

Design and Implementation of a Multi-programs
Transport Stream Multiplexer

Lei Zhang, Xiaofeng Huang, Yangang Cai
School of Electronic and Computer Engineering
Peking University Shenzhen Graduate School

Shenzhen, China
{lzhang, xfhuang, ygcai}@jdl.ac.cn

Zhuo Li, Huizhu Jia, Xiaodong Xie
National Engineering Laboratory of Video Technology

Peking University
Beijing, China

{zli, hzjia, xdxie}@jdl.ac.cn

Abstract—This paper describes design and implementation of a
multi-programs transport stream multiplexer which is based on
AVS system standard. We have developed an AVS TS compliant
multiplexer with special considerations for multi-programs
multiplexing. In particular, we construct a monitoring structure
which can imitate the behavioral model of T-STD and then use the
monitoring information as the key factors for scheduling. We have
made efficient verification of AVS and MPEG-2 compliance by
RTL simulation.

Keywords—Multi-programs, AVS system standard, Monitoring
structure, Behavioral model, Scheduling.

I. INTRODUCTION

AHB BUS

Video
Encoder

Audio
Encoder

CPU

DDR controller

DMA
Multi-programs
TS multiplexer

Video #4

Video #3

Video #2

Video #1 Audio #1

Audio #4

Audio #3

Audio #2
ES PES

TS out

Multiplexer is one of the key installations in the digital
television system. We have developed a multi-programs TS
multiplexer which adopts AVS transport stream as
multiplexing scheme. The multiplexer can multiplex at most 4
programs into a single transport stream. Every program
contains one video signal and one audio signal.

AVS system standard [1] expounds how to combine one or
multiple audio, video and other elementary data streams into a
single transport stream for storage and transmission. The
transport stream is mainly for environments where significant
errors may occur. System coding must follow the grammar and
semantic rules specified by AVS system standard. The standard
also provides a method to guarantee the timing and
synchronization of video and audio signal.

AVS system standard specifies a “System Target Decoder”
(STD) for analyzing the relationship between timing and
buffers. For transport streams, it is called “Transport Stream
System Target Decoder” (T-STD). The factors of T-STD
depend on particular elementary streams. TS multiplexer
should generate transport stream which must satisfy the
constraints of T-STD.

This paper describes design requirements, operating
principles and the RTL architecture of our design. The key
point of our design is using T-STD monitors to control TS
output for avoiding overflow and underflow in decoder buffers.

This paper is organized as follows. In section 2，we show
the functional requirements and design issue in multi-programs

TS multiplexer design. Section 3 presents the hardware
architecture and implementation. The process of verification is
show in Section 4. Finally, we conclude this paper in section 5.

II. FUNCTIONAL REQUIREMENTS AND DESIGN

ISSUE

Our multi-programs multiplexer is designed as a hardware
module in SOC. It is linked on the AMBA AHB bus as a slave.
The architecture of the entire system is show in figure 1.

Fig. 1. Architecture of the Encoder and Multiplexer entire system

There are 4 video signals and 4 audio signals input. The
video and audio encoder compress the video and audio signal
into ES (Elementary Stream) and PES (Packetized Elementary
Stream), then store them in DDR. DMA pushes the ES and
PES to TS multiplexer.

The firmware run on CPU calculates the PES header for
video. One frame of video is packetized to one PES packet.
The firmware also generates PSI&SI for multiplexer.

So, the function of our multiplexer is multiplexing 4 video
ES and 4 audio PES into 1 single TS.

Commonly, decoder design must refer to the T-STD. It
means that TS must satisfy the constraint of T-STD; otherwise,
it will not be decoded correctly. The structure of the T-STD is
shown in figure 2.

This work is partially supported by grants from the Chinese National Nat
ural Science Foundation under contract No.61171139 and No. 61035001, and
National High Technology Research and Development Program of China (86
3 Program) under contract No.2012AA011703.

For all data streams, there are TBs (transport buffer) for
them. TB is for storing relevant TS packets. The size of TB is
512 bytes. For video, it is drained by the speed of Rxn.

Rxn = 1.2Rmax[profile, level], Rmax[profile, level] is related
to the profile and level of video signal.

For audio, TB is drained by the speed of 2106bit/s. For
system data, TB is drained by the speed of 1106bit/s.

Fig. 2. T-STD structure

For video, there are 2 buffers follow TB, called MB
(multiplexing buffer) and EB (elementary buffer). MB is for
PES and EB is for ES. Sometimes, the MB and EB can be
taken as one buffer. We can call it MB&EB. The data in
MB&EB is taken out by frame.

For audio, there is only one buffer follow TB, called B
(main buffer). It is for PES. The data in B is taken out by frame.

The TB shall never overflow. The MB&EB and B shall
neither overflow nor underflow [2]. Overflow will cause data
loss and underflow will cause jitter in display terminal.

To avoid overflow and underflow of the buffers in decoder,
the video TS packets, audio TS packets and NULL packets
shall be evenly distributed in the transport stream.

The scheduling strategy is the key point of multi-programs
TS multiplexer design.

III. HARDWARE ARCHITECTURE AND

IMPLEMENTATION

The architecture of our design is shown in figure 3. The
functions of the modules are as follows:

AHB slave: this module is the bridge between AHB bus
and multiplexer;

Video TS generator: packetize video ES to TS packets and
monitor the state of video buffers in T-STD;

Audio TS generator: packetize audio PES to TS packets
and monitor the state of audio buffers in T-STD;

PSI/SI generator: packetize PSI and SI to TS packets;

PCR generator: generate PCR and packetize it to TS
packets; provide STC to Video TS generator and Audio TS
generator;

NULL generator: generate NULL packets;

Scheduler: schedule the TS output and control the output
bitrate.

Because there is no buffer in Scheduler module, it does not
need to overwrite the PCR in the output path.

The Video TS generator modules and Audio TS generator
modules connect to AHB slave module with asynchronous
FIFO and connect to Scheduler module with synchronous
FIFO. There is an asynchronous block RAM in the PSI/SI
generator module for store PSI and SI. Firmware writes this
RAM through AHB slave module.

The PSI/SI generator module, PCR generator module,
NULL generator module connect to the Scheduler module with
FIFO interface but not FIFO. This can simplify the design of
Scheduler module and lower the coupling of entire multiplexer.

Fig. 3. Top architecture of the multiplexer

In order to solve the problem mentioned in Section 2，we
have designed a schedule strategy which is based on the state
information of T-STD buffers. We have inserted T-STD
monitors in Video TS generators and Audio TS generators. The
T-STD monitors can imitate the behavior of the buffers in T-
STD and then figure out the data size of the T-STD buffers.
The architectures of the Video TS generator and Audio TS
generator are shown in figure 4 and figure 5, respectively.

For video signals, firmware calculates ES length, PES
header length, DTS and PES header, then push them into
FIFOs in Video TS generators. Because CPU and multiplexer
work in different clock domains, we use asynchronous FIFO to
transfer data.

Video controller controls other sub modules in Video TS
generator to packetize ES to TS.

Fig. 4. Structure of Video TS generator;

Fig. 5. Structure of Audio TS generator

There are 2 T-STD monitors in Video TS generator:
MB&EB monitor and TB monitor. The MB&EB monitor
imitates the behavior of video MB&EB in T-STD and the TB
monitor imitates the behavior of video TB in T-STD.

The structure of MB&EB monitor is shown in figure 6. The
Info analyzer provides DTS and PES length to MB&EB
monitor. The req signal means that the DTS and PES length are
effective. It is sent by Video controller. When Info receiver
received req, it buffered DTS and PES length to DTS&len
FIFO, and then returns ack to Video controller.

Fig. 6. Architecture of MB&EB monitor

The monitor utilizes the DTS and PES length to imitate the
behavior of MB&EB in T-STD.

The pes_fifo_ren is the read enable signal of Video PES
FIFO. MB&EB state equal to the data size of the MB&EB in
T-STD.

There is a counter in the monitor. The value of this counter
indicates the data size of the video MB&EB in T-STD. We call
this value VMEB_DATA_SIZE.

The FSM of the monitor is shown in figure 7.

Fig. 7. FSM of monitor

The DTS, PES length and pes_fifo_ren signal determines
the MEB_SIZE value by the way as follow:

if((pes_fifo_ren == 1) && (state == Decode))

VMEB_DATA_SIZE=VMEB_DATA_SIZE+1

-PES_length;

else if(pes_fifo_ren == 1)

VMEB_DATA_SIZE = VMEB_DATA_SIZE + 1;

else if(state == Decode)

VMEB_DATA_SIZE=VMEB_DATA_SIZE–PES_length;

else

VMEB_DATA_SIZE = VMEB_DATA_SIZE;

(pes_fifo_ren == 1) means the TS packetizer is reading the
Video PES FIFO.

The TB monitor use simple up-down counter to check the
fullness of the corresponding TB in T-STD [3].

The structure of Audio TS generator is fundamentally same
as Video TS generator. The difference is that Audio TS
generator package PES into TS without any need to generate
PES.

By the structure described above, Video TS generators and
Audio TS generators can provide important information to
scheduler for scheduling.

Video TS generator provides:

1) Data size of video MB&EB in T-STD (hereafter called
VMEB_DATA_SIZE);

2) Data size of video TB in T-STD (hereafter called
VTB_DATA_SIZE);

3) DTS of the frame which is being packetized now
(hereafter called VIDEO_DTS);

4) Data size of the Video TS FIFO (hereafter called
VFIFO_DATA_SIZE).

Similarly, Audio TS generator provides:

1) Data size of audio B in T-STD (hereafter called
AB_DATA_SIZE);

2) Data size of audio TB in T-STD (hereafter called
ATB_DATA_SIZE);

3) DTS of the frame which is being packetized now
(hereafter called AUDIO_DTS);

4) Data size of the Audio TS FIFO (hereafter called
AFIFO_DATA_SIZE).

The factors listed above are all necessary for our
multiplexing strategy.

Our multiplexing strategy used by Scheduler module is
shown in figure 8. Before that, we first give an illustration of
the meanings of the variable in figure 8.

PCR and PSI/SI need to be output at regular time intervals.
For PCR, AVS and MPEG-2 system standard specifies the
maximum time interval, and DVB recommends that the time
interval between two successive occurrences of PCRs for each
program should not exceed 40 ms [4]. DVB also specifies
minimum repetition rates for PSI/SI tables.

In our design, the 4 programs share the same PCR and we
use counters based on STC to control the repetition rates for
PCR and PSI/SI. In our multiplexing strategy, PCR has the
highest priority, PSI/SI take the second place.

For video and audio signals, there are some requirements
for output as follows:

VMEB_DATA_SIZE < T1. If this requirement is not met,
it means that the MB&EB for this video signal in T-STD is
almost full. As a result, we should not output TS packets of this
video signal until requirements were met.

VTB_DATA_SIZE < T2. If this requirement is not met, it
means that the TB for this video signal in T-STD is almost full.
As a result, we should not output TS packets of this video
signal until requirements were met.

VFIFO_DATA_SIZE > T3. If this requirement is not met,
it means that the TS data in Video TS FIFO is not enough for a
TS packet. So we cannot output TS packets of this video signal
until requirements were met.

AB_DATA_SIZE < T4. If this requirement is not met, it
means that the B for this audio signal in T-STD is almost full.
As a result, we should not output TS packets of this audio
signal until requirements were met.

ATB_DATA_SIZE < T5. If this requirement is not met, it
means that the TB for this audio signal in T-STD is almost full.
As a result, we should not output TS packets of this audio
signal until requirements were met.

AFIFO_DATA_SIZE > T6. If this requirement is not met,
it means that the TS data in Audio TS FIFO is not enough for a
TS packet. So we cannot output TS packets of this audio signal
until requirements were met.

T1, T2, T3, T4, T5, T6 are threshold values. In our design,
these threshold values can be adjusted as needed. They should
be configured before multiplexer start by firmware.

Fig. 8. Multiplexing strategy

The scheduler module use this strategy to decide which
kind of TS packet (include video, audio, PCR, PSI/SI and
NULL) should be output in next TS packet period. The choice
will be made in current TS packet period.

IV. RTL SIMULATION

We have verified the function of our design by RTL
simulation.

This multiplexer is designed as a hardware module linked
on AHB bus in SOC. The input signals are controlled by
firmware. So we have designed a test bench imitating the
process of firmware. The corresponding data is generated in
advance by software and stored in files.

The process of the test bench is shown in figure 9.

In our process, we assume that frame rates of the 4 video
signals are same and frame rates of the 4 audio signals are
same.

We save the result of RTL simulation as TS file. The TS
file can be decoded and displayed normally.

And we have synthesized our design by ISE XST. We
assume the target device is xc6vlx760-2ff1760. The device
utilization summary is shown in table 1.

Fig. 9. Process of test bench

V. CONCLUSION

Our design can support 4 programs, multiplexing them into
one single transport stream. And the architecture can be easily
expanded to support more programs.

The key point of our design is using T-STD monitors to
control TS output for avoiding overflow and underflow of
buffers in decoder.

This design has AHB slave interface, so it can be easily
transplant to other SOC systems. Meanwhile, we can also take
the asynchronous FIFO as input channel directly.

And we have synthesized our design by ISE XST. We
assume the target device is xc6vlx760-2ff1760. The device
utilization summary is shown in table 1.

TABLE I. SYNTHESIZE RESULT

Device Utilization Summary(estimated values)
Logic Utilization Used Available Utilization

Number of slice
registers

6265 948480 0%

Number of slice
LUTs

11482 474240 0%

Number of fully used
LUT-FF pairs

4524 13223 34%

Number of bonded
IOBs

101 1200 8%

Number of
BUFG/BUFGCTRLs

3 32 9%

REFERENCES
[1] GB/T 20090.1-2006. “Information Technology, Advanced Audio and

Video Standard, Part 1: System ”

[2] Simin HE, Wei ZHAO, Wen GAO. “Even Multiplexing Problem —
Abstraction, Algorithm, and Applications”.

[3] Jae-Gon Kim, Hankyu Lee, Jinwoong Kim and Joo-Hong Jeong.
“Design and implementation of an MPEG-2 transport stream multiplexer
for HDTV satellite broadcasting”. IEEE Transactions on Consumer
Electronics, Vol. 44, No. 3, pp. 676, August 1998.

[4] ETSI TR 101 154, “Digital Video Broadcasting (DVB); Implementation
guidelines for the use of MPEG-2 Systems, Video and Audio in satellite,
cable and terrestrial broadcasting applications” V1.4.1, July 2000.

[5] Si J. Kim, Jong-Seog Koh. “An implementation of MPEG-2 transport
stream multiplexer”. Signal Processing Systems, 1999.

[6] Hee-Beom Kang, Choon-Sik Jung, Hyoung-Gil Kim, Sang-Keun Lee,
Cheul-Hee Hahm. “MPEG-2 transport stream multiplexer for recoding”.
Consumer Electronics, 2005. ICCE. 2005 Digest of Technical Papers.

[7] David K. Fibush. “Timing and synchronization using MPEG-2 transport
streams”. SMPTE Journal, pp. 395-400, July 1996.

	Introduction
	II. FUNCTIONAL REQUIREMENTS AND DESIGN ISSUE
	III. HARDWARE ARCHITECTURE AND IMPLEMENTATION
	IV. RTL SIMULATION
	V. CONCLUSION
	References

