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ABSTRACT 

Advanced motion vector prediction (AMVP) is one of the 

most important inter prediction coding tools adopted in the 

state-of-the-art HEVC coding standard, which does great 

effect on the coding efficiency. However, the current AMVP 

design is highly sequential and thus restricts the throughput 

both on the encoder and the decoder sides. To facilitate the 

parallel processing and enlarge the throughput, a parallel 

AMVP candidate list (AMVPCL) construction solution is 

proposed. The proposed parallel scheme consists of a three 

level fine granularity solutions. The first level is a CU-based 

approach and it constructs AMVPCL of all PUs in the same 

CU in parallel. The second level is also at CU level but it 

generates a single set of AMVPCL for all PUs inside a CU. 

Specifically, we only apply this method to 8x8 CU to 

balance the parallelism degree and rate-distortion 

performance. The third level is a CU-group based approach, 

in which AMVPCL of all PUs in the same CU-group are 

constructed in parallel. Experimental results show the 

proposed algorithm can efficiently achieve parallel motion 

estimation with negligible 0.0%~1.3% BD-rate loss at 

different degree of parallelism. 
 

Index Terms—video coding, AMVP, parallel, HEVC 
 

1. INTRODUCTION 
 

High Efficiency Video Coding (HEVC) is the upcoming new 

video coding standard under development of JCT-VC(Joint 

Collaborative Team-Video Coding), which is a joint team of 

ISO/IEC MPEG and ITU-T VCEG. By adopting a series of 

new coding tools and strategies, the compression efficiency 

is nearly doubled compared to its predecessor, H.264/AVC. 

The significant coding efficiency improvement is achieved 

by a series of new coding tools. Advanced motion vector 

prediction (AMVP) technique is one of these new coding 

tools used in inter-prediction. 

As we know, there exists redundancy among the motion 

vectors of neighboring blocks. If we encode one motion 

vector for each block directly, it may cost large numbers of 

bits especially for smaller block size. And the proportion of 

bits for motion vector and bits for entire stream is significant 

especially for large QP values. Since the motion vectors of 

the neighboring blocks are correlated with each other, the 

motion vectors of the neighboring blocks can be utilized to 

predict the motion vector of the current block, which is 

called motion vector prediction (MVP). For MVP, only the 

difference between the current motion vector and its 

predictor needs to be transmitted, thus bits for motion vector 

are reduced largely. 

MVP is widely used in the existing video coding 

standards, e.g. H.263 and H.264/AVC. In H.264/AVC [1], 

the median of motion vectors of the neighboring blocks A, B, 

and C are used as the motion vector predictor of the current 

block. The position of A, B, and C are located as shown in 

Fig.1.  
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Fig.1. The blocks used for MVP in H.264/AVC 

In order to further improve the coding efficiency, the 

emerging HEVC standard employs a motion vector 

competition mechanism, which is called advanced motion 

vector prediction (AMVP). For AMVP, the best motion 

vector predictor for the current block is selected from a set 

of predictors and the index of the predictor is transmitted to 

the decoder. In JCT-VC A124 [2], an improved AMVP 

method is proposed to adapt to the large block and flexible 

temporal structure. The encoder selects the best predictor 

from a given AMVP candidate list (AMVPCL), which is 

composed of three spatial motion vectors, a median motion 

vector and a temporal motion vector. These three spatial 

motion vectors are chosen from the above, left and from 

each applicable corner. And the temporal motion predictor is 

given by the nearest reference frame and is scaled according 

to the temporal distance. To optimize this technique, many 

proposals such as JCT-VC D231 [3], JCT-VC E481 [4] and 

JCT-VC F470 [5] are proposed. In the current HEVC [6], 

the length of the candidate list is fixed to three and the final 

best motion vector is chosen from first two of them. 

With the current AMVP technique, the coding 

efficiency has been improved to some extent. However, the 

construction of AMVPCL needs the motion information of 

neighboring blocks. This dependency of blocks makes the 

motion estimation in the encoding process which is the most 

time consuming module and motion vector derivation in the 
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decoding process difficult to do in parallel. The prediction 

of the neighboring blocks must be conducted sequentially in 

raster scan order. In this paper, we proposed three efficient 

AMVPCL construction methods to remove this dependence 

and implement parallelism at different granularities. With 

the proposed methods, the motion estimation process of the 

blocks in the same parallel region can be conducted 

concurrently with negligible loss. 

The remainder of this paper is organized as follows. 

Section 2 presents the parallel implementation problem of 

AMVP. Section 3 gives a detailed description of the 

proposed AMVPCL parallel construction algorithm. The 

complexity of proposed algorithm is analyzed in Section 4. 

Experimental results are shown in Section 5. Finally, we 

make a conclusion of this paper. 

2. AMVP IN THE CURRENT HEVC 

In HEVC, CU is basic coding unit similar to macroblock, 

which can have various sizes and allows recursive quad-tree 

splitting. PU is the basic unit for prediction and it allows 

multiple different shapes to encode irregular image pattern. 

PU is limited to that of CU with symmetrical partition (SMP) 

and asymmetrical partition (AMP). Within the current HM, 

there are 8 PU types, which are 2Nx2N, 2NxN, Nx2N, 

2NxnD, 2NxnU, nDx2N, nUx2N and NxN. Among these 

PU types, the 2Nx2N PU type divides the CU into one PU 

while the others divide the CU into multiple PUs. Each PU 

has AMVPCLs for every available reference frame.  
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(a) Spatial Candidates             (b) Temporal Candidates  

Fig. 2.  Illustration of the AMVPCL construction of HM6.0 

In HM6.0, the AMVPCL is composed of both spatial 

candidates and temporal candidates. Spatial candidates are 

classified into 2 categories, i.e. top (T-1, Tn and Tn+1) and left 

category (Lm and Lm+1) [7], as shown in Fig. 2(a). In each 

category, the first existed and non-intra coded candidate in 

the search order is added to the AMVPCL. After the spatial 

candidates are derived, a temporal candidate from the 

collocated frame is added to the AMVPCL, as shown in Fig. 

2(b). Therefore, the candidate list contains 2 spatial 

candidates and 1 temporal candidate at most. 

Within the current HEVC test model HM6.0, on the 

encoder side, the AMVPCL for the current PU is first 

derived, and then a temporary best MVP is selected as the 

start point for motion estimation (ME). When the ME 

process is finished, the final optimal MVP is reselected 

according to the obtained motion vector. On the decoder 

side, the AMVPCL is firstly constructed, and then the MVP 

can be derived according to the decoded index. When 

encoding a CU, only the first PU in it can immediately 

derive its AMVPCL while other PUs have to wait until its 

preceding PUs are encoded, as shown in Fig. 3. Fig. 3 

illustrates the different kinds of candidates highlighted in 

different colors for SMP cases, and the same way is also 

applied to AMP cases. The top ones are in red, and the left 

ones are in blue. The gray ones indicate the candidates are 

available until they are coded, while the green ones are 

candidates that are not encoded yet when the current PU is 

coding. 
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Fig. 3. AMVPCL of PUs in a CU 

So we can conclude that the spatial candidates are 

highly dependent on its neighboring PUs, and consequently 

AMVPCL derivation process has to be done sequentially on 

both the encoder and the decoder sides. This makes parallel 

processing of multiple inter PUs difficult for both the 

encoder and decoder in inter modes. This sequential 

behavior directly limits the throughput of the encoder and 

decoder. Fig. 4 provides an example to further elaborate the 

problem. PU0, PU1, PU2 and PU3 represent the different 

PU in a CU. As can be seen, the merge candidate list (MCL) 

derivation process for different PUs can be derived in 

parallel as well as the merge mode motion estimation 

(MME), but the AMVPCL derivation and regular motion 

estimation (ME) process must be carried out sequentially.  

From early 1990s to now, a series of video coding 

standards have been established. In order to adapt to the new 

application requirements, the encoder and decoder are 

becoming more and more complex. What’s more, our 

requirement on the resolution of video sequence has been 

changing from SD, HD to ultra-high-definition (UHD). 

Although the computation power and hardware techniques 

have been improved significantly, real time encoding is still 

challenging for the emerging HEVC standard, especially for 

UHD HEVC coding. Moreover, with the rise of video sites, 

IP-based video playback places higher and higher demands 

on speed of the codec. One important way to enhance 

encoding and decoding speed is parallel processing 

techniques. To realize parallel motion estimation, three 

solutions with different parallel granularities are proposed in 

the following section. 
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(b)    Decoder 

Fig. 4. An example of parallel implement on motion estimation in HM6.0 

3. PROPOSED AMVP CANDIDATE LIST 

CONSTRUCTION ALGORITHM 
 

To enlarge the throughput both on the encoder and the 

decoder sides, three parallel solutions for AMVPCL with 

different granulites are introduced in this section, called 

Solution I, II, III respectively. Solution I is a CU-based 

approach and it constructs AMVPCL of all PUs in the same 

CU in parallel. Solution II is also a CU-based approach but 

it generates a single set of AMVPCLs the same with that of 

the inter 2Nx2N PU for all PUs inside a CU. Specifically, 

we only apply this method to 8x8 CU to balance the 

parallelism degree and rate-distortion performance. Solution 

III is a CU-group based approach, in which AMVPCL of all 

PUs in the same CU-group are constructed in parallel. 

Solution I: CU based parallel AMVPCL construction for 

all PUs in a CU 

In the parallel AMVPCL construction process, the 

candidates within the CU, which is called inner candidates, 

are unavailable. Since spatial dependency exists among 

neighboring PUs, we can find an alternative for the 

unavailable candidate.  A parallel AMVPCL construction 

method for all PUs in a CU is proposed in solution I. We 

replace these unavailable candidates with the corresponding 

ones outside the CU. Thus the spatial dependency among 

PUs in the same CU is removed. Fig. 5 illustrates our 

proposed method for symmetric motion partition (SMP) 

cases, and the same method is applied to asymmetric motion 

partition (AMP) cases. As can be seen from Fig. 3, inner 

candidates (in gray and green) of the PU are replaced by the 

corresponding candidates pointed by the arrows in Fig. 5, 

which are outside of the current CU. 

Solution II: CU based parallel AMVPCL construction with 

all PUs sharing the AMVPCL of Inter 2Nx2N PU 

From the knowledge of section 2, we know that we need 

to traverse all PU types to find the best PU partition for a 

CU. Each PU type has one or multiple PUs and a PU has 

AMVPCLs for every reference frame. Then the total number 

of AMVPCL for a CU is very large. In solution II, no matter 

what kind of partition mode a CU uses, all PUs in it use the 

same set of AMVPCL with that of inter 2Nx2N partition 

mode. The proposed solution reduces the construction 

rounds of AMVPCL significantly. The simplification will be 

analyzed in the next section. Fig. 6 illustrates proposed 

method for SMP cases, and the same way is also applied to 

AMP cases. 
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Fig. 5. Proposed Solution I: a CU-based approach for AMVPCL 

construction 

 
Fig. 6. Proposed Solution II: all PUs in the CU share one set of 

AMVPCL 



Solution III: CU group based parallel AMVPCL 

construction for all PUs inside the same CU group 

In solution III, all PUs inside a CU group construct their 

AMVPCL in parallel.  

To specify the size of CU group, a syntax element, 

log2_parallel_amvp_level_minus2, is defined. The 

relationship between log2_parallel_amvp_level_minus2 and 

the size of CU group is tabulated in Table 1. The value of 

log2_parallel_amvp_level_minus2 varies between 0 and 4. 

If the size of CU group is NxN, then the value of N can be 

specified as follow: 
log2_ _ _ _min 2 2N 2 parallel amvp level us                    (1) 

Table 1. Partition of CU group 

log2_parallel_

amvp_level_m

inus2 

Size of 

CU 

group 

Remark 

4 64x64 
Parallel AMVPCL derivation for all 

PUs inside a LCU 

3 32x32 
Parallel AMVPCL derivation for all 

PUs inside a 32x32 block 

2 16x16 
Parallel AMVPCL derivation for all 

PUs inside a 16x16 block 

1 8x8 
Parallel AMVPCL derivation for all 

PUs inside a 8x8 block 

0 4x4 
Sequential AMVPCL derivation for 

all PUs as the smallest PU is 4x4 

If the involved candidate and the current PU are within 

the same CU group, this candidate is disabled. Fig. 7 shows 

the CU group partition and the AMVPCL construction. In 

Fig. 8, a LCU is quad-tree divided into four CU groups, and 

the size of each group is 32x32. For PU2, all its candidates 

are in the same CU group with it, so its AMVPCL has only 

temporal candidate and additional candidates. 
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Fig. 7. CU group partition and AMVPCL construction 

 

4. COMPLEXITY AND PARALLELISM ANALYSIS 

OF THE PROPOSED AMVPCL ALGORITHM 

This section provides complexity and parallelism analysis of 

the proposed parallel AMVPCL construction algorithm.  

Complexity analysis  

All three proposed solutions are analyzed one by one 

below. Let’s start from Solution I. From Fig.5, it can be seen 

that the proposed approach only needs some judgments to 

decide whether the candidate and the current PU belong to 

the same CU. The number of judgments is one for two-

partition type and seven for four-partition type (the number 

of gray PUs in Fig.5). This additional operation is negligible 

when compared to the parallelism it brings. 

For Solution II, in the current HM, each PU has its own 

set of AMVPCLs, whose size is the number of reference 

frame. On the encoder side, the AMVPCLs to be constructed 

for motion estimation could reach a very large number as 

shown in Table 2. In Table 2, the numbers in first and 

second brackets refer to the number of CUs in a 64x64 block 

and PUs in the CU respectively; N is the number of 

reference frame in all reference lists. For CU larger than 8x8, 

there are one 2Nx2N PU, four SMP PUs and eight AMP 

PUs, and for an 8x8 CU, there are one 2Nx2N PU, four 

SMP PUs. For a 64x64 block, the number is 593xN. The 

larger the number, the more occurrence chance of different 

motion candidates increasing the memory contention 

possibility. Note that even when the AMVPCLs could be 

constructed in parallel, the memory can be accessed only in 

a sequential manner. Thus for high-throughput encoder 

design, it is desirable to reduce the number of different 

motion candidates as much as possible. Note that the 

proposed solution significantly reduces the number of 

AMVPCLs that should be constructed for motion estimation. 

Table 2 shows that the number for a 64x64 block is reduced 

by more than 80%. 

Table 2. Number of AMVPCLs constructed for 64x64 block 

motion estimation 

CU 
Size 

AMVPCL construction for a 64x64 block 

HM6.0 Proposed Rounds reduction 

64x64 (1)* (13)* N (1)*(1)*N 92% 

32x32 (4)* (13)* N (4)* (1)* N 92% 

16x16 (4*4)* (13)*N (4*4)* (1)* N 92% 

8x8 (4*4*4)*(5)*N (4*4*4)*(1)*N  80% 

Sum 593*N 85*N 86% 

For solution III, the proposed parallel AMVPCL 

construction approach needs to check whether the current 

PU and its neighboring PU belong to the same CU group 

during the spatial MVP derivation process. However, the 

complexity increase is negligible compared to the amount of 

availability checks already needed in the spatial MVP 

derivation process of HM6.0. 



Parallelism analysis 

With the proposed solutions, the throughput analysis on 

the encoder and decoder sides is shown in Fig. 8. On the 

encoder side, all PUs inside a given parallel region can 

derive their AMVPCLs concurrently. Specially, for solution 

II, only one set of AMVPCL should be derived before 

motion estimation; and for solution III, if the size of CU 

group is larger than 8x8, the PUs from different CU depth 

can also conduct AMVPCL and motion estimation in 

parallel. On the decoder side, the AMVPCLs of different 

PUs which locate in the same parallel region can be derived 

in parallel. For solution II, if the PUs in one CU have the 

same reference frame, they can share the same AMVPCL. 
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(b) Parallel AMVPCL in Decoder 

Fig. 8. Throughput analysis 

 

5. EXPERIMENT RESULT 
 

To verify the effectiveness of the proposed methods, they 

are implemented into HM6.0 software. As the proposed 

algorithm focus on the AMVPCL parallel construction, 

experiments are only conducted on six test conditions, which 

are random access high-efficiency setting (Random Access 

HE10), random access main setting (Random Access Main), 

low delay high-efficiency setting (Low delay B HE10), low 

delay main setting (Low delay B Main), low delay P high-

efficiency setting (Low delay P HE10), and low delay P main 

setting (Low delay P Main) respectively. 

The test platform used is Intel (R) Xeon (R) CPU 

X5660-2.80GHZ cluster 23.9G RAM. A group of 

experiments were carried out on the common test sequences 

with quantization parameters 22, 27, 32 and 37 as specified 

by [8]. For solution II, to balance the parallelism and the 

rate-distortion performance, it is only applied to 8x8 CU. 

Table 3, 4 and 5 show the summary results of the proposed 

solutions against HM6.0.  

From Table 3, it can be seen that if we implement 

parallel motion estimation for all PUs in a CU using 

Solution I, the average BD-rate is increased by 0.2%. And if 

we conduct motion estimation in parallel for all PUs in an 

8x8 CU, the coding complexity is deceased with negligible 

average BD-rate increase of 0.1%. From Table 5, conclusion 

can be made that larger parallel region leads to more loss of 

coding performance. When the size of parallel CU group 

varies from 8x8 to 64x64, the average bit rate increase 

varies from 0.0% to 1.3%. All the three proposed solutions 

can facilitate parallelism with negligible loss, but we 

suppose to adopt the third solution as we can change the 

parallel degree to balance the speed up requirement and the 

coding performance. 

Table 3. Summary results of Solution I 

Random Access Main Random Access HE10 

Y U V Y U V 

0.30% 0.40% 0.40% 0.30% 0.30% 0.30% 

Low delay B Main Low delay B HE10 

Y U V Y U V 

0.20% 0.10% 0.40% 0.20% 0.20% 0.00% 

Low delay P Main Low delay P HE10 

Y U V Y U V 

0.10% 0.10% -0.10% 0.10% 0.20% 0.10% 

Table 4. Summary results of Solution II 

Random Access Main Random Access HE10 

Y U V Y U V 

0.10% 0.20% 0.20% 0.10% 0.10% 0.00% 

Low delay B Main Low delay B HE10 

Y U V Y U V 

0.10% 0.00% 0.10% 0.00% 0.00% 0.00% 

Low delay P Main Low delay P HE10 

Y U V Y U V 

0.10% -0.10% -0.30% 0.00% 0.30% 0.00% 



Table 5. Summary results of solution III for different size of CU 

group 

(a) log2_parallel_amvp_level_minus2=4 

Random Access Main Random Access HE10 

Y U V Y U V 

2.40% 2.40% 2.40% 2.40% 2.30% 2.30% 

Low delay B Main Low delay B HE10 

Y U V Y U V 

1.00% 1.10% 1.30% 1.00% 0.8% 1.00% 

Low delay P Main Low delay P HE10 

Y U V Y U V 

0.60% 0.30% 0.20% 0.60% 0.60% 0.40% 

(b) log2_parallel_amvp_level_minus2=3 

Random Access Main Random Access HE10 

Y U V Y U V 

1.50% 1.40% 1.60% 1.40% 1.40% 1.40% 

Low delay B Main Low delay B HE10 

Y U V Y U V 

0.70% 0.60% 0.70% 0.60% 0.50% 0.50% 

Low delay P Main Low delay P HE10 

Y U V Y U V 

0.40% 0.20% 0.20% 0.40% 0.60% 0.20% 

(c) log2_parallel_amvp_level_minus2=2 

Random Access Main Random Access HE10 

Y U V Y U V 

0.60% 0.60% 0.60% 0.50% 0.50% 0.50% 

Low delay B Main Low delay B HE10 

Y U V Y U V 

0.30% 0.20% 0.50% 0.20% 0.10% 0.10% 

Low delay P Main Low delay P HE10 

Y U V Y U V 

0.20% 0.10% -0.20% 0.20% 0.20% 0.00% 

(d) log2_parallel_amvp_level_minus2=1 

Random Access Main Random Access HE10 

Y U V Y U V 

0.10% 0.20% 0.10% 0.10% 0.10% 0.10% 

Low delay B Main Low delay B HE10 

Y U V Y U V 

0.00% 0.10% 0.10% 0.00% -0.10% -0.10% 

Low delay P Main Low delay P HE10 

Y U V Y U V 

0.00% -0.10% -0.10% 0.00% 0.30% -0.40% 

 

 

6. CONCLUSION 

In the current HEVC framework, there exists significant 

dependency among neighboring PUs. It makes parallel 

processing of multiple inter PUs difficult for both the 

encoder and decoder. In this paper, we propose three 

solutions to solve this problem at different parallelization 

levels, called Solution I, II, III respectively. Solution I is a 

CU-based approach and it constructs AMVPCL of all PUs 

in the same CU in parallel. Solution II is also a CU-based 

approach but it generates a single AMVPCL for all PUs 

inside a CU. Specifically, we only apply this method to 8x8 

CU to balance the parallelism degree and rate-distortion 

performance. Solution III is a CU-group based approach, in 

which AMVPCL of all PUs in the same CU-group are 

constructed in parallel. And we can change the size of 

parallel region to adapt to different applications.  The 

proposed approaches improve parallelism of all inter modes 

excluding merge/skip mode hence make the HEVC design 

more friendly to high-throughput implementation, at the cost 

of negligible loss in RD performance.  
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