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Abstract—Recently, deep Convolutional Neural Networks (C-
NNs) have been used to achieve state-of-the-art performance on
a wide range of visual learning tasks. However, when facing
some imbalanced learning tasks where the training samples
are unevenly distributed among different classes, CNNs tend to
produce performance bias toward the majority class, making
them not suitable for applications in which the recognition ability
on the minority class is highly valued. To address the problem,
this paper proposes a hybrid classification model by combining
CNN with Support Vector Machine (SVM) that has uneven
margins. In this model, CNN works as a feature extractor and
the extracted features are then sent into a L2-SVM with linear
uneven margins. We also develop a gradient-descent learning
approach for this hybrid CNN-uneven SVM (CNUSVM) model
by minimizing an uneven margin based L2-hinge loss. Our
experiments on two benchmark datasets show that the CNUSVM
model can make more favorable decisions for imbalanced visual
learning tasks in comparison with the standard CNN and the
hybrid CNN-SVM model.

I. INTRODUCTION

Deep learning methods using Convolutional Neural Net-

works (CNNs) [11] have achieved state-of-the-art performance

in many visual learning tasks such as image classification [9]

and object detection [7]. As a multi-layered back propagation

neural network, CNN minimizes a cross-entropy loss using the

classical back propagation learning algorithm. However, when

training data are highly imbalanced, BP networks (including

CNNs) often perform better on the majority class, yet the

minority class examples often tend to be misclassified [8],

[15]. This is a serious problem in many real-world applications

such as anomaly detection and vision-aided medical diagnosis,

where the minority class is what we really care about. With the

growing interest in imbalanced learning among researchers,

many methods have been proposed to tackle the problem both

at the data and algorithmic levels [6]. Some of them focus on

re-balancing the training data using sampling strategies, such

as oversampling [3], [5] and subsampling [10]. Oversampling

artificially generates new samples that belong to the minority

class so as to bridge the gap between the numbers of two
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classes, while subsampling selects a reasonably-sized subset

of examples that belong to the majority class. Other methods

try to develop new learning algorithms to fit imbalance data

distribution, such as cost-sensitive learning [23] and genetic

programming [2].

It should be noted that when using neural networks (NNs)

for imbalanced learning tasks, most researches focus on sam-

pling the training data. Due to the disadvantages associated

with the use of sampling methods, such as discarding the

potentially useful data (caused by subsampling) and increasing

the learning time (caused by oversampling) [25], we still

stand on the algorithmic aspect to solve the imbalanced neural

classification problem.

As a well-known margin-based learning algorithm, Support

Vector Machines (SVMs) [24] are widely used in many

machine learning tasks. Several variation algorithms that adapt

the SVM to different imbalanced classification problems have

also been proposed and demonstrated remarkable performance

gains over the traditional SVM [1], [22], [27]. In recent years,

some hybrid classification models by combining NNs with

SVMs have also been developed, in which NN works as an

automatic feature extractor and SVM works as a classifier [13],

[27].

Inspired by these models, this paper develops a hybrid clas-

sification model, called CNUSVM, which combines CNN with

uneven-margin-based SVM proposed in [12]. This CNUSVM

model automatically generates feature vectors using the CNN,

and these features are then sent to an uneven L2-uneven SVM

for further classification. We also develop a gradient-descent

learning approach by minimizing an uneven margin based L2-

hinge loss. Our experimental results show that the proposed

CNUSVM model can fit the imbalanced data distribution well

and the learning algorithm is suitable for joint training and

incremental learning. Compared with the standard CNN and

the hybrid CNN-SVM model, the CNUSVM model can make

more favorable decisions for imbalanced visual learning tasks.

The rest of the paper is organized as follows. Sec. II pro-

vides background knowledge of the last layer linear classifier

in CNN, standard SVM and the combination models of CNNs
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Fig. 1. The architecture of the CNUSVM model.

and SVMs. Sec. III presents the proposed CNUSVM model.

Experimental results and analysis are presented in Sec. IV.

The conclusion is drawn in Sec. V.

II. BACKGROUND

We now give a brief background description of the softmax

classification function of the standard CNN and SVM. Since

our model is tightly-related to the recently proposed hybrid

models which combine CNN with the standard linear SVM,

this CNN-SVM model will also be introduced.

A. Softmax

In most deep neural networks (including CNNs), it is

typical to implement the softmax function at the top layer

for classification, and train the network under a cross-entropy

regime. For each training sample in an N -class classification

problem, the total input ak to the kth softmax layer unit is

ak =
∑
j

ojwjk (1)

where o = {oj} is the activation of the penultimate layer and

w = {wjk} is the weight matrix between the last two layers.

The output of the kth unit pk can be calculated as

pk =
exp(ak)∑N

n=1 exp(an)
(2)

The predicted class î would be

î = argmax
i

pi (3)

B. Support Vector Machines

Support Vector Machines (SVMs) were originally designed

for the binary classification problem, given training set S =
{(xi, yi) | xi ∈ R

m, yi ∈ {−1,+1}} , i = 1, 2, . . . , N . SVM

finds a hyperplane to separate the input data by maximizing

the margin in the feature space. The linear soft margin

SVM, which is a commonly used SVM model, results in the

following optimization problem:

minimizew,ξi

{
‖w‖2
2

+ C
N∑
i=1

ξi

}

s.t. yi (w·xi) ≥ 1− ξi

ξi ≥ 0 ∀i

(4)

where ξi are slack variables that measure the degree of

misclassification of the input sample xi, and C is called the

cost factor which controls the trade-off between training error

minimization and margin maximization. The corresponding

unconstrained form of the optimization problem is

minimizew
‖w‖2
2

+ C
N∑
i=1

max (1− yi (w·xi) , 0) (5)

Eq.5 is also known as the primal problem of L1-SVM with the

standard hinge loss. A least squares version of L1-SVM, also

known as L2-SVM has also been proposed by minimizing the

squared hinge loss (L2-loss) [20]:

minimizew
‖w‖2
2

+ C
N∑
i=1

max (1− yi (w·xi) , 0)
2

(6)

Typically, the optimization problem of SVM is solved in the

dual form by introducing Lagrange multipliers, which however

is not suitable for the incremental learning process of CNN.

To combine SVM with CNN and achieve the goal of joint

training, optimization with gradient descent based approaches

has been developed in this study, as discussed in Sec. II-C.

C. Hybrid CNN-SVM models

Motivated by the fact that the linear classifier used in the

standard CNN has a very limited classification ability, several

hybrid models have been developed recently by replacing

the linear classifier of CNN with SVM [16], [21]. In these

hybrid CNN-SVM models, the original softmax classifier in

the standard CNN is replaced, and the lower layer weights are

learned by backpropagating the gradients (partial derivatives)

from the top layer linear SVM. Let the SVM objective in Eq.5

be l (w) , and the input x is replaced by the activation o of
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the penultimate layer, the gradient of l (w) with respect to o
is

∂l (w)

∂oi
= −Cyiw (I {1 > yi (w · oi)}) (7)

where I {·} is the indicator function, and yi ∈ {−1,+1} is the

corresponding label of oi. Likewise, for L2-SVM, we have

∂l (w)

∂oi
= −2Cyiw (max (1− yi (w · oi) , 0)) (8)

The calculated gradients can then be backpropagated to learn

the lower layer weights.

In essence, the combination of CNN and SVM can be seen

as a change of cost function, and many researches have shown

that such a combination can be successfully applied to visual

learning tasks and often yield better performance than the

original CNN [21], [27].

III. THE PROPOSED METHOD

Despite its high performance, the hybrid CNN-SVM model

is still not suitable for imbalanced learning problems. In

recent years, variation models of SVM have been developed

to address the problem of imbalanced learning. In this context,

we focus our attention towards combining CNN with such an

uneven-margin-based SVM to gain better performance on the

imbalanced visual learning tasks. Thus in this section, we will

first briefly introduce the uneven margin based SVM used in

our model, and then present the proposed hybrid CNN-uneven

SVM model (CNUSVM).

A. SVM with uneven margins

In [12], a SVM with uneven margins was proposed for

imbalanced classification, which significantly outperformed

the standard SVM with respect to the document categorization

for small categories. By introducing a margin parameter τ
into Eq.4 to control the ratio of the positive margin over the

negative margin in SVM, the primal problem can be changed

to the following optimization problem:

minimizew,ξ

{
‖w‖2
2

+ C
N∑
i=1

ξi

}

s.t. w · xi + ξi ≥ 1 if yi = +1

w · xi − ξi ≤ −τ if yi = −1
ξi ≥ 0 ∀i

(9)

where τ is the ratio of the negative margin to the positive

margin of the classifier. For imbalanced learning tasks, set

0 < τ < 1 and the classification hyperplane will be close to the

negative margin, thus improving the classification performance

towards the minority (positive) samples.

A set of transformations were given in [12] to obtain the

uneven SVM with any margin parameter 0 < τ < 1 from its

corresponding standard SVM. However, in our hybrid CNN-

SVM model, it is easy to fall into local minimum if CNN and

SVM are trained separately. This is mainly due to the features

extracted by separately trained CNN are already vulnerable to

the high imbalanced data ratio and the performance will not

be optical if we further classify these features using unbalance

SVM. To enable the joint training, we thus propose a new

gradient-descent learning method to directly backpropagate the

gradients of the uneven SVM’s objective so as to train CNN.

B. Hybrid CNN-Uneven SVM model
In our CNUSVM model, the classification layer of the CNN

is replaced by an uneven margin based linear L2-SVM (i.e.

the activation of the penultimate fully-connected layer acts as

an input of the uneven SVM). Its architecture is shown in Fig.

1. Firstly, the sample images are sent to the input layer of the

network. CNN is trained to generate features and the extracted

features are then sent to the uneven SVMs at the last layer.

Note that we use the one-vs-rest strategy described in [24]. For

binary classification problems, there are two different SVMs in

the last layer with exactly opposite inputs (that is, the positive

samples of the first SVM are the negative samples of the

second), and the test samples would belong to the positive

class of the SVM which has a bigger output than the other.
To use the objective of the uneven SVM to train our

CNUSVM, we need to differentiate it with respect to the

activation of the penultimate layer. This requires the corre-

sponding unconstrained form of the optimization problem in

Eq.9, as follows

minimizew
‖w‖2
2

+ C
N∑
i=1

max

(
τ + 1

2

−yi
(
w·xi +

τ − 1

2

)
, 0

) (10)

Let the objective in Eq.10 be l (w), and replace the input

data sample x with the activation of the penultimate layer o.

Then we have

∂l (w)

∂oi
= −Cyiw

(
I

{
τ + 1

2

> yi

(
w · oi +

τ − 1

2

)}) (11)

In [16], the authors found that as the linear classifier at the

last layer, L2-SVM is slightly better than L1-SVM in most

cases. Since L2-SVM is differentiable and better in perfor-

mance, we also use the L2-uneven SVM in our CNUSVM

model, which optimizes the following problem:

minimizew
‖w‖2
2

+ C
N∑
i=1

max

(
τ + 1

2

−yi
(
w·oi +

τ − 1

2

)
, 0

)2
(12)

The partial derivative of Eq.12 with respect to the activation

of the penultimate layer o is

∂l (w)

∂oi
= −2Cyiw

(
max

(
τ + 1

2

−yi
(
w · oi +

τ − 1

2

)
, 0

)) (13)
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Algorithm 1 Gradient Descent Training of CNUSVM

Input: training image set S, α, τ1 ,τ2, C
Initialize: CNN layers, SVM weight vectors {w1,w2}
Output: trained CNN, updated SVM weight vectors

1) while not converged do
2) for each x ∈ S do
3) Feed forward CNN using x;

4) Get penultimate layer activation o;

5) for each SVMi, i ∈ {1, 2} do
6) Get corresponding label yi ∈ {+1,−1};
7) L = (1+τi)

2 − yi

(
(wi · o)− (1−τi)

2

)
;

8) gi = −2Cyiwi max (L, 0);
9) wi = wi − αgi [o./wi];

10) end for
11) Backpropagate g1, g2;

12) end for
13) end while

From this point on, the backpropagation algorithm is exactly

the same as the standard CNN and the calculated partial

derivatives are also used to train the last layer SVMs through a

gradient descent procedure. A detailed training procedure for

binary classification problems are described in Algorithm 1,

where L in Line 7 is a temporary variable used to calculate

gradients g and the [./] symbol in Line 9 denotes element-wise

division of two vectors.

There are four user-defined parameters in Algorithm 1:

learning rate α, margin parameters τ1, τ1 for the two SVMs

and SVM cost factor C. For binary classification problems

with highly imbalanced training data, we would like the

classification hyperplanes of both SVMs in the last layer close

to the majority samples. Thus, for the SVM which takes the

minority data as positive class, τ will be set close to 0, and

for another τ will be set larger than 1.

IV. EXPERIMENTS

A. Experimental settings

Datasets. The effectiveness of the proposed CNUSVM

model is evaluated on two benchmark datasets. Detailed data

distribution of both datasets are shown in Table I.

TABLE I
DATA DISTRIBUTION OF THE EXPERIMENTAL DATASETS.

Dataset
Training Testing Validation

#Pos #Neg #Pos #Neg #Pos #Neg

Pedestrian 4800 20000 4800 5000 4800 5000

GTSRB 210 1860 30 315 30 315

The first dataset is the Daimler Mono pedestrian clas-

sification benchmark (Pedestrian) [14], which contains five

different sets, each with 4800 pedestrian and 5000 non-

pedestrian (background) images (see Fig. 2). We randomly

choose 4800 pedestrian and 20000 non-pedestrian images to

train our model, with an imbalance ratio of about 1:4.

Fig. 2. Example images of Daimler Mono pedestrian classification bench-
mark: pedestrians (left three) and background (right).

The second dataset is the German traffic sign recognition

benchmark(GTSRB) [19], with 43 classes and the sample

number of each class ranges from 210 to 2250. Since in this

study we only focus on the imbalanced binary classification

tasks, we choose two classes in GTSRB in our experiments,

i.e. the speed limit sign of 20 mph and 80 mph, each

containing 210 and 1860 training samples. The imbalance ratio

is approximately 1:9. Example images are shown in Fig. 3.

Fig. 3. Example images of GTSRB.

Evaluation metrics. Several metrics have been used to

evaluate the effectiveness of our hybrid CNUSVM model. To

test whether our model can gain a balanced performance on

minority examples as well as on majority examples, we adopt

Geometric Mean (G-mean) [10] as one of the main criteria.

Given accuracies observed separately on positive examples

a+ and negative ones a−, G-mean can be calculated as

g =
√
a+ · a−. As we can see, a very high a− by a low

a− will still result in poor g.

We also adopt Area Under the ROC Curve (AUC) to evalu-

ate the classification robustness of our model. By changing the

decision threshold of the classifier, we can get different True

Positive Rates (TPRs) and the False Positive Rates (FPRs),

and then draw the ROC Curve by plotting all the (TPR,FPR)

pairs. Area Under The ROC Curve can then be calculated to

quantify the performance of the used model.

Despite the above two metrics, overall classification accu-

racy and accuracy on the minority and minority class are also

took into consideration.

Methods for comparison. The proposed model is compared

with several imbalanced learning methods. These approaches

can be roughly categorized into three groups, including:

(1) Sampling Group. This group contains two sampling

methods designed for imbalanced learning, including
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TABLE II
PERFORMANCE OF VARIOUS APPROACHES ON THE PEDESTRIAN DATASET.

Method G-mean AUC a+ a− acc

Sampling Group HOG + CUS + NN 0.9086 0.9725 96.35% 85.68% 90.91%

HOG + SMOTE-RSB + NN 0.9413 0.9865 92.04% 96.26% 94.19%

Algorithmic Group CSCNN 0.9366 0.9814 93.44% 93.88% 93.66%

HOG + CSNN 0.9454 0.9877 94.50% 94.58% 94.54%

Baseline Group
CNSVM 0.9246 0.9891 86.94% 98.34% 92.76%

HOG + NN 0.9323 0.9877 88.77% 97.94% 93.45%

CNN 0.9168 0.9814 86.50% 97.18% 91.95%

Ours CNUSVM 0.9557 0.9891 97.02% 94.14% 95.55%

TABLE III
PERFORMANCE OF VARIOUS APPROACHES ON THE GTSRB DATASET.

Method G-mean AUC a+ a− acc

Sampling Group HOG + CUS + NN 0.8440 0.9637 73.33% 97.14% 95.07%

HOG + SMOTE-RSB + NN 0.9071 0.9891 83.33% 98.73% 97.39%

Algorithmic Group CSCNN 0.9212 0.9990 85.00% 99.84% 98.55%

HOG + CSNN 0.9100 0.9889 83.33% 99.37% 97.97%

Baseline Group
CNSVM 0.9030 0.9972 81.67% 99.84% 98.26%

HOG + NN 0.8916 0.9759 80.00% 99.37% 97.68%

CNN 0.9037 0.9991 81.67% 100.0% 98.41%

Ours CNUSVM 0.9574 0.9994 91.67% 100.0% 99.28%

SMOTE-RSB [17], which is an oversampling method

based on the well-known SMOTE algorithm, and

cluster-based under-sampling(CUS) [26], which is a

subsampling method. Since these sampling methods

often work better on manually extracted features than

on raw images, we extract HOG features [4] of the orig-

inal images and adopt fully connected Neural Network

(NN) with backpropagation-based training [18] as the

classifier.

(2) Algorithmic Group. This group contains two algorith-

mic methods for imbalanced learning problems, includ-

ing Cost Sensitive Neural Network (CSNN) [28], which

is trained using the extracted HOG features, and CNN

with the same cost sensitive strategy (CSCNN), which

is trained using the original images.

(3) Baseline Group. To compare above methods with the

standard classification models, three baseline methods

are used, including the standard CNN, the hybrid CNN-

SVM model(CNSVM) [21] and the HOG + NN without

any sampling or cost sensitive implementation.

B. Experimental results

We adopt all 3 groups of the comparing methods as well as

our model (denoted as Ours) to see whether our model can

make more favourable decision on the imbalanced datasets.

The results on the two datasets are reported in Table II and

Table III. where a+, a− stand for the classification accuracy

on positive (minority) class and negative (majority) class and

acc stands for the overall accuracy.

We use a six-layer convolutional neural network as the

forepart feature extractor. The learning rate α is set to 0.01

and the penalty factor C of the SVM is set to 1. The uneven

parameters τ for each SVM are manually adjusted to best fit

each dataset, which will be discussed in Sec. IV-C.

1) Performance on the pedestrian dataset: From Table II,

we can see that on the Pedestrian dataset, all methods from

the Baseline group suffer a performance bias, getting high

classification accuracy on the majority examples, yet accuracy

on the minority examples are relatively low. Intuitively, all

methods from the non-baseline Groups can improve the classi-

fication accuracy on the minority examples. Among them, our

CNUSVM gets the best G-mean and a+, followed by HOG +

CSNN and HOG + SMOTE-RSB + NN. The best AUC score

is gained by our model and CNSVM. Table II also presents that

our model gets the best overall accuracy among all methods,

thanks to the powerful classification ability of the combination

of CNN and uneven SVM.

We can also see from Table II that all methods designed for

imbalance learning have a performance drop on the majority

data samples in comparison with their corresponding baseline

methods. Among them, algorithmic methods perform better

than sampling methods according to the experimental results.

Surprisingly, although HOG + CUS + NN gets a high accu-

racy on the minority examples, the accuracy on the majority

examples drops significantly, leading to a rather low G-mean

value. This fact reveals that in some cases, the loss of useful

information during the subsampling process may have great

influence on classification results.

2) Performance on the GTSRB dataset: From Table III,

we can see that on the GTSRB dataset, baseline methods
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suffer even more performance bias due to a extremely small

number of positive samples in the training data. Another fact

we can see is that the methods using HOG features get worse

performances on the GTSRB dataset than on the Pedestrian

dataset. The positive and negative examples in the former

dataset have pretty small areas of difference and as a result,

HOG features can not distinguish them effectively. Another

reason is that HOG features are particularly fitted for human

detection, so they work better on the Pedestrian dataset.

Table III also shows that our model outperforms the others on

all criteria, getting the highest G-mean of 0.9574 and an ideal

AUC of 0.9994. Among the two methods in the Sampling

group, HOG + CUS + NN gets even worse performance

compare to HOG + NN, this is mainly due to the lack of

training samples sent to NN after undersampling.

C. Choosing parameters

From Table I, we can see that different datasets have

different imbalance ratios. To use our CNUSVM model on

a particular dataset, first we need to find a way to choose

the best parameter for the uneven SVMs. In this section, we

design several experiments for the purpose of finding the best

uneven margin parameter τ . We take the GTSRB dataset as an

example below to show the whole parameter choosing process.

All parameter selection experiments use validation data and

similar experiments are conducted for every dataset where our

model is applied.

For binary classification problems, there are two uneven

SVMs in our model, the first SVM takes the minority samples

as it’s own positive input, and the other takes the majority

data as positive. Let the uneven parameter for the two SVMs

be τ1 and τ2. In order to make both SVMs’ classification

hyperplanes close to the majority samples, τ1 should be set

smaller than 1, τ2 should be set larger than 1. In our first

experiment, we test the performance of our model on the

GTSRB dataset with different values of τ1 = 0.2, 0.4, 0.6,

0.8 and τ2 = 2.0, 4.0, 6.0, 8.0. Results are shown in Table IV.

Fig. 4. The G-mean scores of our model on the GTSRB dataset when using
different uneven parameter τ1.

From Table IV, we notice that with the increasing of τ2, the

TABLE IV
PERFORMANCE ON THE GTSRB DATASET USING DIFFERENT MARGIN

PARAMETERS. BEST RECORDS UNDER EACH VALUE OF τ2 ARE BOLDED.

τ2 τ1 G-mean a+ a−

2.0

0.2 0.8660 75.00% 100.0%

0.4 0.7853 61.67% 100.0%

0.6 0.9037 81.67% 100.0%

0.8 0.9220 85.00% 100.0%

4.0

0.2 0.8944 80.00% 100.0%

0.4 0.8944 80.00% 100.0%

0.6 0.9793 96.67% 99.21%
0.8 0.8660 75.00% 100.0%

6.0

0.2 0.9302 86.67% 99.84%

0.4 0.9916 98.33% 100.0%
0.6 0.9472 90.00% 99.68%

0.8 0.9544 91.67% 99.37%

8.0

0.2 0.9472 90.00% 99.84%
0.4 0.9449 90.00% 100.0%

0.6 0.9376 88.33% 99.68%

0.8 0.8944 80.00% 100.0%

best record occurs at a gradually smaller value of τ1. Through

observing the relationship of τ1 and τ2 in these records, we

found that approximatively they have a relationship of τ2 ≈
10× (1− τ1).

By exploiting the approximate relationship, we run a second

experiment on the dataset. In this time, the value of τ1 ranges

from 0.1 to 0.9, and τ2 is decided through the above equation.

Results are shown in Fig. 4. As we can see, when τ1 = 0.4 (τ2
= 6.0), our model gets the best G-mean value, and this would

be the final parameters we use in the experiments.

D. Performance at various imbalance ratios

Sec. IV-B presents that our CNUSVM model can make

more favorable decisions than the other methods when facing

the the imbalanced data. To further investigate whether our

model can work on datasets with a wide range of imbalance

ratios, we test our model on several training subsets selected

from the Daimler Mono Pedestrian Classification Benchmark.

Each subset contains 18000 negative samples, and the number

of positive samples varies from 360 to 3600, the imbalance

ratio changes from 1:5 to 1:50. We also test the performance

of the standard CNN and the CNSVM on these subsets for

comparison. Result are shown in Fig. 5.

From Fig. 5 (a) and (c), we can see that with the decreasing

of the imbalance ratio, the performance on the minority

samples drops on all three models. However, our model

shows more robustness towards the increasing gap between the

numbers of the minority and majority samples, in comparison

with CNSVM and CNN, both of which suffer a very rapid

performance decline.

Fig. 5 (d) shows that on each training set, the accuracy

on the majority samples of CNUSVM is slightly lower than

CNN and CNSVM. However, since in most imbalance learning
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Fig. 5. Performance of the standard CNN, CNSVM and our CNUSVM model on training sets with various imbalance ratios.

tasks we care more about the minority samples rather than the

majority samples, such a performance drop is often acceptable.

Finally, from Fig. 5 (b) we can see that the AUC score

of the standard CNN drops at each ratio, while CNUSVM

and CNSVM have relatively more stable AUC scores on

most ratios. To sum up, our CNUSVM model is capable of

fitting datasets with a wide range of imbalance ratios and can

make better decision at each ratio than the standard CNN and

CNSVM.

V. CONCLUSION

In this paper we propose a novel hybrid CNN-uneven SVM

model for imbalanced visual learning problems. The CNN in

our model is trained by minimizing the objective of an uneven

linear L2-SVM instead of the standard mean-squared loss.

From the experimental results, we find that by using an uneven

L2-SVM as the classifier at the last layer, our CNUSVM

can make more favourable decisions when facing imbalanced

datasets.

In the future work, we will extend our model to tackle

multi-class imbalanced learning problems. Since our model

doesn’t change the structure of CNN, it can naturally be

extended to perform multi-class classification, the main focus

will be the choosing of parameters. This will lead to the

study on automatic parameter selection. We will also try

to combine other imbalance learning approaches with our

model, and we believe that its performance can be gradually

improved by combining with other well-performed approaches

for imbalance learning.
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