
PARALLEL AMVP CANDIDATE LIST CONSTRUCTION FOR HEVC

Qin Yu
1
, Liang Zhao

2
, Siwei Ma

1

1
Institute of Digital Media, Peking University, Beijing 100871，China

2
Key Lab of Information Processing, Institute of Computing Technology, Chinese Academy of Sciences

{qyu, swma}@pku.edu.cn, lzhao@jdl.ac.cn

ABSTRACT

Advanced motion vector prediction (AMVP) is one of the

most important inter prediction coding tools adopted in the

state-of-the-art HEVC coding standard, which does great

effect on the coding efficiency. However, the current AMVP

design is highly sequential and thus restricts the throughput

both on the encoder and the decoder sides. To facilitate the

parallel processing and enlarge the throughput, a parallel

AMVP candidate list (AMVPCL) construction solution is

proposed. The proposed parallel scheme consists of a three

level fine granularity solutions. The first level is a CU-based

approach and it constructs AMVPCL of all PUs in the same

CU in parallel. The second level is also at CU level but it

generates a single set of AMVPCL for all PUs inside a CU.

Specifically, we only apply this method to 8x8 CU to

balance the parallelism degree and rate-distortion

performance. The third level is a CU-group based approach,

in which AMVPCL of all PUs in the same CU-group are

constructed in parallel. Experimental results show the

proposed algorithm can efficiently achieve parallel motion

estimation with negligible 0.0%~1.3% BD-rate loss at

different degree of parallelism.

Index Terms—video coding, AMVP, parallel, HEVC

1. INTRODUCTION

High Efficiency Video Coding (HEVC) is the upcoming new

video coding standard under development of JCT-VC(Joint

Collaborative Team-Video Coding), which is a joint team of

ISO/IEC MPEG and ITU-T VCEG. By adopting a series of

new coding tools and strategies, the compression efficiency

is nearly doubled compared to its predecessor, H.264/AVC.

The significant coding efficiency improvement is achieved

by a series of new coding tools. Advanced motion vector

prediction (AMVP) technique is one of these new coding

tools used in inter-prediction.

As we know, there exists redundancy among the motion

vectors of neighboring blocks. If we encode one motion

vector for each block directly, it may cost large numbers of

bits especially for smaller block size. And the proportion of

bits for motion vector and bits for entire stream is significant

especially for large QP values. Since the motion vectors of

the neighboring blocks are correlated with each other, the

motion vectors of the neighboring blocks can be utilized to

predict the motion vector of the current block, which is

called motion vector prediction (MVP). For MVP, only the

difference between the current motion vector and its

predictor needs to be transmitted, thus bits for motion vector

are reduced largely.

MVP is widely used in the existing video coding

standards, e.g. H.263 and H.264/AVC. In H.264/AVC [1],

the median of motion vectors of the neighboring blocks A, B,

and C are used as the motion vector predictor of the current

block. The position of A, B, and C are located as shown in

Fig.1.

Current Block

A

B C

Fig.1. The blocks used for MVP in H.264/AVC

In order to further improve the coding efficiency, the

emerging HEVC standard employs a motion vector

competition mechanism, which is called advanced motion

vector prediction (AMVP). For AMVP, the best motion

vector predictor for the current block is selected from a set

of predictors and the index of the predictor is transmitted to

the decoder. In JCT-VC A124 [2], an improved AMVP

method is proposed to adapt to the large block and flexible

temporal structure. The encoder selects the best predictor

from a given AMVP candidate list (AMVPCL), which is

composed of three spatial motion vectors, a median motion

vector and a temporal motion vector. These three spatial

motion vectors are chosen from the above, left and from

each applicable corner. And the temporal motion predictor is

given by the nearest reference frame and is scaled according

to the temporal distance. To optimize this technique, many

proposals such as JCT-VC D231 [3], JCT-VC E481 [4] and

JCT-VC F470 [5] are proposed. In the current HEVC [6],

the length of the candidate list is fixed to three and the final

best motion vector is chosen from first two of them.

With the current AMVP technique, the coding

efficiency has been improved to some extent. However, the

construction of AMVPCL needs the motion information of

neighboring blocks. This dependency of blocks makes the

motion estimation in the encoding process which is the most

time consuming module and motion vector derivation in the

http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/ITU-T

decoding process difficult to do in parallel. The prediction

of the neighboring blocks must be conducted sequentially in

raster scan order. In this paper, we proposed three efficient

AMVPCL construction methods to remove this dependence

and implement parallelism at different granularities. With

the proposed methods, the motion estimation process of the

blocks in the same parallel region can be conducted

concurrently with negligible loss.

The remainder of this paper is organized as follows.

Section 2 presents the parallel implementation problem of

AMVP. Section 3 gives a detailed description of the

proposed AMVPCL parallel construction algorithm. The

complexity of proposed algorithm is analyzed in Section 4.

Experimental results are shown in Section 5. Finally, we

make a conclusion of this paper.

2. AMVP IN THE CURRENT HEVC

In HEVC, CU is basic coding unit similar to macroblock,

which can have various sizes and allows recursive quad-tree

splitting. PU is the basic unit for prediction and it allows

multiple different shapes to encode irregular image pattern.

PU is limited to that of CU with symmetrical partition (SMP)

and asymmetrical partition (AMP). Within the current HM,

there are 8 PU types, which are 2Nx2N, 2NxN, Nx2N,

2NxnD, 2NxnU, nDx2N, nUx2N and NxN. Among these

PU types, the 2Nx2N PU type divides the CU into one PU

while the others divide the CU into multiple PUs. Each PU

has AMVPCLs for every available reference frame.

Current PU

Current PU

T-1 Tn Tn+1

Lm

Lm+1

Search for the first available PU

S
ea

rc
h

 f
o

r
th

e
fi

rs
t

av
ai

la
b

le
 P

U

Center

RT

Search for the first available PU

(a) Spatial Candidates (b) Temporal Candidates

Fig. 2. Illustration of the AMVPCL construction of HM6.0

In HM6.0, the AMVPCL is composed of both spatial

candidates and temporal candidates. Spatial candidates are

classified into 2 categories, i.e. top (T-1, Tn and Tn+1) and left

category (Lm and Lm+1) [7], as shown in Fig. 2(a). In each

category, the first existed and non-intra coded candidate in

the search order is added to the AMVPCL. After the spatial

candidates are derived, a temporal candidate from the

collocated frame is added to the AMVPCL, as shown in Fig.

2(b). Therefore, the candidate list contains 2 spatial

candidates and 1 temporal candidate at most.

Within the current HEVC test model HM6.0, on the

encoder side, the AMVPCL for the current PU is first

derived, and then a temporary best MVP is selected as the

start point for motion estimation (ME). When the ME

process is finished, the final optimal MVP is reselected

according to the obtained motion vector. On the decoder

side, the AMVPCL is firstly constructed, and then the MVP

can be derived according to the decoded index. When

encoding a CU, only the first PU in it can immediately

derive its AMVPCL while other PUs have to wait until its

preceding PUs are encoded, as shown in Fig. 3. Fig. 3

illustrates the different kinds of candidates highlighted in

different colors for SMP cases, and the same way is also

applied to AMP cases. The top ones are in red, and the left

ones are in blue. The gray ones indicate the candidates are

available until they are coded, while the green ones are

candidates that are not encoded yet when the current PU is

coding.

Inter N×2N PU

Inter 2N×N PU

Inter N×N PU

Current PU

C
u

rren
t P

U

Current PU

Current PU Current PU

Current PU

Current PU

C
u

rren
t P

UInter 2N×2N PU

Current PU

Fig. 3. AMVPCL of PUs in a CU

So we can conclude that the spatial candidates are

highly dependent on its neighboring PUs, and consequently

AMVPCL derivation process has to be done sequentially on

both the encoder and the decoder sides. This makes parallel

processing of multiple inter PUs difficult for both the

encoder and decoder in inter modes. This sequential

behavior directly limits the throughput of the encoder and

decoder. Fig. 4 provides an example to further elaborate the

problem. PU0, PU1, PU2 and PU3 represent the different

PU in a CU. As can be seen, the merge candidate list (MCL)

derivation process for different PUs can be derived in

parallel as well as the merge mode motion estimation

(MME), but the AMVPCL derivation and regular motion

estimation (ME) process must be carried out sequentially.

From early 1990s to now, a series of video coding

standards have been established. In order to adapt to the new

application requirements, the encoder and decoder are

becoming more and more complex. What’s more, our

requirement on the resolution of video sequence has been

changing from SD, HD to ultra-high-definition (UHD).

Although the computation power and hardware techniques

have been improved significantly, real time encoding is still

challenging for the emerging HEVC standard, especially for

UHD HEVC coding. Moreover, with the rise of video sites,

IP-based video playback places higher and higher demands

on speed of the codec. One important way to enhance

encoding and decoding speed is parallel processing

techniques. To realize parallel motion estimation, three

solutions with different parallel granularities are proposed in

the following section.

PU0 MCL
Derivation PU0 MME

PU1 MCL
Derivation PU1 MME

PU2 MCL
Derivation PU2 MME

PU3 MCL
Derivation PU3 MME

PU0
AMVPCL

Derivation
PU0 ME

PU1
AMVPCL

Derivation

Intra mode
for 2N×2N PU

Intra mode
for N×N PU0

RDO

Sequentially
conduct the

intra
prediction

for N×N
PU1、PU2、

PU3

RDO

PU1 ME
PU0

AMVPCL
Derivation

PU2 ME
PU0

AMVPCL
Derivation

PU3 ME

(a) Encoder

Parsing
PU0

AMVPCL
Derivation

PU1
AMVPCL

Derivation

PU2
AMVPCL

Derivation

PU3
AMVPCL

Derivation
MC

(b) Decoder

Fig. 4. An example of parallel implement on motion estimation in HM6.0

3. PROPOSED AMVP CANDIDATE LIST

CONSTRUCTION ALGORITHM

To enlarge the throughput both on the encoder and the

decoder sides, three parallel solutions for AMVPCL with

different granulites are introduced in this section, called

Solution I, II, III respectively. Solution I is a CU-based

approach and it constructs AMVPCL of all PUs in the same

CU in parallel. Solution II is also a CU-based approach but

it generates a single set of AMVPCLs the same with that of

the inter 2Nx2N PU for all PUs inside a CU. Specifically,

we only apply this method to 8x8 CU to balance the

parallelism degree and rate-distortion performance. Solution

III is a CU-group based approach, in which AMVPCL of all

PUs in the same CU-group are constructed in parallel.

Solution I: CU based parallel AMVPCL construction for

all PUs in a CU

In the parallel AMVPCL construction process, the

candidates within the CU, which is called inner candidates,

are unavailable. Since spatial dependency exists among

neighboring PUs, we can find an alternative for the

unavailable candidate. A parallel AMVPCL construction

method for all PUs in a CU is proposed in solution I. We

replace these unavailable candidates with the corresponding

ones outside the CU. Thus the spatial dependency among

PUs in the same CU is removed. Fig. 5 illustrates our

proposed method for symmetric motion partition (SMP)

cases, and the same method is applied to asymmetric motion

partition (AMP) cases. As can be seen from Fig. 3, inner

candidates (in gray and green) of the PU are replaced by the

corresponding candidates pointed by the arrows in Fig. 5,

which are outside of the current CU.

Solution II: CU based parallel AMVPCL construction with

all PUs sharing the AMVPCL of Inter 2Nx2N PU

From the knowledge of section 2, we know that we need

to traverse all PU types to find the best PU partition for a

CU. Each PU type has one or multiple PUs and a PU has

AMVPCLs for every reference frame. Then the total number

of AMVPCL for a CU is very large. In solution II, no matter

what kind of partition mode a CU uses, all PUs in it use the

same set of AMVPCL with that of inter 2Nx2N partition

mode. The proposed solution reduces the construction

rounds of AMVPCL significantly. The simplification will be

analyzed in the next section. Fig. 6 illustrates proposed

method for SMP cases, and the same way is also applied to

AMP cases.

Inter N×2N PU

Inter 2N×N PU

Inter N×N PU

Current PU

C
u

rren
t P

U

Current PU

Current PU Current PU

Current PU

Current PU

C
u

rren
t P

UInter 2N×2N PU

Current PU

Fig. 5. Proposed Solution I: a CU-based approach for AMVPCL

construction

Fig. 6. Proposed Solution II: all PUs in the CU share one set of

AMVPCL

Solution III: CU group based parallel AMVPCL

construction for all PUs inside the same CU group

In solution III, all PUs inside a CU group construct their

AMVPCL in parallel.

To specify the size of CU group, a syntax element,

log2_parallel_amvp_level_minus2, is defined. The

relationship between log2_parallel_amvp_level_minus2 and

the size of CU group is tabulated in Table 1. The value of

log2_parallel_amvp_level_minus2 varies between 0 and 4.

If the size of CU group is NxN, then the value of N can be

specified as follow:
log2_ _ _ _min 2 2N 2 parallel amvp level us (1)

Table 1. Partition of CU group

log2_parallel_

amvp_level_m

inus2

Size of

CU

group

Remark

4 64x64
Parallel AMVPCL derivation for all

PUs inside a LCU

3 32x32
Parallel AMVPCL derivation for all

PUs inside a 32x32 block

2 16x16
Parallel AMVPCL derivation for all

PUs inside a 16x16 block

1 8x8
Parallel AMVPCL derivation for all

PUs inside a 8x8 block

0 4x4
Sequential AMVPCL derivation for

all PUs as the smallest PU is 4x4

If the involved candidate and the current PU are within

the same CU group, this candidate is disabled. Fig. 7 shows

the CU group partition and the AMVPCL construction. In

Fig. 8, a LCU is quad-tree divided into four CU groups, and

the size of each group is 32x32. For PU2, all its candidates

are in the same CU group with it, so its AMVPCL has only

temporal candidate and additional candidates.

PU0

PU2

PU1

LCU

Available Candidates (in

different CU group)

Unavailable Candidates (in

the same CU group)

Unavailable Candidates (not

be coded yet)

First CU group Second CU group

Third CU group Fourth CU group

Fig. 7. CU group partition and AMVPCL construction

4. COMPLEXITY AND PARALLELISM ANALYSIS

OF THE PROPOSED AMVPCL ALGORITHM

This section provides complexity and parallelism analysis of

the proposed parallel AMVPCL construction algorithm.

Complexity analysis

All three proposed solutions are analyzed one by one

below. Let’s start from Solution I. From Fig.5, it can be seen

that the proposed approach only needs some judgments to

decide whether the candidate and the current PU belong to

the same CU. The number of judgments is one for two-

partition type and seven for four-partition type (the number

of gray PUs in Fig.5). This additional operation is negligible

when compared to the parallelism it brings.

For Solution II, in the current HM, each PU has its own

set of AMVPCLs, whose size is the number of reference

frame. On the encoder side, the AMVPCLs to be constructed

for motion estimation could reach a very large number as

shown in Table 2. In Table 2, the numbers in first and

second brackets refer to the number of CUs in a 64x64 block

and PUs in the CU respectively; N is the number of

reference frame in all reference lists. For CU larger than 8x8,

there are one 2Nx2N PU, four SMP PUs and eight AMP

PUs, and for an 8x8 CU, there are one 2Nx2N PU, four

SMP PUs. For a 64x64 block, the number is 593xN. The

larger the number, the more occurrence chance of different

motion candidates increasing the memory contention

possibility. Note that even when the AMVPCLs could be

constructed in parallel, the memory can be accessed only in

a sequential manner. Thus for high-throughput encoder

design, it is desirable to reduce the number of different

motion candidates as much as possible. Note that the

proposed solution significantly reduces the number of

AMVPCLs that should be constructed for motion estimation.

Table 2 shows that the number for a 64x64 block is reduced

by more than 80%.

Table 2. Number of AMVPCLs constructed for 64x64 block

motion estimation

CU
Size

AMVPCL construction for a 64x64 block

HM6.0 Proposed Rounds reduction

64x64 (1)* (13)* N (1)*(1)*N 92%

32x32 (4)* (13)* N (4)* (1)* N 92%

16x16 (4*4)* (13)*N (4*4)* (1)* N 92%

8x8 (4*4*4)*(5)*N (4*4*4)*(1)*N 80%

Sum 593*N 85*N 86%

For solution III, the proposed parallel AMVPCL

construction approach needs to check whether the current

PU and its neighboring PU belong to the same CU group

during the spatial MVP derivation process. However, the

complexity increase is negligible compared to the amount of

availability checks already needed in the spatial MVP

derivation process of HM6.0.

Parallelism analysis

With the proposed solutions, the throughput analysis on

the encoder and decoder sides is shown in Fig. 8. On the

encoder side, all PUs inside a given parallel region can

derive their AMVPCLs concurrently. Specially, for solution

II, only one set of AMVPCL should be derived before

motion estimation; and for solution III, if the size of CU

group is larger than 8x8, the PUs from different CU depth

can also conduct AMVPCL and motion estimation in

parallel. On the decoder side, the AMVPCLs of different

PUs which locate in the same parallel region can be derived

in parallel. For solution II, if the PUs in one CU have the

same reference frame, they can share the same AMVPCL.

PU0 MCL
Derivation

PU0 MME

PU1 MCL
Derivation

PU1 MME

PU2 MCL
Derivation

PU2 MME

PU3 MCL
Derivation

PU3 MME

Intra mode
for 2N×2N

PU

Intra mode
for N×N

PU0

RDO

Sequentially
conduct the

intra
prediction

for N×N
PU1、

PU2、PU3...

RDO

PU0
AMVPCL

Derivation
PU0 ME

PU1
AMVPCL

Derivation
PU1 ME

PU2
AMVPCL

Derivation
PU2 ME

PU3
AMVPCL

Derivation
PU3 ME

...

...

 (a) Parallel AMVPCL in Encoder

Parsing

PU0

AMVPCL

Derivation

PU1

AMVPCL

Derivation

PU2

AMVPCL

Derivation

PU3

AMVPCL

Derivation

MC

.
.
.

(b) Parallel AMVPCL in Decoder

Fig. 8. Throughput analysis

5. EXPERIMENT RESULT

To verify the effectiveness of the proposed methods, they

are implemented into HM6.0 software. As the proposed

algorithm focus on the AMVPCL parallel construction,

experiments are only conducted on six test conditions, which

are random access high-efficiency setting (Random Access

HE10), random access main setting (Random Access Main),

low delay high-efficiency setting (Low delay B HE10), low

delay main setting (Low delay B Main), low delay P high-

efficiency setting (Low delay P HE10), and low delay P main

setting (Low delay P Main) respectively.

The test platform used is Intel (R) Xeon (R) CPU

X5660-2.80GHZ cluster 23.9G RAM. A group of

experiments were carried out on the common test sequences

with quantization parameters 22, 27, 32 and 37 as specified

by [8]. For solution II, to balance the parallelism and the

rate-distortion performance, it is only applied to 8x8 CU.

Table 3, 4 and 5 show the summary results of the proposed

solutions against HM6.0.

From Table 3, it can be seen that if we implement

parallel motion estimation for all PUs in a CU using

Solution I, the average BD-rate is increased by 0.2%. And if

we conduct motion estimation in parallel for all PUs in an

8x8 CU, the coding complexity is deceased with negligible

average BD-rate increase of 0.1%. From Table 5, conclusion

can be made that larger parallel region leads to more loss of

coding performance. When the size of parallel CU group

varies from 8x8 to 64x64, the average bit rate increase

varies from 0.0% to 1.3%. All the three proposed solutions

can facilitate parallelism with negligible loss, but we

suppose to adopt the third solution as we can change the

parallel degree to balance the speed up requirement and the

coding performance.

Table 3. Summary results of Solution I

Random Access Main Random Access HE10

Y U V Y U V

0.30% 0.40% 0.40% 0.30% 0.30% 0.30%

Low delay B Main Low delay B HE10

Y U V Y U V

0.20% 0.10% 0.40% 0.20% 0.20% 0.00%

Low delay P Main Low delay P HE10

Y U V Y U V

0.10% 0.10% -0.10% 0.10% 0.20% 0.10%

Table 4. Summary results of Solution II

Random Access Main Random Access HE10

Y U V Y U V

0.10% 0.20% 0.20% 0.10% 0.10% 0.00%

Low delay B Main Low delay B HE10

Y U V Y U V

0.10% 0.00% 0.10% 0.00% 0.00% 0.00%

Low delay P Main Low delay P HE10

Y U V Y U V

0.10% -0.10% -0.30% 0.00% 0.30% 0.00%

Table 5. Summary results of solution III for different size of CU

group

(a) log2_parallel_amvp_level_minus2=4

Random Access Main Random Access HE10

Y U V Y U V

2.40% 2.40% 2.40% 2.40% 2.30% 2.30%

Low delay B Main Low delay B HE10

Y U V Y U V

1.00% 1.10% 1.30% 1.00% 0.8% 1.00%

Low delay P Main Low delay P HE10

Y U V Y U V

0.60% 0.30% 0.20% 0.60% 0.60% 0.40%

(b) log2_parallel_amvp_level_minus2=3

Random Access Main Random Access HE10

Y U V Y U V

1.50% 1.40% 1.60% 1.40% 1.40% 1.40%

Low delay B Main Low delay B HE10

Y U V Y U V

0.70% 0.60% 0.70% 0.60% 0.50% 0.50%

Low delay P Main Low delay P HE10

Y U V Y U V

0.40% 0.20% 0.20% 0.40% 0.60% 0.20%

(c) log2_parallel_amvp_level_minus2=2

Random Access Main Random Access HE10

Y U V Y U V

0.60% 0.60% 0.60% 0.50% 0.50% 0.50%

Low delay B Main Low delay B HE10

Y U V Y U V

0.30% 0.20% 0.50% 0.20% 0.10% 0.10%

Low delay P Main Low delay P HE10

Y U V Y U V

0.20% 0.10% -0.20% 0.20% 0.20% 0.00%

(d) log2_parallel_amvp_level_minus2=1

Random Access Main Random Access HE10

Y U V Y U V

0.10% 0.20% 0.10% 0.10% 0.10% 0.10%

Low delay B Main Low delay B HE10

Y U V Y U V

0.00% 0.10% 0.10% 0.00% -0.10% -0.10%

Low delay P Main Low delay P HE10

Y U V Y U V

0.00% -0.10% -0.10% 0.00% 0.30% -0.40%

6. CONCLUSION

In the current HEVC framework, there exists significant

dependency among neighboring PUs. It makes parallel

processing of multiple inter PUs difficult for both the

encoder and decoder. In this paper, we propose three

solutions to solve this problem at different parallelization

levels, called Solution I, II, III respectively. Solution I is a

CU-based approach and it constructs AMVPCL of all PUs

in the same CU in parallel. Solution II is also a CU-based

approach but it generates a single AMVPCL for all PUs

inside a CU. Specifically, we only apply this method to 8x8

CU to balance the parallelism degree and rate-distortion

performance. Solution III is a CU-group based approach, in

which AMVPCL of all PUs in the same CU-group are

constructed in parallel. And we can change the size of

parallel region to adapt to different applications. The

proposed approaches improve parallelism of all inter modes

excluding merge/skip mode hence make the HEVC design

more friendly to high-throughput implementation, at the cost

of negligible loss in RD performance.

ACKNOWLEDGEMENT

This research is supported by the 973 program

(2009CB320903), the 863 program (2012AA011505) and

the National Science Foundation of China (61121002,

61103088) of China, which are gratefully acknowledged.

REFERENCES

[1] ITU-T and ISO/IEC JTC 1. Advanced video coding for

generic audiovisual service. ITU-T and ISO/IEC JTC 1

Recommendation H.264 and ISO/IEC 14 496-

10(MPEG-4) AVC, 2003.

[2] K. McCann, “Samsung’s Response to the Call for

Proposals on Video Compression Technology”, JCT-

VC A124, 1th JCT-VC Meeting, Dresden, Germany,

15-23 April, 2010.

[3] A. Fujibayashi, “Simplified Motion vector prediction”

JCT-VC D231, 4th Meeting: Daegu, Korea, 20-28

January, 2011.

[4] B. Bross, ” MV Coding and Skip/Merge operations”,

JCT-VC E481, 5th Meeting: Geneva, CH, 16-23 March,

2011.

[5] T. Sugio , “Parsing Robustness for Merge/AMVP”,

JCT-VC F470, 6th Meeting: Torino, IT, 14-22 July,

2011.

[6] B. Bross, “High efficiency video coding (HEVC) text

specification draft 6”, JCTVC-H1003, 8th JCT-VC

Meeting, San Jose, CA, USA, 1-10 February, 2012.

[7] L. Zhao, X. Guo, S. Lei, S. Ma, D. Zhao and W. Gao,

“Non-CE9: Simplification of AMVP”, JCTVC-H0316,

8th JCT-VC Meeting, San Jose, CA, USA, 1-10

February, 2012.

[8] F. Bossen, “Common test conditions and software

reference configurations”, JCTVC-H1100, 8th JCT-VC

Meeting, San Jose, CA, USA, 1-10 February, 2012.

	Parallel AMVP candidate list construction for hevc
	Abstract

	1. Introduction
	2. AMVP IN THE CURRENT HEVC
	3. Proposed AMVP candidate List construction algorithm
	Solution I: CU based parallel AMVPCL construction for all PUs in a CU
	Solution II: CU based parallel AMVPCL construction with all PUs sharing the AMVPCL of Inter 2Nx2N PU
	Solution III: CU group based parallel AMVPCL construction for all PUs inside the same CU group
	In solution III, all PUs inside a CU group construct their AMVPCL in parallel.

	4. complexity and parallelism analysis of the proposed amvpcl algorithm
	Complexity analysis
	Parallelism analysis
	With the proposed solutions, the throughput analysis on the encoder and decoder sides is shown in Fig. 8. On the encoder side, all PUs inside a given parallel region can derive their AMVPCLs concurrently. Specially, for solution II, only one set of AM...
	(b) Parallel AMVPCL in Decoder
	Fig. 8. Throughput analysis

	5. Experiment result
	6. Conclusion
	References

