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Toward Intelligent Product Retrieval for
TV-to-Online (T2O) Application: A Transfer

Metric Learning Approach
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Abstract—It is desired (especially for young people) to shop for
the same or similar products shown in the multimedia contents
(such as online TV programs). This indicates an urgent demand
for improving the experience of TV-to-Online (T2O). In this
paper, a transfer learning approach as well as a prototype system
for effortless T2O experience is developed. In the system, a
key component is high-precision product search, which is to
fulfill exact matching between a query item and the database
ones. The matching performance primarily relies on distance
estimation, but the data characteristics cannot be well modeled
and exploited by a simple Euclidean distance. This motivates
us to introduce distance metric learning (DML) for improving
the distance estimation. However, in traditional DML methods,
the side information (such as the similar/dissimilar constraints
or relevance/irrelevance judgements) in the target domain is
leveraged. These methods may fail due to limited side information.
Fortunately, this issue can be alleviated by utilizing transfer metric
learning (TML) to exploit information from other related domains.
In this paper, a novel manifold regularized heterogeneous multitask
metric learning framework is proposed, in which each domain is
treated equally. The proposed approach allows us to simultaneously
exploit the information from other domains and the unlabeled
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information. Furthermore, the ranking-based loss is adopted to
make our model more appropriate for search. Experiments on two
challenging real-world datasets demonstrate the effectiveness of
the proposed method. This TML approach is expected to impact
the transformation of the emerging T2O trend in both TV and
online video domains.

Index Terms—TV-to-Online, distance metric learning, transfer
learning, heterogeneous domains, manifold regularization,
ranking-based loss.

I. INTRODUCTION

THE way that multimedia contents (such as photographs and
videos) are consumed has been transformed by the current

era of Mobile Internet due to the growing popularity of the smart
mobile devices (e.g., smartphone and laptop). Specifically, the
experience of consuming video contents in the main screen
(e.g., TV) and having access to the companion contents in a
second device (e.g., smartphone and tablet) has become widely
appreciated for viewers. Such a multi-screen video experience
[1] has in turn led to an emerging business model, TV-to-Online
(T2O). It bridges the gap between video contents and online
merchants. With the help of T2O systems, the video viewers are
able to quickly locate the desired products, which is same or
similar with the item displayed on video program. This impulse
purchase can be done online through the second screen. For
example, many items from the Korea drama “My Love from
the Star” are very attractive for worldwide consumers. When
watching this drama and enthralled by some lipstick from a
particular scene, the T2O users can easily complete the purchase
from online merchants via their mobile phones. This activity has
been touted as an innovative model that enables us to fulfill the
“I want” moment as pointed by Google [2].

Inspired by this emerging market trend and based on the
highly touted multi-screen social TV system [3], we devel-
oped an effortless T2O subsystem. In our system, people are
allowed to buy the desired items via online merchants. Particu-
larly, this purchase behavior can be done simultaneously while
watching video contents on the web or TV. The T2O system is
composed of several modules, and product search (or retrieval)
is among the most significant ones. After capturing the de-
sired product from the video scene, the search function aims to
match the queried item with the online merchant list. Two major
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stages are involved in the search (or retrieval) problem [4], [5]:
1) both the features of the query item and reference items (such
as products) in the database (e.g., merchant list) are extracted;
2) the similarity or distance of each pair of items (the query item
versus each item listed in the database) are calculated [6]. Hence,
an appropriate distance estimation strategy plays a critical role
in achieving satisfactory performance.

To improve the user experience of the T2O system, an ap-
propriate distance estimation algorithm is required. Euclidian
(EU) metric based distance estimation and the direct utilization
of original features may fail in such application, since both the
important information of the target problem (product search)
and statistical properties among the features are ignored. To
overcome this issue, distance metric learning (DML) [7], [8] is
thus introduced. The side information (similar/dissimilar con-
straints or relevance/irrelevance judgements) contained in the
target problem can be fully exploited by DML to learn a feature-
specific metric. In this paper, we introduce DML to the T2O
system for distance estimation. To learn a reliable metric by
DML, good amount of side information is needed. However, it
is usually insufficient in real-world applications since the label-
ing cost is high. In this scenario, DML may fail. This problem
can be alleviated by transfer metric learning (TML) [9], which
is able to leverage the knowledge (such as side information)
from other related domains [10]. In our application of product
search, multiple modalities of the data may exist. For example,
the images of certain products may be associated with some
text descriptions and hyperlinks. Moreover, a variety of visual
features [11], [12] can be extracted to represent an image.

In this paper, each feature space or modality is regarded
as a domain, and a novel manifold regularized heterogeneous
MTML (MRHMTML) framework is developed for improving
the product search in our T2O system by effectively utilizing
the side information from each domain. We also assume there
are abundant multi-domain unlabeled samples, each of them has
representations in all domains. Specifically, metrics of all differ-
ent domains are learned in a single optimization problem, where
the empirical loss w.r.t. each domain is minimized. Meanwhile,
the metric learning is reformulated as learning feature transfor-
mation [13]. We project the different representations of the given
unlabeled samples into a common subspace and maximize their
high-order [14], [15] covariance in the subspace. This results in
improved feature transformations since the side information of
all domains are utilized to learn the shared subspace. Intuitively,
the common subspace bridges different domains so that infor-
mation can be successfully transferred. The learned metrics are
thus more reliable than learning them separately. This is particu-
larly beneficial when the side information is limited. Moreover,
a manifold regularization term [16] is added to make full use
of the unlabeled information in each domain by exploring the
geometric structure of the data.

Our algorithm is superior to other related methods. For exam-
ple, transformations of multiple heterogeneous domains are also
learned together in [17] and [18]. However, these approaches
only explore the statistics (correlation information) between
pairs of representations in either one-vs-one [18], or central-
ized [17] way. Thus, the high-order statistics are ignored, which

can only be obtained by examining all domains simultaneously.
Our approach outperforms them in that:

1) More information is utilized to learn the metrics since
the high-order correlations of all domains are exploited,
which may contribute to better performance;

2) The unlabeled data are well exploited by enabling knowl-
edge transfer across domain and preserving topology in
each domain;

3) The ranking based loss is adopted to learn metrics, which
elegantly supports product search.

Extensive experiments are conducted on the product sub-
sets of two challenging social image datasets: PASCAL VOC
[19] and NUS WIDE [20]. We compare our method with not
only Euclidean (EU) and single domain ranking-based DML
baselines [6], [13], but also a representative heterogeneous
multi-task learning approach [18]. Effectiveness of the proposed
RHMTML is demonstrated by the promising results. For exam-
ple, we have an on average more than 10% relative improve-
ments compared with the EU baseline on the PASCAL VOC
dataset in terms of MAP.

II. RELATED WORK

Our work is mainly related to distance metric learning and
heterogeneous transfer learning.

A. Distance Metric Learning

The goal of distance metric learning (DML) is to learn an ap-
propriate distance function over the input space, so that the
relationships between data are appropriately reflected. Most
conventional metric learning methods, which are often called
“Mahalanobis metric learning”, can be regarded as learning a
linear transformation of the input data [21], [22]. The first work
of Mahalanobis metric learning was done by Xing et al. [7],
where a constrained convex optimization problem with no reg-
ularization was proposed. Some other representative algorithms
include the neighborhood component analysis (NCA) [23], large
margin nearest neighbors (LMNN) [24], information theoretic
metric learning (ITML) [25], etc.

These algorithms are developed for clustering and classifi-
cation. To learn metric for information retrieval, some rank-
ing based metric learning approaches have been proposed [6],
[13], [26]. In [6], the authors indicate that the “must-link” and
“cannot-link” constraints used in the traditional DML are subop-
timal for information retrieval. A ranking based loss is designed
to address this problem by separating distances between query
and relevant samples from distances between query and irrel-
evant samples. Ranking SVM was extended to learn distance
metric in [26], and a scalable DML algorithm that optimizes
ranking measure via stochastic gradient descent (SGD) is pro-
posed in [13] to handle large datasets.

Recently, transfer metric learning (TML) has attracted inten-
sive attention to tackle the labeled data deficiency issue in the tar-
get domain [27], [28] or all given related domains [28]–[30]. The
latter is often called multi-task metric learning (MTML), and is
the focus of this paper. An implicit assumption of these meth-
ods is that the data samples of different domains lie in the same
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Fig. 1. Effortless TV-to-Online (T2O) architecture using the proposed manifold regularized heterogeneous multitask metric learning.

feature space, and so these approaches cannot handle heteroge-
neous features. Besides, these approaches utilize the “must-link”
and “cannot-link” constraints, and thus may not work well for
search. To remedy these drawbacks, we propose a novel mani-
fold regularized heterogeneous MTML (MRHMTML) inspired
by manifold regularization, ranking based DML and heteroge-
neous transfer learning.

B. Heterogeneous Transfer Learning

Developments in transfer learning across heterogeneous fea-
ture spaces can be grouped in two categories: heterogeneous
domain adaptation (HDA) [17], [31] and heterogeneous multi-
task learning (HMTL) [18]. In HDA, there is usually a single
target domain that has limited labeled data, and our aim is to
utilize the sufficient labeled data from related source domains to
help the learning in the target domain. Whereas in HMTL, the
labeled data in all domains are scarce, and thus we treat different
domains equally and make them help each other.

Most HDA methods only incur two domains, i.e., one source
and one target domain. The main idea in these methods is to ei-
ther map the heterogeneous data into a common feature space by
learning a feature mapping for each domain [32], [33], or map
the data from the source domain to the target domain by learning
an asymmetric transformation [31], [34]. The former is equiva-
lent to Mahalanobis metric learning since each learned mapping
could be used to derive a metric directly. Compared with HDA,
there are much fewer works on HMTL, and one representative
approach is the multi-task discriminant analysis (MTDA) [18],
which extends linear discriminant analysis (LDA) to learn mul-
tiple tasks simultaneously by assuming a common intermediate
structure is shared by the learned latent representations of differ-
ent domains. MTDA can deal with more than two domains, but

is limited in that only the pairwise correlations (between each la-
tent representation and the shared representation) are exploited.
Therefore, the high-order correlations between all domains are
ignored in MTDA. This shortcoming is rectified in the proposed
MRHMTML framework.

It is noted that heterogeneous multi-task DML method is dif-
ferent from multi-view DML [35], which is also used to deal
with heterogeneous data. The goal of heterogenous multi-task
DML method is to improve the performance of each DML task
by utilizing the information of all different tasks, where the
utilized features are different. However, multi-view (or multi-
modal) DML is to learn an integrated distance metric by using all
different features. In heterogeneous multi-task DML, the final
prediction is performed in each domain based on the improved
distance metric, where only a single type of feature is available.
Distinctly in multi-view DML, features of all different domains
should be provided in the prediction.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION

Architecture of our developed TV-to-Online (T2O) system
is presented first, and then the core module of product search,
where a novel metric learning approach called MRHMTML is
presented.

A. System Architecture

The T2O system is composed of two main parts as shown
in Fig. 1: offline metric learning and online product of inter-
est (POI) acquisition and search. In the first metric learning
part, a large number of unlabeled products are collected, where
both textual (such as tags, surrounding texts, etc.) and visual
(i.e., image) information are contained. Different types of vi-
sual features are complementary with each other, such as local
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bag of SIFT [12], and the global GIST [11]. They are extracted
for image representation. Meanwhile, the textual information is
also preprocessed for textual features extraction (such as TF-
IDF [36]). We treat each feature space as a domain. To share
the information across all different domains, we calculate a co-
variance tensor for all various features. In addition, we assume
that each of these domains is provided with limited side in-
formation (in the form of relevance judgement to the query).
By simultaneously using the limited side information, exploit-
ing the high-order correlation information, and preserving the
topology in each domain, we learn improved distance metric
for each domain. The second part illustrates the process of on-
line product search. When the users are watching TV, they can
simply shake the mobile phone to capture the desired product
item which is embedded in the TV shows. In this paper, we
adopt the automatic content recognition (ACR) technique [37]
for item acquisition. The product of interest (POI) can be speci-
fied easily by clicking it. In the T2O system, the specified POI is
regarded as the input. We extract visual features, such as SIFT
for the query. The most related items (such as the same, similar,
or original styles) are retrieved for the query product from the
database after the learned SIFT metric is utilized. At last, the
system returns the retrieved products for users to shop. In our
system, we assume the query has only one feature representa-
tion because: 1) usually, only visual information is contained in
the query product from TV shows; 2) it is time-consuming to
extract multiple features, and matching process is slow when the
feature dimension is high. We give the technical details of the
proposed MRHMTML below. Before that, we first summarize
the used notations and concepts of multilinear algebra.

B. Notations

If A is an M -th order tensor of size I1 × I2 × . . . × IM , and
U is a Jm × Im matrix, then the m-mode product of A and U is
signified as B = A×m U , which is also an M -th order tensor
of size I1 × . . . × Im−1 × Jm × Im+1 . . . × IM with the entry

B(i1 , . . . , im−1 , jm , im+1 , . . . , iM )

=
Im∑

im =1

A(i1 , i2 , . . . , iM )U(jm , im ). (1)

The product of A and a set of matrices {Um ∈ RJm ×Im }M
m=1

is given by

B = A×1 U1 ×2 U2 . . . ×M UM . (2)

The mode-m matricization of A is a matrix A(m ) of size
Im × (I1 . . . Im−1Im+1 . . . IM ). We can regard the m-mode
multiplication B = A×m U as matrix multiplication in the
form of B(m ) = UA(m ) .

Let u be an Im -vector, the contracted m-mode product of
A and u is denoted as B = A×̄mu, which is an M − 1-th
tensor of size I1 × . . . × Im−1 × Im+1 . . . × IM . The elements

are calculated by

B(i1 , . . . , im−1 , im+1 , . . . , iM ) =
Im∑

im =1

A(i1 , i2 , . . . , iM )u(im ).

(3)

Finally, the Frobenius norm of the tensor A is given by

‖A‖2
F = 〈A,A〉 =

I1∑

i1 =1

I2∑

i2 =1

. . .

IM∑

iM =1

A(i1 , i2 , . . . , iM )2 . (4)

C. Problem Formulation

Suppose there are M heterogeneous domains, and the
product database for the m’th domain is Dm = {xmi ∈
Rdm , i = 1, . . . , Nm}, and the corresponding query set is
Qm = {qmi, i = 1, . . . , NQ

m }. For each query qmi , we use
DL

mi = {xmij
, ymij

}Nm i
j=1 to denote the set of labeled images

with known relevance to qmi , and ymij
∈ {+1,−1} indicates

xmij
is relevant to the query or not. Alternatively, we can use

some initial distance metric to retrieve images for qmi from
Dm , and choose the top returned images as DL

mi [6]. We also
assume that there are large amounts of unlabeled multi-domain
products, i.e., DU = {(xU

1n ,xU
2n , . . . ,xU

M n )}N U

n=1 . That is, each
product has feature representations in all domains. Then we
have the following manifold regularized heterogeneous multi-
task metric learning (MRHMTML) formulation,

arg min
{Am }M

m = 1

F ({Am}) =
M∑

m=1

Ψ(Am ) + γR(A1 , A2 , . . . , AM )

+
M∑

m=1

γm RA (Am ),

s.t. Am � 0,m = 1, 2, . . . ,M, (5)

where

Ψ(Am ) =
1

N ′
m

N Q
m∑

i=1

Nm i∑

j,k=1

L(Am ;qmi,xmij
,xmik

, ymij
, ymik

)

and the loss for each training triplet (qmi,xmij
,xmik

) that
satisfy ymij

= +1, ymik
= −1 is

L(Am ;qmi,xmij
,xmik

, ymij
, ymik

)

= g([d(Am ;qmi,xmik
) − d(Am ;qmi,xmij

)]). (6)

Here, g(z) = max{0, 1 − z} is the hinge loss, and N ′
m is the

number of triplets; d(Am ;qmi,xmij
) is the distance between a

query and database under the distance metric Am . The definition
is

d(Am ;qmi,xmij
) = (qmi − xmij

)T Am (qmi − xmij
). (7)

We denote δmij
= qmi − xmij

for notational simplicity. Hence
the distance can also be written as d(Am ; δmij

) = δT
mij

Am δmij
.

In addition, we signify δ+
ml = δmij

and δ−ml = δmik
, where l

is the triplet index and the corresponding query is qml . The
regularization term R is adopted to enforce knowledge being
shared between different domains, and the regularization term
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RA is used to incorporate some prior knowledge or exploit some
properties about the metric, such as sparse, low-rank, etc.

In this paper, we choose RA to be a manifold regularization
term [16], [38]. It is a popular regularization term used in semi-
supervised learning, where there are only a few labeled samples
but large amounts of unlabeled samples. To improve generaliza-
tion ability of the model given the limited labeled data, geometry
of the data distribution is exploited using the large amounts of
unlabeled data and incorporated as a regularization term to pe-
nalize the model. The distribution is assumed to be supported
on a low-dimensional manifold, which is approximated by the
Laplacian of data adjacency graph. In this paper, we define the
regularization as RA (Am ) =

∑N U

i,j=1 wmijd(Am ;xU
mi,x

U
mj ),

where wmij = exp(−‖xU
mi − xU

mj‖2/(2ω2
m )) is the edge

weight between two neighboring nodes i and j in the data ad-
jacency graph. Here, ωm is a bandwidth hyper-parameter and
empirically set as the mean of the Euclidean distances between
all sample pairs, i.e., ωm = 1

(N U )2

∑N U

i=1
∑N U

j=1 ‖xU
mi − xU

mj‖2 .
If two samples are close to each in the original feature space, the
weight will be large and thus their distance after applying the dis-
tance metric tends to be small when we minimize RA (Am ). In
this way, topology of the data in each domain is preserved [17].

To enable knowledge transfer across domains, we decompose
the matrix Am as Am = Um UT

m according to the positive semi-
definite property of the metric. Then we use the obtained trans-
formation Um ∈ Rdm ×r to project the different representations
of the multi-domain unlabeled data into a common subspace,
where the correlation of all domains are maximized. This is
formulated as the following problem:

arg max
{Um }M

m = 1

1
NU

N U∑

n=1

corr(zU
1n , zU

2n , . . . , zU
M n ), (8)

where {zU
mn = UT

mxU
mn}M

m=1 are the projected represen-
tations of different domains for the n’th sample, and
corr(zU

1n , zU
2n , . . . , zU

M n ) = (zU
1n � zU

2n � . . . � zU
M n )T e is the

correlation among all of them. Here, � signifies the element-
wise product, and e ∈ Rr is a vector with all one ele-
ments. According to [39], the correlation can be rewrit-
ten as G×̄1(xU

1n )T . . . ×̄M (xU
M n )T , where G =

∑r
q=1(u

q
1 ◦

uq
2 ◦ . . . ◦ uq

M ) = Ir ×1 U1 ×2 U2 . . . ×M UM is the covari-
ance tensor of all transformations. Here, ◦ is the outer product,
Ir ∈ Rr×r×...×r is an identity tensor (the diagonal elements are
1, and all other entries are 0), and r is the number of common
factors shared by all domains. Then the problem (8) is reformu-
lated as

arg max
{Um }M

m = 1

1
NU

N U∑

n=1

G×̄1(xU
1n )T . . . ×̄M (xU

M n )T . (9)

According to [40], we can reformulate the above problem as

arg min
{Um }M

m = 1

1
NU

N U∑

n=1

‖CU
n − G‖2

F , (10)

where CU
n = xU

1n ◦ xU
2n ◦ . . . ◦ xU

M n is the covariance tensor of
all the original feature representations for the n’th sample. The

objective of (10) is rewrote as ‖CU − G‖2
F to accelerate compu-

tation. Here, CU = 1
N U

∑N U

n=1 CU
n is a sum of covariance tensor

of all unlabeled samples. Then specific optimization problem
for the proposed MRHMTML can be obtained by regarding
‖CU − G‖2

F as the regularizer R(·) in (5), i.e.,

arg min
{Um }M

m = 1

F ({Um})

=
M∑

m=1

1
N ′

m

N ′
m∑

l=1

g
(
[d(Um ; δ−ml) − d(Um ; δ+

ml)]
)

+ γ‖CU − G‖2
F

+
M∑

m=1

γm

(NU )2

N U∑

i,j=1

wmij‖UT
mxU

mi − UT
mxU

mj‖2
2 ,

s.t. Um � 0,m = 1, 2, . . . ,M, (11)

where d(Um ; δml) = δT
mlUm UT

m δml , and the tradeoff hyper-
parameters γ and {γm} are positive. Non-negative relationship
between the original feature representations are preserved by the
non-negativity constraints {Um � 0}. It is intuitive that a latent
subspace shared by all domains can be found by minimizing
the second term in (11). In this subspace, the representations
of different domains are close to each other and knowledge is
transferred. Hence different domains can help each other to learn
improved transformation Um , and also the distance metric Am .

IV. OPTIMIZATION ALGORITHM

Problem (11) can be solved using an alternating optimization
strategy. That is, only one variable Um is updated at a time and
all the other Um ′ , m′ 
= m are fixed. This updating procedure is
conducted iteratively for each variable. Following [41], we have

G = Ir ×1 U1 ×2 U2 . . . ×M UM = B ×m Um .

where B = Ir ×1 U1 . . . ×m−1 Um−1 ×m+1 Um+1 . . . ×M

UM . According to the metricizing property of tensor,
we have G(m ) = Um B(m ) and can easily verify that
‖CU − G‖2

F = ‖CU
(m ) − G(m )‖2

F . This leads to the following
sub-problem of (11) w.r.t. Um :

arg min
Um

F (Um ) = Φ(Um ) + Ω(Um ),

s.t. Um � 0, (12)

where Φ(Um ) = 1
N ′

m

∑N ′
m

l=1 g
(
[d(Um ; δ−ml) − d(Um ; δ+

ml)]
)
,

and Ω(Um ) = γ‖CU
(m ) − Um B(m )‖2

F + γm

(N U )2 tr(UT
m XU

m Lm

(XU
m )T Um ). Here, Lm = Dm − Wm is the graph Laplacian

with the definition in [16], Wm is a weight matrix with the
entry Wm (i, j) = wmij , and Dm is a diagonal matrix with the

element Dm (i, i) =
∑N U

j=1 Wm (i, j). The solution of problem
(12) is found by employing the projected gradient method
(PGM) developed in [42]. To apply PGM, we first smooth
the non-differentiable terms in Φ(Um ) according to [43] for
gradient calculation. In the following derivation, we omit the
subscript m due to the reason of notational clarity. According



FU et al.: TOWARD INTELLIGENT PRODUCT RETRIEVAL FOR TV-TO-ONLINE (T2O) APPLICATION: A TML APPROACH 2119

to the strategies suggested in [43], we smooth the hinge loss
g(U ; ql , δ

−
l , δ+

l ) = max{0, 1 − [d(U ; δ−l ) − d(U ; δ+
l )]} as

follows

gσ (U ;ql , δ
−
l , δ+

l )

= max
ν∈Q

νl(1 − [d(U ; δ−l ) − d(U ; δ+
l )]) − σ

2
‖ql‖∞ν2

l ,

(13)

where Q = {ν : 0 ≤ νl ≤ 1, ν ∈ RN ′ }, and σ is the smooth
hyper-parameter, where we set it as 0.5 empirically. It can be
easily verified that the solution of νl in (13) is given by

νl = median
{

1 − [d(U ; δ−l ) − d(U ; δ+
l )]

σ‖ql‖∞ , 0, 1
}

. (14)

We obtain the following piece-wise approximation of g by sub-
stituting the above solution back into (13),

gσ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
[d(U ; δ−l ) − d(U ; δ+

l )]

> 1
;

1 − [d(U ; δ−l ) − d(U ; δ+
l )]

−σ

2
‖ql‖∞

,
[d(U ; δ−l ) − d(U ; δ+

l )]

< 1 − σ‖ql‖∞
;

(1−[d(U ;δ−
l )−d(U ;δ+

l )])2

2σ‖q l ‖∞ , otherwise.
(15)

Then the descent direction can be determined by computing
gradient of the above smoothed hinge loss. The result is sum-
marized in the following theorem.

Theorem 1: The gradient of the approximated hinge loss (15)
is

∂gσ (U)
∂U

=
N ′∑

l=1

(
2νl(δ+

l (δ+
l )T − δ−l (δ−l )T )U

)
. (16)

Here, νl is given in the form of (15), which is related to U .
The proof is presented in the appendix. Besides, it is easy to

calculate that the gradient of Ω(U). Therefore, the gradient of
the smoothed F (Um ) is

∂Fσ (Um )
∂Um

=
1

N ′
m

N ′
m∑

l=1

(
2νml

(
δ+
ml(δ

+
ml)

T − δ−ml(δ
−
ml)

T
)
Um

)

+ 2γ
(
Um B(m )B

T
(m ) − CU

(m )B
T
(m )

)

+
2γm

(NU )2 (XU
m Lm (XU

m )T Um ), (17)

where νml is given by (14).
After obtaining the gradient, we apply the improved PGM

[42] to optimize the smoothed Fσ (Um ), and the updating
rule is

Ut+1
m = P [Ut

m − μt∇Fσ (Ut
m )], (18)

Here, P [x] is an operator that projects the negative elements of
x to zero, and the condition for choosing the step size μt is:

Fσ (Ut+1
m ) − Fσ (Ut

m ) ≤ κ∇Fσ (Ut
m )T (Ut+1

m − Ut
m ), (19)

Following [42], we choose the hyper-parameter κ as 0.01.
We determine the step size according to Algorithm 4 in [42],
which has a guaranteed convergence property, and we refer to
[42] for more details. The stopping condition is |Fσ (Ut+1

m ) −
Fσ (Ut

m )|/(|Fσ (Ut+1
m ) − Fσ (U 0

m )| < ε), where we initialize
U 0

m as the results of the previous iterations in the alternating
of all {Um}M

m=1 .
By alternatively updating each Um until convergence, i.e.,

|OBJk+1 − OBJk |/|OBJk | < ε, we obtain the solutions of
(11). Here, OBJk is the objective value of (11) at the k’th itera-
tion step. Our MRHMTML algorithm converge since in the al-
ternating procedure, the objective value of (12) decreases at each
step i.e., F (Uk+1

m , {Uk
m ′ }m ′ 
=m ) ≤ F ({Uk

m}). This indicates
that F ({Uk+1

m }) ≤ F ({Uk
m}). After obtaining the solutions

{U ∗
m}M

m=1 , we derive the distance metric as A∗
m = U ∗

m U ∗
m

T ,
which is utilized to improve distance estimation in the subse-
quent learning, such as product search in each domain (which
is referred to feature space in this paper).

V. COMPLEXITY ANALYSIS

To analyze the time complexity of the proposed MRHMTML
algorithm, we first present the computational cost of optimizing
each Um , where the solution is found using the iterative
PGM algorithm. In each iteration, we shall first determine
the descent direction according to the gradient calculated
using (17). Then an appropriate step size is obtained by
exhaustedly checking whether the condition (19) is satisfied,
where in each check we need to calculate the updated ob-
jective value of Fσ (Ut+1

m ). To accelerate computation, we
can pre-calculate B(m )B

T
(m ) , CU

(m )B
T
(m ) and XU

m Lm (XU
m )T ,

where the time costs are O(r2 ∏
m ′ 
=m dm ′), O(r

∏M
m=1 dm )

and O
(
max(dm (NU )2 , d2

m NU )
)

respectively. After
the pre-calculation, the time complexity of calculating
(UT

m Um )(B(m )B
T
(m )), UT

m (CU
(m )B

T
(m )) and UT

m XU
m Lm

(XU
m )T Um becomes O(r2dm + r3), O(r2dm ) and O(rd2

m )
respectively. It is easy to derive that the computational cost of
the remaining parts in the objective function is O(rdm N ′

m ).
Considering that r < dm , the time costs of calculating the
objective value becomes O(rdm N ′

m + rd2
m ). Similarly, we

can derive that the time cost of calculating the gradient is also
O(rdm N ′

m + rd2
m ).

Therefore, the computational cost of optimizing Um is
O[r

∏
m ′ 
=m dm ′(r + dm ) + max(dm (NU )2 , d2

m NU ) + T2T1

(rdm N ′
m + rd2

m )], where T1 is the number of required checks
to find the step size, and T2 is the number of iterations for
reaching the stop criterion. Considering that the optimal
rank r � dm , we can simplify the cost as O[r

∏M
m=1 dm +

max(dm (NU )2 , d2
m NU ) + T2T1(rdm N ′

m + rd2
m )]. Finally,

suppose the number of iterations for alternately updating
all {Um}M

m=1 is Γ, we obtain the time complexity of the
proposed MRHMTML, i.e., O(ΓM [r

∏M
m=1 dm + max

(d̄m (NU )2 , d̄2
m NU ) + T2T1(rd̄m N̄ ′

m + rd̄2
m )]), where N̄ ′

m

and d̄m are average number of labeled sample triplets and
feature dimension of all domains respectively. This is linear
w.r.t. M , N̄ ′

m and
∏M

m=1 dm , and quadratic in the numbers r,
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Fig. 2. Average MAP of all domains versus number of the common factors on the VOC dataset.

Fig. 3. Average AUC of all domains versus number of the common factors on the VOC dataset.

d̄m and NU . Besides, it is common that Γ < 10, T2 < 20, and
T1 < 50, so the complexity is moderate.

VI. EXPERIMENTS

In this section, we evaluate performance of the proposed
MRHMTML in the object (product) search application. In the
following, we first present the datasets to be used and experi-
mental setups.

A. Datasets, Features, and Evaluation Criteria

We conduct the experiments on two public and challenging
web image datasets, i.e., PASCAL VOC’ 07 (VOC for short)
[19] and NUS WIDE (NUS for short) [20].

The VOC dataset consists of around 10,000 images and 20
categories. We choose a subset of 13 product categories (e.g.,
chair, tv-monitor, dining-table, etc.) for experiments. There are
5,038 images in the resulting subset, and we use the features
extracted by [44], in which a variety of visual features and tags
are public available. From these features, we choose the pop-
ular SIFT [12] based local features, global GIST [11], and the
tags as the different heterogenous domains. The feature dimen-
sions are 1000, 512, and 804 respectively. We perform kernel
PCA to preprocess these features to resolve comparable pat-
terns for meaningful transfer. This can also reduce the running
time. The resulting feature dimensions are all 100. The im-
age set of each domain is split equally to form the training
and test sets. We vary the number of labeled samples by ran-
domly selecting {10, 20, 30} for each category from the training
set. The selected labeled ones are utilized to construct side in-
formation (in a triplet form 〈query, relevance, irrelevance〉)
for distance metric learning. Each triplet is obtained by first

selecting a labeled instance as query, and then its relevant and
irrelevant sample are selected from the remaining labeled set
according to whether the sample belongs to the same category
of the query or not. The unlabeled set is an intersection of the
remaining training data of all domains. For each concept, 20
queries are chosen for test.

In the NUS dataset, there are 269,648 images from 81 con-
cepts, in which 10 of them can be regarded as products, e.g.,
computer, book, flower, etc. This results in a subset containing
23,539 images. The utilized features are the bag of local SIFT
(500-D), global wavelet texture (WT, 128-D), and tag (1000-
D). These features are provided by [20]. We vary the number of
labeled instances for each concept in the set {6, 8, 10}, and all
other settings are the same as VOC.

For both datasets, we perform search with distance estima-
tion improved by the learned distance metric, and this is the task
in each domain. The hyper-parameters are determined by con-
ducting leave-one-out cross validation on the labeled training
set. Two popular criteria, i.e., mean average precision (MAP)
[45] and area under the ROC curve (AUC) [46] are adopted
for evaluation. The following experiments are run five times by
randomly choosing different sets of labeled samples.

B. Compared Methods

The methods included for comparison are:
� EU: directly using the simple Euclidean metric and original

feature representations to compute the distance between
samples.

� RAML [6]: a competitive ranking-based DML algorithm.
The metric is learned separately for each domain. For this
method, only the limited labeled samples are utilized in
each domain, and no additional information (from other
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TABLE I
AVERAGE MAP AND AUC OF ALL DOMAINS OF THE COMPARED METHODS AT THEIR BEST NUMBERS (OF COMMON FACTORS) ON THE VOC DATASET

Average MAP Average AUC

Methods 10 20 30 10 20 30

EU 0.137 ± 0.000 0.608 ± 0.000

RAML [6] 0.138 ± 0.002 0.139 ± 0.001 0.139 ± 0.001 0.609 ± 0.003 0.610 ± 0.002 0.610 ± 0.001
FRML [13] 0.135 ± 0.003 0.139 ± 0.005 0.143 ± 0.003 0.599 ± 0.003 0.606 ± 0.007 0.615 ± 0.003
MTDA [18] 0.141 ± 0.001 0.147 ± 0.001 0.150 ± 0.003 0.616 ± 0.002 0.623 ± 0.002 0.629 ± 0.003
MRHMTML 0.149 ± 0.001 0.164 ± 0.003 0.169 ± 0.002 0.622 ± 0.006 0.645 ± 0.004 0.647 ± 0.002

In each domain, the number of labeled training samples for each category varies from 10 to 30.

domains) is leveraged. We choose the trade-off hyper-
parameter from the set {10i |i = −5,−4, . . . , 4}.

� FRML [13]: a recently proposed DML algorithm for rank-
ing. The algorithm is quite efficient and scalable. We de-
termine the hyper-parameter using the strategy in [13].

� MTDA [18]: a multi-task extension of the supervised di-
mension reduction technique LDA (linear discriminant
analysis). The transforms {Um} are learned simultane-
ously for multiple heterogenous domains (feature spaces).
The distance metric is derived as Am = Um UT

m after learn-
ing the transformation. We set the only hyper-parameter
(intermediate dimensionality) as 100 empirically due to
the insensitivity of the model to the hyper-parameter.

� MRHMTML: the proposed manifold regularized heteroge-
neous multi-task metric learning algorithm for ranking. We
set the hyper-parameters γm as the same value, and tune
both γ and γm over the set {10i |i = −5,−4, . . . , 4}.

A common subspace is learned in both MTDA and the pro-
posed MRHMTML. Determination of r, which is the number
of common factors (dimensionality of the common subspace)
is still an open problem. We thus report the performance on a
variety of r ∈ {1, 2, 5, 8, 10, 20, 30, 50, 80, 100}, which is also
applied to the metric rank in FRML.

C. Evaluation on the VOC Dataset

1) Average Performance: We show the average performance
(MAP and AUC score) of all domains in Figs. 2 and 3. In
Table I, we summarize the peak performance of different meth-
ods, where both the mean and standard variation are reported.
It can be observed from these results that: 1) when more la-
beled instances are given, all of the compared methods tend to
achieve better performance; EU is kept unchanging since it is
pre-defined and does not make use of the label information in
search; 2) when comparing with the EU baseline, the improve-
ments of single-task DML algorithms (RAML and FRML) are
only slight. FRML is even worse than EU when the number of
labeled samples for each category is 10. The main reason is that
they learn the metrics for different domains separately, and thus
it is hard for them to achieve satisfactory performance given
the limited number of labeled samples; 3) in contrast, perfor-
mance of the heterogeneous multi-task approaches (MTDA and
MRHMTML) are much better than EU. Therefore, leveraging
information from other domains can be very useful in DML;

Fig. 4. Individual MAP and AUC score of each domain of the compared
methods at their best numbers (of common factors) on the VOC dataset (20
labeled instances for each category; AVG: average).

Usually, the optimal r is less than 30. Hence we may only need
30 factors to distinguish the different categories in this dataset;
4) the proposed MRHMTML outperforms MTDA in most cases
and the performance curve is more smooth. This can be inter-
preted as the expressive ability of the factors learned by our
method are stronger than MTDA. This may be because that
the high-order correlations of all domains are exploited in our
method, while MTDA only discover the pairwise correlations
between domains; 5) the performance of our method in terms of
AUC is in consistent with MAP, and there is a significant 11.6%
relative improvements over MTDA under the MAP criterion (20
labeled samples for each category).

2) An Investigation on Individual Domain: Performance of
each domain at the best number of common factors are shown
in Fig. 4. We can see from the results that: 1) RAML and the
EU baseline are comparable, and FRML is only superior to EU
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Fig. 5. Average MAP of all domains versus number of the common factors on the NUS dataset.

Fig. 6. Average AUC of all domains versus number of the common factors on the NUS dataset.

TABLE II
AVERAGE MAP AND AUC OF ALL DOMAINS OF THE COMPARED METHODS AT THEIR BEST NUMBERS (OF COMMON FACTORS) ON THE NUS DATASET

Average MAP Average AUC

Methods 6 8 10 6 8 10

EU 0.212 ± 0.000 0.640 ± 0.000

RAML [6] 0.226 ± 0.010 0.230 ± 0.012 0.236 ± 0.009 0.646 ± 0.005 0.650 ± 0.006 0.659 ± 0.006
FRML [13] 0.241 ± 0.003 0.245 ± 0.005 0.248 ± 0.003 0.649 ± 0.006 0.651 ± 0.007 0.653 ± 0.002
MTDA [18] 0.237 ± 0.009 0.242 ± 0.004 0.250 ± 0.005 0.649 ± 0.005 0.651 ± 0.007 0.656 ± 0.005
MRHMTML 0.264 ± 0.004 0.270 ± 0.005 0.275 ± 0.002 0.665 ± 0.005 0.669 ± 0.004 0.675 ± 0.005

In each domain, the number of labeled training samples for each concept varies from 6 to 10.

in the tag domain. The main reason is that the side information
provided for training in each domain are scarce and the different
domains do not communicate with each other. In contrast, each
domain is improved by the multi-task methods. This indicates
that different domains successfully help each other in learning
the metrics by transforming knowledge across them; 2) MTDA
is better than the proposed MRHMTML in only one domain
in terms of MAP, while MRHMTML outperforms MTDA con-
sistently in terms of AUC. This demonstrates that our method
can well discover the high-order correlation information, and
this is better than exploiting paired correlation information
in MTDA.

D. Evaluation on the NUS Dataset

1) Average Performance: The MAP and AUC scores of dif-
ferent methods are shown in Figs. 5 and 6 respectively. Table II
is a summarization of the peak performance (results at the best
numbers of common factors). From the results, we observe that:
1) the single-task DML algorithms (RAML and FRML) take ef-

fect on this dataset, and significant improvements are obtained
when comparing with the baseline (EU). The main reason may
be that separability of the different concepts are larger that of cat-
egories in the VOC dataset. Thus the side information are more
discriminative; 2) the multi-task MTDA is only comparable to
and sometime even worse than the single-task approaches. This
is mainly because both RAML and FRML adopt the ranking-
based loss, while MTDA is not designed for ranking. Moreover,
only the pairwise correlation information is exploited in MTDA.
In contrast, we obtain satisfactory results since ranking-based
loss is adopted and high-order relationships of all domains are
explored. The tendency of the AUC and MAP score curves are
consistent. Thus the superiority of our method is further verified.

2) Sensitivity Analysis w.r.t. the Hyperparameters: We show
the performance w.r.t. different choices of the hyper-parameters
γ and γm in Fig. 7. From the results, we can see that: 1) the best
performance is achieved when both of the hyper-parameters
are neither too large nor too small. Therefore, both of the
introduced regularization terms R(A1 , A2 , . . . , AM ) and
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Fig. 7. Performance w.r.t. different choices of the hyperparameters on the NUS dataset.

RA (Am ) play critical roles in obtaining optimal metrics for
different domains; 2) the optimal hyper-parameters are simi-
lar for different number of labeled samples. This demonstrates
stability of the proposed model.

VII. CONCLUSION

An effective TV-to-Online (T2O) system aims to make it eas-
ier for people to shop online while watching TV. This paper
introduces a novel transfer distance metric learning algorithm
to address the distance estimation problem, which plays a vital
role in products matching module of a T2O system. The pro-
posed method takes full advantage of multiple domains (feature
spaces) by analyzing their feature covariance tensor. In addition,
we exploit the geometric structure of the data to make full use
of the unlabeled data and employ ranking-based loss to make
the learned metric especially appropriate and feasible to match
similar products.

The main conclusions of the experiments on two challeng-
ing and popular datasets are: 1) a separate metric learning for
each domain may degrade performance if the side information
is given insufficiently. Meanwhile, the deficiency problem of
labeled data can be alleviated if the metrics of multiple het-
erogeneous domains are learned simultaneously. This result is
consistent with description in the literatures for multi-task learn-
ing [47]; 2) transfer learning methods can exploit the shared
knowledge across different domains. The high-order statistics
(correlation information) play a critical role in discovering ap-
propriate common factors, which can benefit each domain;
3) the ranking-based loss is adopted to help learn an efficient
metric for products matching. Despite these advantages, a flaw in
the proposed algorithm is that the limited side information must
be provided for all domains. In the future, we intend to design
some algorithm for such case that only one domain is provided
with the side information. There exist some approaches that can
annotate products in videos [48] or learn concept (e.g., product)
relationships [49] for visual search. Incorporate these techniques
into our system may further improve our product search perfor-
mance. Moreover, we aim to make a web-based data collection
from online shopping sites to create a large scale product dataset.
Relying on the huge amount of potential users, we anticipate
that T2O would be an emerging trend that will greatly facilitate
customer shopping. Our approach would make great contri-
bution to transform this process in both TV and online video
market.

APPENDIX A
PROOF OF THEOREM 1

Proof: According to (14) and (15), we can calculate the gra-
dient of gσ for the l’th example as

∂gσ (U ;ql , δ
−
l , δ+

l )
∂U

=

⎧
⎪⎪⎨

⎪⎪⎩

0, νl = 0;
2(δ+

l (δ+
l )T − δ−l (δ−l )T )U, νl = 1;

2νl(δ+
l (δ+

l )T − δ−l (δ−l )T )U, νl = 1−[d(U ;δ−
l )−d(U ;δ+

l )]
σ‖q l ‖∞ .

(20)

This indicates that

∂gσ (U ;ql , δ
−
l , δ+

l )
∂U

= 2νl(δ+
l (δ+

l )T − δ−l (δ−l )T )U. (21)

Thus the sum of the gradient over all the N ′ examples is

∂gσ (U)
∂U

=
∂

∑N ′
l=1 gσ (U ;ql , δ

−
l , δ+

l )
∂U

=
N ′∑

l=1

(
2νl(δ+

l (δ+
l )T − δ−l (δ−l )T )U

)
. (22)

Here, νl is given by (14) and thus related to U . This completes
the proof. �
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