using the 3D range data.
Consequently, we have 100×6×143×2+100×1×143×1 = 185, 900
facial images in total for our experiments. We randomly divide the
100 subjects into a training set with 80 subjects and a testing one
with 20 subjects. As a result, the training set comprises 148, 720
facial images whereas the testing one comprises 37, 180 samples.
SFEW: The SFEW is a facial expression dataset in the wild with
95 subjects. It consists of 700 images (346 images in Set 1, 354
images in Set 2) extracted from movies covering unconstrained
facial expressions, varied head poses, changed illumination, large
age range, different face resolutions, occlusions, and varied focus.
The images are labeled with AN, DI, FE, HA, SA, SU and NE.
EmotioNet: The EmotionNet is a facial expression dataset in the
wild. This dataset is labeled by Action Units (AUs) and compound
emotions (6 basic emotion categories and 10 compound emotion
categories). Since our work focuses on the FER, we obtain 1, 141
facial images with 6 basic expressions of AN, DI, FE, HA, SA, and
SU. Although the 1, 141 facial images in this dataset are also labeled
with AUs, we only use the basic expression labels of them like the
source data. In this way, we can clearly validate the effectiveness of
our method on FER in the wild with limited samples. Each time we
divide the 1, 141 facial images into a training set with 913 facial im-
ages and a testing one with 228 facial images for 5-fold independent
cross-validation.
Web imageDataset: TheWeb image dataset consists of the CelebA
[33] and LFW [21]. The CelebA contains 202, 599 face images of ten
thousand identities from the Internet, with approximately 20 im-
ages per person on average. The LFW contains 13, 233 face images
collected from the Internet with large intra-personal variations in
poses and backgrounds. It contains 5, 749 people, only 85 have more
than 15 images, and 4, 069 people have only one image.

4.2 Implementation Details
The network is constructed as shown in Figure 3. We first use the
lib face detection algorithm with 68 landmarks [50] to crop out the
faces, and resize them as 256 × 256. For the failed images, we man-
ually crop the faces from them. As the number of training samples
in the target domain is extremely scare, for each detected facial
image in the training set, we select a certain number of images with
similar low-level characteristics from the generated facial images.
Specifically, we put all the generated images and target images into
AlexNet pre-trained on ImageNet [26], and get features from the

first convolutional layer. Next, the features are projected by TSNE
[27], and t nearest samples are selected for each facial image in the
training set by using k-Nearest Neighbor (KNN). Here, t is 8 and 3
for SFEW and EmotioNet, respectively. Although we select some
training samples from the generated facial images, the number of
the training data in the target domain is still much smaller than that
in the source domain. To stabilize the training process, we design
the network for the GAN based on the techniques in the CycleGAN
[67]. Specifically, this network contains two stride-2 convolutions,
9 residual blocks, and two fractionally-stride convolutions with
stride 1

2 . For the discriminator network, we use a 70×70 PatchGAN
[28], which is adopted to classify whether the 70 × 70 overlapping
image patches are real or fake. We adopt a 50-layer residual network
for the classification models fS and fW according to the results
as discussed in Section 4.3. The model is implemented by Tensor-
Flow [1] and trained with ADAM optimizer [25], which is used
with a learning rate of 0.0002 and momentum 0.5. All weights are
initialized from a zero-centered normal distribution with a standard
deviation of 0.02.

4.3 Results of FER on Source Domain
In this part, we investigate several different basic classification mod-
els on source domain, i.e., Convolutional Neural Network (AlexNet
[26]), VGGNet-19 network [42], ResNet-38 [17], ResNet-50 [17],
and ResNet-101 [17]. All networks are trained and validated using
the same training and test subset of BU-3DFE dataset. The detailed
results over each expression obtained from different methods are
shown in Table 2. The average FER accuracy is reported in the
last column of the table, which reveals that the ResNet-50 network
works best. Comparison with the ResNet-50, the performance of
ResNet-101 shows a small drop. Thus, in our experiment, the basic
classification model is fixed as ResNet-50.
Table 2: Comparison results of the FER on source domain
with different classification models.

Method / Emotion AN DI FE HA NE SA SU Ave.
AlexNet [26] 75.59 84.20 55.09 87.89 79.66 55.06 88.87 75.18

VGGNet-19 [42] 68.77 88.38 58.14 93.10 79.07 66.03 88.75 77.46
ResNet-38 [17] 74.05 90.97 60.29 93.57 71.10 66.94 90.36 78.15
ResNet-50 [17] 71.41 88.48 61.65 94.01 80.74 75.28 95.32 80.98
ResNet-101 [17] 72.43 87.78 65.37 88.98 77.82 75.49 96.77 80.66

4.4 Evaluation on Domain Shift
In any adaptation experiment, it is crucial to understand the nature
of the discrepancy between the different sources of data, thus we
first provide intuitive understanding of the domain shift between
source domain and target domain, which is shown in Figure 4. We
visualize the distribution of the features in the first convolutional
layer of AlexNet pre-trained on ImageNet [26], which are then
projected by TSNE, and we choose the first three dimensions having
the biggest contributions. In Figure 4, the orange points denote the
features in source set, and the yellow and blue ones denote the
features in SFEW and EmotioNet, respectively. Clearly, there are
large domain gaps between the source and target domains.

In order to quantify the domain shift between the source domain
dataset BU-3DFE and the target domain datasets SFEW and Emo-
tioNet, we train a source model (source-to-source) and find that
the accuracy is relatively high when evaluating within the source
domain (80.98%) as shown in Table 3. However, the performance
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Figure 4: Feature distribution of the source (orange) and tar-
get (yellow, blue) domain.

catastrophically drops when evaluating within the target domain
(SFEW and EmotioNet), which indicates the importance of the FER
in the wild by using domain adaptation model.

Table 3: Results about domain shift for the FER.

Train Test Expressions Ave.AN DI FE HA SA SU NE
BU-3DFE BU-3DFE 71.41 88.48 61.65 94.01 80.74 75.28 95.32 80.98
BU-3DFE SFEW 17.21 23.52 18.93 55.62 21.32 9.83 10.30 22.40
BU-3DFE EmotioNet 28.57 16.67 10.00 65.79 37.04 23.08 - 30.19

4.5 Model Analysis
To help analyze our CycleAT model and show the benefit of each
module, we design several baseline methods as follows.

• Source Domain to Target Domain (S2T): This baseline
uses the facial images in source domain (BU-3DFE) to pre-
train the classification model ResNet-50, and then tests it
on target domain, i.e., SFEW and EmotioNet. We use the
output score from the last layer of the ResNet-50 to classify
the given facial images in the wild, where voting is applied.

• S2T_fine-tune: This baseline uses the facial images in tar-
get domain to fine-tune the pre-trained classification model.
Then we use the fine-tuned classifier to classify the facial
images in target domain, and get the average FER accuracy
over all expressions.

• S2T_attention: This baseline adds attention transfer to the
training process of the target domain. Specifically, we first
pre-train the classification model on BU-3DFE, and then
transfer attention from it to the target classifier trained on
SFEW and EmotioNet. By comparing it with S2T_fine-tune,
we can evaluate the effect of attention transfer module.

• S2T_attention&generator (S2T_att.&gen.):This baseline
adds facial image generator to the S2T_attention, and the
attention and generator are trained separately. Specifically,
we first train the image generator, and get the labeled facial
images in the wild. Then, the generated facial images are
used to train the classification model, and distill attention
knowledge from the classifier trained on source domain. By
comparing it with the S2T_attention, we can evaluate the
effect of the proposed auxiliary data guided cycle-consistant
generative model. Besides, we can also validate the effect of
the global structural consistency in our method by compar-
ing with the proposed CycleAT.

In Table 4, we show the differences between the above base-
line methods and the propose CyCA-AT. The detailed comparison
results are illustrated as follows.

Table 4: Differences among the evaluated models.
Method / Modules fine-tune attention transfer image gen. global consis.

S2T - - - -
S2T_fine-tune

√
- - -

S2T_attention
√ √

- -
S2T_att.&gen.

√ √ √
-

CycleAT
√ √ √ √

Table 5: Comparison results on the SFEW dataset.
Method / Emotion AN DI FE HA NE SA SU Ave.

S2T 17.21 23.52 18.93 55.62 21.32 9.83 10.30 22.40
S2T_fine-tune 19.67 24.54 20.48 53.78 17.55 16.62 17.45 24.30
S2T_attention 27.43 25.65 19.87 60.43 11.32 15.72 24.30 26.39
S2T_att.&gen. 31.68 24.45 21.78 52.45 24.87 29.96 22.43 29.66
CycleAT 34.91 25.95 23.61 55.85 23.43 32.00 19.52 30.75

Table 6: Comparison results on the EmotioNet.
Method / Emotion AN DI FE HA SA SU Ave.

S2T 28.57 16.67 10.00 65.79 37.04 23.08 30.19
S2T_fine-tune 30.00 23.33 14.00 63.16 48.15 20.00 33.10
S2T_attention 52.86 35.00 14.00 75.66 56.30 18.46 42.05
S2T_att.&gen. 57.14 40.00 18.00 78.95 59.26 23.08 46.07
CycleAT 58.57 38.33 18.00 79.34 61.48 24.62 46.72

Comparison results on the SFEW: Table 5 shows the detailed
comparison results over each facial expression between our method
and four aforementioned baseline methods. Among the seven ex-
pressions, happiness is easier to be recognized. This is most likely
because of the fact that the muscle deformations are relatively large
compared with others, which also coincides with the findings of
source domain as shown in Table 2. The average recognition accu-
racy shown in Table 5 indicates that our method achieves better
results. Overall, it outperforms all the methods with a 1.11% to 8.35%
improvement on the FER accuracy. Based on the results, it is clear
that S2T_attention and S2T_att.&gen can separately improve the
performance by 1.9% and 5.36% when compared with S2T_fine-tune.
We attribute this to the web guided attention transfer and image
generator strategy adopted in our method.
Comparison results on the EmotioNet: In Table 6, we show the
comparison results of different methods on the EmotioNet dataset.
As can be seen, the average recognition accuracy shown in the last
column of this table indicates that the proposed model drastically
improves performance, and the degree of improvement varies be-
tween 0.75% and 16.53%. Especially, when we add attention transfer
strategy we can obtain a 8.95% promotion. The cycle-consistent
adversarial image generator adopted in baseline S2T_att.&gen. fur-
ther improves the FER accuracy to 46.07%. Our method achieves
an average recognition accuracy of 46.72%. As shown in Table 6,
we can also learn that among the six expressions, the happiness is
easier to be recognized in all the methods. On the one hand it is
because the muscle deformations of happiness are relatively large
compared with others. On the other hand it is thanks to the im-
balanced training data. There are 609 facial images with happiness
expression among all the training samples in this dataset.

4.6 Comparison with State of the Arts
In this section, we compare the proposed model with state-of-the-
art methods on the two target domains.
Comparison results on the SFEW:We compare ourmethodwith
the current state-of-the-art results reported in [10] includingMvDA,
GMLDA, GMLPP, DS-GPLVM, and the baseline designed by the
dataset creators [8] on the SFEW. The detailed results over each
expression obtained from different methods are shown in Table 7.
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Figure 5: (a) The facial image generation process over different iterations. (b) The input images (pink) in source domain and
their generated images (green) by using web facial images in auxiliary domain.

Table 7: Comparison with state of the arts on SFEW.
Method / Emotion AN DI FE HA NE SA SU Ave.

Baseline 23.00 13.00 13.90 29.00 23.00 17.00 13.50 18.90
MvDA 23.21 17.65 27.27 40.35 27.00 10.10 13.19 22.70
GMLDA 23.21 17.65 29.29 21.93 25.00 11.11 10.99 19.99
GMLPP 16.07 21.18 27.27 39.47 20.00 19.19 16.48 22.80

DS-GPLVM 25.89 28.24 17.17 42.98 14.00 33.33 10.99 24.70
CycleAT 34.91 25.95 23.61 55.85 23.43 32.00 19.52 30.75

Table 8: Comparison with three state-of-the-art methods on
EmotioNet.

Method / Emotion AN DI FE HA SA SU Ave.
Multi-SVM 35.71 18.33 10.00 69.08 34.81 21.54 31.58
AlexNet 38.57 20.00 14.00 75.13 45.93 20.00 35.61
VGG-16 37.14 25.00 10.00 77.76 49.63 24.62 37.36
CycleAT 58.57 38.33 18.00 79.34 61.48 24.62 46.72

The mean FER accuracy is reported in the last column. The results
clearly show that our method outperforms all existing methods
with a 6.05% to 11.85% improvement in terms of the FER accuracy.
Note that all other models cannot achieve good performance in
the surprise expression. However, the proposed model can signifi-
cantly improve the performance attained by the cooperation of the
generated images and attention transfer, which can distill attention
knowledge from the FER model trained with sufficient samples.
Comparison results on the EmotioNet: We cannot find exist-
ing methods that conduct experiments on this dataset under the
same conditions with us. Thus we compare our model with three
state-of-the-art methods on the EmotioNet including multi-SVM
[18], AlexNet [26], and VGG-16 [42]. All the methods make use of
the same training and testing samples. As the number of training
samples in the EmotioNet is scare, the AlexNet and VGG-16 used
here are pre-trained on the ImageNet. The average recognition
accuracies across all the expressions of each method are reported in
Table 8. Clearly, our method can achieve the highest recognition ac-
curacy of 46.72%. This may attribute to the generated facial images,
which is able to not only reduce the domain shift between source
domain and target domain, but also promote the target classifier
by providing attention knowledge.

4.7 Qualitative Results
We visualize the image generation process and qualitative results of
facial images synthesis from source domain (BU-3DFE) to auxiliary
domain (Web images) in Figure 5. In Figure 5(a), each row shows
some random generated samples under different iterations. Based
on the figure, it is clear that the backgrounds in the web images can

be gradually incorporated into the generated facial images. After
several iterations, the generated images become more and more nat-
ural, which are as similar as the facial images in the target domain.
In Figure 5(b), we randomly select several input facial images from
the source domain, which are denoted with the pink rectangle. The
corresponding synthesized facial images are shown in the green rec-
tangle. By comparing the generated facial images with the ground
truth, it is clear that the expression attributes (texture appearance
around the eyes, mouth, and nose) have been preserved by our
model, which ensures the label consistency between the original
and generated facial images. More importantly, compared with the
exaggerated facial expressions in the laboratory controlled environ-
ment, the generated facial images have more natural expressions,
which are closer to the real scenarios.
5 CONCLUSIONS
We have presented a cycle-consistent adversarial attention transfer
method that unifies cycle-consistent adversarial models with at-
tention transfer strategy used in classification model. The CycleAT
is suitable for large domain shift problems, especially for target
domain with limited training samples. Besides, we experimentally
validated our model on two benchmark facial expression datasets
in the wild. Comparison results with the state-of-the-art methods
show the superior performance of the proposed model. The pro-
posed model has great potential to serve as general framework for
domain adaptation that only limited training samples are available
in target domain. Thus, in the future, we would extend current work
to be a general framework, and apply it into other applications.
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