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Abstract—We propose a cloud based image contrast enhance-
ment framework, in which the context-sensitive and context-free
contrast is improved via solving a multi-criteria optimization
problem. Specifically, the context-sensitive contrast enhancement
is based on the unsharp masking of the input and edge-preserving
filtered images, while the context-free contrast enhancement is
achieved by the sigmoid transfer mapping. The parameters in
the optimization process are determined with the reference to
the image that has a similar content and better enhancement
quality in the cloud. The image complexity from the free
energy based brain theory and the “surface” quality statistics is
collaboratively optimized to infer the parameters. Experimental
results demonstrate that the proposed technique can efficiently
create visually-pleasing enhanced images with the guidance image
from cloud.

Index Terms—contrast enhancement, cloud image, unsharp
masking, sigmoid transfer mapping

I. INTRODUCTION

Contrast enhancement plays an important role in image
processing and computer vision applications. Due to poor
illumination conditions, low-quality, low-cost imaging sensors
and users’ inexperience and operation errors, images and
videos may not have proper visibility details for the captured
scene. Contrast enhancement targets to eliminate these prob-
lems, and thereby produces a visually-pleasing and informative
image.

To enhance the contrast and improve the visual quality,
various post-processing algorithms have been proposed. Gen-
erally, these methods can be classified into two categories, the
context-sensitive and context-free approaches [1]. The context-
sensitive approach aims to enhance the local contrast that
is dependent on the rate of change in intensity. It is noted
that context-sensitive techniques are prone to artifacts such
as noise and ringing, as enhancement of these undesirable
details will very likely introduce annoying distortions [2].
Another branch of study is the context-free approach, which
adopts a statistical method such as manipulating the pixel
histogram. For example, in the well-known histogram modifi-
cation (HM) framework, the gray-levels are spread to generate
a more uniform distribution. Basically, the HM methods in-
clude histogram equalization (HE) [3] and its derivatives such
as brightness preserving bi-histogram equalization (BBHE)
[4], dualistic sub-Image histogram equalization (DSIHE) [5],
recursive mean-separate histogram equalization (RMSHE) [6],
recursive sub-image histogram equalization (RSIHE) [7], and
histogram modification framework (HMF) [8]. Another HM
technique, the sigmoid transfer based brightness preserving

(STBP) algorithm [9], was proposed to produce visually-
pleasing enhanced image according to the close relationship
between the third order statistic (skewness) and the surface
quality [10].

A good contrast enhancement algorithm should highlight
indiscernible image details properly and suppress visual ar-
tifacts simultaneously. In light of this, we propose an uni-
fied contrast enhancement framework based on differentiation
of context-sensitive and context-free models, where context
sensitive model tends to enhance the local contrast from
the difference of neighbouring pixels, while the context-free
approach modifies statistical pixel distributions regardless of
the local properties. Regarding to contrast enhancement, the
following issues are addressed: 1) balancing between the
noise robustness and sharpness enhancement; 2) balancing
between local and global contrast enhancement. To address
these, we propose a multi-criteria optimization framework, in
which the input image, unsharp masking of input and edge-
preserving filtered images, and the sigmoid transform version
are simultaneously considered in optimizing the enhanced
image.

Another contribution of this paper is to automatically derive
the contrast enhancement level from the image in cloud.
The cloud is characterized by a large quantity of resources,
storage and data [11]. Cloud based image processing has
demonstrated its power in a variety of applications, such
as image coding [12], deionising [13] and restoration [14].
Basically, in contrast enhancement it is difficult to choose the
best parameters that will achieve visually-pleasing quality. The
commonly-used manual parameter tuning is impractical for
most applications as it is labor intensive and time-consuming,
and more importantly, only automatic operations are feasible
in many meaningful situations. We address this problem by
taking advantages of the cloud. With the advance of cloud
computing, a huge number of images are stored and easily
accessed. In the cloud, there is a high probability of finding
very similar images, which are captured at the same location at
different view, angles and focal length. Some of these images
may even get enhanced by a manual software with a good
contrast. We investigate the automatical contrast estimation
problem with the free energy based brain theory [15] and
surface quality [10], which infer the enhancement level in the
way of feature matching, and consequently the parameters in
the proposed algorithm are tuned adaptively to achieve better
visual quality.



Fig. 1. Illustration of the unified contrast enhancement framework.

The remainder of this article is organized as follows. Sec-
tion II presents the proposed unified framework for contrast
enhancement. In Section III, we investigate the cloud based
contrast enhancement level derivation. The effectiveness of our
algorithm is demonstrated by comparison of its visual quality
in Section IV. Finally, Section V concludes this paper.

II. CONTRAST ENHANCEMENT FRAMEWORK

In this section, we demonstrate the unified contrast en-
hancement framework by leveraging the context-sensitive and
context-free contrast enhancement methods. The advantages
of these two approaches are incorporated with a combined
strategy, which generates more visual-pleasing images. As
illustrated in Fig. 1, the input image Ix is firstly filtered by an
edge-preserving filter, which smooths away detailed textures
while retaining sharp edges. The unsharp masking of the input
and filtered images are systematically combined for context-
sensitivity contrast enhancement. The high contrast images of
similar content from cloud can adaptively estimate the control
parameters, α, β and γ, while the final enhanced image Ie is
produced with the determined parameters. More details of the
proposed scheme will be discussed in the rest of this section.

A. Context-Sensitive Approach

The unsharp masking is applied as the context-sensitive
enhancement approach, which enhances the local contrast ac-
cording to the rate of intensity change. The general framework
of unsharp masking can be formulated as follows,

Iu = h(I ′x) + g(Ix − I ′x), (1)

where Ix represents the input image and I ′x represents cor-
responding low-pass filtered (such as Gaussian smoothing)
image. Both h and g can be defined as a linear or non-linear
functions [2]. Here we define,

h(x) = x, (2)

and
g(x) = ω · x, (3)

where ω is a control factor that determines the enhancement
level.

In general, the output of the filtering process can be regarded
as fitting a particular model to the input [16], and the residuals
are represented as follows,

Ir = Ix − I ′x. (4)

The residual signals represented by Ix − I ′x generally contain
both detailed image structure and image noise, while only
detailed image structure should be enhanced. This motivated
us to firstly filter the image with an edge-preserving filter,
following by an unsharp masking process. This leads to an
edge enhanced image Iu, as illustrated in Fig. 1. In this paper,
we apply the bilateral filter [17], as it possesses well edge-
preserving ability, and is also easy to construct and calculate
[18].

It is noted that only applying the edge-preserving filter
would give rise to detailed information loss. In light of this,
we perform unsharp masking to both the input image Ix and
If . As such, the balance between the noise robustness and
sharpness enhancement can be achieved.

B. Context-Free Approach

The context-free component is from the recently proposed
sigmoid transfer mapping [9]. The authors of [10] found that
human eyes use skewness or a similar measure of histogram
asymmetry in judging the surface quality, and an image
with a long positive tail in histogram (namely a positively
skewed statistics) tends to appear darker and glossier. This
motivates the usage of the sigmoid mapping to improve the
surface quality. The mapping function Ms(·) and its associated
enhanced image Is are obtained by a four-parameter logistic
function as follows,

Is =Ms(Ix,φφφ) =
φ1 − φ2

1 + exp(− (Ii−φ3)
φ4

)
+ φ2, (5)

where φφφ = {φ1, φ2, φ3, φ4} are parameters to be determined.
To derive these parameters, four points denoted as (yi, xi),
i = {1, 2, 3, 4} should be firstly fixed prior to the transfer pro-
cess. Three fixed pairs are fixed as follows, (y1, x1) = (0, 0),
(y2, x2) = (255, 255), and (y3, x3) = ( lmax

2 , lmax

2 ), where lmax

is the maximum intensity value of the input image. Another
pair (x4, y4) can be freely set up to control the shape. For
example, x4 can be fixed as a certain number and y4 can be
freely adjusted. The optimal control parameters φφφ are obtained
by searching for the optimized value via the minimization of
the following objective function,

φφφo = argmin
φφφ

4∑
i=1

∣∣∣xi −Ms(yi,φφφ)
∣∣∣. (6)

Sigmoid mapping curves with different control parameters are
illustrated in Fig. 2. After obtaining the optimal parameters
φφφo, the image can be enhanced as,

Is = max(min(Ms(Ix,φφφo), 255), 0), (7)

where max and min operations are used to clip Is’s pixel
values into the range of [0, 255].



Fig. 2. Illustration of the sigmoid mapping.

C. Unified Contrast Enhancement Framework

Both the context-sensitive and context-free approaches have
their own advantages in optimizing the contrast quality, and
therefore in this paper we formulate the contrast enhancement
as a multi-criteria optimization problem. Basically, the goal
is to find an image that is close to the enhanced images as
desired, but also preserves the input image structure from Ix.
Therefore, the general framework is defined as follows,

min{D(Ie − Ix) + α ·D(Ie − Iu)+
β ·D(Ie − Iy) + γ ·D(Ie − Is)},

(8)

where α, β and γ are parameters that control the contrast
enhancement level. Suppose x, y, e, f, u and s are the image
signals for Ix, Iy , Ie, If Iu and Is, respectively. To obtain
an analytical solution, D is defined as the squared sum of the
Euclidean norm, which is formulated as follows,

D(x, y) =
∑
i

(xi − yi)
2. (9)

Combining Eqns. (8) and (9), the quadratic optimization
problem is derived as follows,

e =argmin
e
{D(e, x) + α ·D(e,u)+

β ·D(e, y) + γ ·D(e, s)}
=argmin

e
{(e− x)T (e− x) + α · (e− u)T (e− u)

+ β · (e− y)T (e− y) + γ · (e− s)T (e− s),

(10)

resulting in,

e =
x + α · u + β · y + γ · s

1 + α+ β + γ
. (11)

Different α, β and γ will create different enhancement
results. For example, when γ goes to infinity Ie converges to a
global enhanced image, and when α, β and γ turns to zero, Ie
preserves the input image. Therefore, various levels of contrast
enhancement can be created by these three parameters.

In Fig. 3, we demonstrate the contrast enhancement results,
including the input image, the HMF output [8], and the
proposed scheme with α = 0.5, β = 0.5 and γ = 0.5. It is

very obvious that the enhanced images produced by HMF can
create visual artifacts. As the proposed scheme incorporates
both the advantage of the context-free and context-sensitive
approaches, it appears more visual-pleasing. In Fig. 3 (d)(e)(f),
the middle enhanced image Iu, Iy , and Is are demonstrated. It
is observed that the unsharp masking of the input image can
preserve more details, but the undesired noise is introduced
as well. While the unsharp masking of the filtered image only
enhances the edge information, and detailed information is
eliminated. Moreover, we observe that better surface quality
is achieved with the sigmoid transfer in Fig. 2, as shown in
Fig. 3 (f). As a matter of fact, the enhancement level is upper
bounded by the image that has the highest contrast among Iu,
Iy , and Is, and lower bounded by the input image Ix.

III. CLOUD BASED CONTRAST ENHANCEMENT

In this section, an appropriate cloud image is used to help
the contrast enhancement level derivation. Generally, a large
number of near and partial duplicate images in the cloud
are captured at the same location, but with different scale,
orientation, and focus length. They have similar content as
well as semantic meanings, and some of these images are
post-processed to achieve better contrast and visual quality.
For instance, 300 million photos are uploaded to Facebook
every day. The images are captured with different devices
and processed by different softwares, and many of them are
correlated highly. A typical example is the landmark image,
which is easy to be used to retrieve many highly correlated
images in cloud [19]. In the following, the near duplicate
image from cloud is also referred as the guidance image.

Generally, enhancing an image to a perfect contrast is
difficult, as quality assessment of contrast enhancement is still
a non-trivial task. Thanks to the availability of a large number
of images from cloud, which make the automatical contrast
enhancement possible. Here we make an assumption that some
images from cloud have the perfect enhancement quality, as
many of them are hand-picked and processed. The task is
to derive the contrast enhancement level that best matches
the guidance image. There are various methods for image
matching. With registered image pairs, the image matching can
be also formulated as a full image quality assessment problem
to compute the distance between the image pairs. However,
as the image from cloud may have different orientation and
scale, it is difficult to directly apply a method here. Motivated
by the design philosophy of reduced-reference image quality
assessment [20], [21], features that can summary the whole
image are extracted for matching. Moreover, in [22], [23]
it is revealed that the image complexity and information is
somehow related to the image quality, which motivated us to
explore the contrast level derivation with recent findings on
brain theory.

A. Free Energy Based Brain Theory

The free energy theory, which was recently introduced by
Friston et al. in [15] and [24], tries to explain and unify
several brain theories in biological and physical sciences about
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Fig. 3. Comparison of the enhancement results. (a) Input image; (b) HMF output; (c) Proposed scheme with α = 0.5, β = 0.5 and γ = 0.5; (d) Iu; (e)
Iy ; (f) Is.

human action, perception and learning. The basic premise of
the free energy based brain theory is that the cognitive process
is manipulated by an internal generative model (IGM). The
human brain can actively infer predictions of the meaningful
information of input visual signals and avoid the residual
uncertainty in a constructive manner.

Assuming that the internal generative model M for visual
perception is parametric based, and this implies that the human
brain perceives scenes by adjusting the parameter vector v.
Given an input image I , its ‘surprise’ (determined by entropy)
is evaluated by integrating the joint distribution P (I, v) over
the space of model parameters v

− logP (I) = − log

∫
P (I, v)dv. (12)

A dummy term Q(v|I) is integrated into both the denominator
and numerator in Eq. (12), which can be rewritten as follows,

− logP (I) = − log

∫
Q(v|I)P (I, v)

Q(v|I)
dv, (13)

where Q(v|I) is an posterior distribution of the model param-
eters given the input image signal I . This can be regarded
as the posterior approximation to the true posterior of the
model parameters P (v|I) in the cognitive process. Another
interpretation is that when we perceives the image I or
when adjusting the parameters v of Q(v|I) to search for
the optimal explanation of I , the brain will minimize the
discrepancy between the approximate posterior Q(v|I) and the
true posterior P (v|I).

By applying Jensen’s inequality, from Eqn. (13) we derive

that,

− logP (I) ≤ −
∫
Q(v|I) log P (I, v)

Q(v|I)
dv, (14)

and the free energy is defined as follows,

F(v) = −
∫
Q(v|I) log P (I, v)

Q(v|I)
dv. (15)

The free energy based brain theory reveals that the human
visual system (HVS) cannot fully process all of the sensation
information and tries to avoid some surprises with uncertain-
ties, and these uncertainties can be regarded as free-energy.
In [25], the free energy is approximated to be the entropy of
prediction residuals plus the model cost. In practice, positive
contrast change renders high quality images by highlighting
the visibility details, which produces more informative content.
When perceiving the positive contrast image, the additional
informative content will make the image more difficult to
describe, as in general the HVS has stronger description ability
for low-complexity images than high-complexity versions. The
prior information in the cloud is able to predict the appropriate
free energy of a visual-pleasing image with a good contrast,
which is very efficient in deriving the contrast enhancement
levels.

In practice, being aware of the computational complexity
issue, in this work the free energy is characterized by the
entropy of residuals after low-pass filtering [25]. For an image
Ic from the cloud, it is defined as follows,

C(Ic) = E(Ic − I ′c), (16)

where E denotes the entropy function.



Fig. 4. The relation between the parameter value and C.

(a) (b)

Fig. 5. Surface quality comparison of two synthetic images of Michelangelo’s
St Matthew sculpture with the same mean luminance [10]. (a) skewness: -0.62;
(b)skewness: -0.13.

The relationship between the contrast enhancement level
and C is demonstrated in Fig. 4. It is noted that α = β = γ and
these parameters are represented by the x-axis. It is observed
that the free-energy C is increasing monotonously with the
contrast level, which indicates that it has strong description
ability for contrast. Moreover, it is noted that C is bounded by
the enhanced image with the highest contrast, as discussed in
last paragraph of Section II-C.

B. Surface Quality Statistics

In [10], it is discovered that the human observers use
skewness, or histogram asymmetry to judge the surface quality.
In Fig. 5, it is observed that the right image appears darker and
glossier than the left one, and moreover, the skewness of the
left image is lower than the right one. Skewness is a measure
of the asymmetry of a distribution; and it indicates the balance
between the positive and negative tails. Furthermore, a possible
neural mechanism was proposed to explain the skewness from
physiology in human brains, which includes on-center and off-
center cells and an accelerating nonlinearity to compute the
subband skewness.

C. Contrast Level Derivation From Cloud

Based on the analysis of free-energy and surface quality
statistics, two features are extracted from the cloud image
to guide the contrast level derivation. Instead of pixel-wisely
or patch-wisely comparing image pairs, two global features
achieve high efficiency in dimension reduction, and also
provide good accuracy in summarizing the contrast strength.
Therefore, contrast matching can be converted to the optimiza-
tion problem based on the cloud image Ic and the enhanced
image Ie as follows,

min ||C(Ic)− C(Ie)||+ λ||S(Ic)− S(Ie)||, (17)

where the function S represents the skewness of the input
image, and parameter λ balances the magnitude and impor-
tance between the complexity measure and skewness measure.
Referring to the optimal value in the optimization process of
Eqn. (17) as L(Ic, Ie), finding the parameters is based on
solving,

(α∗, β∗, γ∗) = argmin
α,β,γ

L(Ic, Ie). (18)

Practically, as context-sensitive contrast is increasing
monotonously with the image complexity, and the context-
free contrast increases with the surface quality, we perform
a simpler search to obtain the best enhancement level, which
first performs a grid search in a given range of parameters
followed by a binary search within the reduced ranges.

IV. EXPERIMENTAL RESULTS

In this section, experiments are conducted to verify the
proposed cloud based contrast enhancement scheme. To be
general, images from the Berkeley database [26] are used for
comparison, and traditional HE and the popular HM methods
[8] are used for comparison to demonstrate the effectiveness
of the proposed technique. The guidance images from the
database are firstly manually enhanced to an appropriate level
to examine the scheme. In Figs. 6-9, the guidance images, the
enhanced guidance images by subjects, the input image and
the images that are automatically enhanced by the proposed
scheme are demonstrated.

As given in Figs. 6-9 (c), the HE produces excessively
enhanced unnatural looking images. This results from the large
backward-difference of the equalized histogram. Though HMF
targets at solving this problem, it is lack of enhancing the
details, such as the bottom of Fig. 8 (f). Moreover, as shown
in Fig. 7 (f), the HMF output produces clearly artifacts. In
comparison, our model not only appropriately enhances the
detailed information, but also generates much glossier images,
being enabled by the sigmoid transfer mapping.

Though our scheme blindly estimates the contrast level by
matching the features of the guidance image, the enhancement
level of our scheme can well match that of the guidance image.
Moreover, it is noted that in this experiment, a guidance image
is captured not only at a similar location, but also with different
content (just with similar semantic information), such as in
Fig. 7.
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Fig. 6. Results comparison. (a) Guidance image; (b) Enhanced guidance image; (c) HE output; (d) Input image; (e) Enhanced image; (f) HMF output.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results comparison. (a) Guidance image; (b) Enhanced guidance image; (c) HE output; (d) Input image; (e) Enhanced image; (f) HMF output.

V. CONCLUSION

The novelty of this paper lies in that we propose a u-
nified framework by leveraging the context-sensitivity and
context-free contrast enhancement methods, and automatically
choosing the enhancement degree with the guidance of the
matched cloud image. The optimization problem is formulated
as generating an image that is close to the input, local contrast
enhanced, as well as the global contrast enhanced images.

In particular, with the utility of the cloud image, the blind
estimation process of the contrast enhancement level is pro-
posed based on the theory of free-energy principle and surface
quality. Experimental results demonstrate the effectiveness of
the scheme in image enhancement applications.
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Fig. 8. Results comparison. (a) Guidance image; (b) Enhanced guidance image; (c) HE output; (d) Input image; (e) Enhanced image; (f) HMF output.
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Fig. 9. Results comparison. (a) Guidance image; (b) Enhanced guidance image; (c) HE output; (d) Input image; (e) Enhanced image; (f) HMF output.
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