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Abstract—Numerous neuroscience experiments have sug-
gested that the cognitive process of human brain is realized
as probability reasoning and further modeled as Bayesian
inference. It is still unclear how Bayesian inference could
be implemented by neural underpinnings in the brain. Here
we present a novel Bayesian inference algorithm based on
importance sampling. By distributed sampling through a deep
tree structure with simple and stackable basic motifs for any
given neural circuit, one can perform local inference while
guaranteeing the accuracy of global inference. We show that
these task-independent motifs can be used in parallel for fast
inference without iteration and scale-limitation. Furthermore,
experimental simulations with a small-scale neural network
demonstrate that our distributed sampling-based algorithm,
consisting with our theoretical analysis, can approximate
Bayesian inference. Taken all together, we provide a proof-
of-principle to use distributed neural networks to implement
Bayesian inference, which gives a road-map for large-scale
Bayesian network implementation based on spiking neural
networks with computer hardwares, including neuromorphic
chips.

Keywords-Bayesian inference; distributed neural network;
importance sampling; neural implementation

I. INTRODUCTION

Our brain can represent and process information with

uncertainty [1]. It has been suggested by numerous phys-

iological and psychological experiments that the cognitive

behavior is a process of probabilistic reasoning based on

Bayesian inference [2], [3] . From the macroscopic view-

point, Bayesian model has been successfully used to ex-

plain these cognitive behaviors [3], [4]. However, from the

microscopic perspective, it remains unclear how Bayesian

inference is implemented in neuronal circuits.

According to recent studies, many researchers have de-

voted to proposing different neural circuits to represent

and implement inference of Bayesian models. These neural

circuits are mostly based on the inference algorithm of belief

propagation (BP). Rao [5], [6] derived the inference equation

of hidden Markov models (HMMs) with BP and demon-

strated that the differential physical equation of recurrent

neural circuits is consistent with the inference equation of

HMMs, where a sum-logs is used to approximate a log-

sum. Beck and Pouget [7] went a future step to solve

the approximation problem and came up with a precise

equivalence relation. Similarly, Ott et al. [8] and Yu et

al. [9] built the relationship between inference equation of

Markov random fields and the dynamics of recurrent neural

networks with BP. The above works based on equivalence

proof are only appropriate for small-scale Bayesian infer-

ence. Another important approach is to implement BP with

neural circuits directly. George [10] and Hawkins rewrote

BP of tree-structured Bayesian model with five equations

and designed five basic neural circuits to implement these

equations respectively. Steimer et al. [11] and Litvak et al.

[12] generalized the result to inference of graphical models.

These neural circuits are very complex and require each

group of neurons to realize distinct and complex functions.

Moreover, these inference methods need multiple iterations

with slow speed.

In summary, these previous studies focus on how neu-

ral network implements inference for the simple Bayesian

model with a small number of variables. In addition, they

are difficult to be generalized as they are task-specific

[13]. Therefore it is necessary to propose a new algo-

rithm which could perform rapid inference for large-scale

Bayesian model and be implemented by simple neural

circuits efficiently. Here we propose a distributed sampling-

based algorithm for Bayesian inference that can be easily

implemented in neural networks. In particular, our algorithm

takes advantage of the four principles of neural system:

scalability with a large number of neurons; hierarchy with

multiple layers; locality with computation done within a

relatively small group of neurons; parallelizability with

computations distributed simultaneously.

In short, our main idea of the sampling-based inference

is to perform sampling on a deep tree-structured model.

With the benefit of tree structure, the global inference

problem is converted to the local inference problem. As

a result, we are able to design sampling-based inference

algorithm for local inference problem while guaranteeing

the accuracy of global inference. On the local level, we

introduce importance sampling to perform inference, which

utilizes massive number of samples to compute in parallel

and calculates without iteration. With this strategy of trading

space for time, inference would be implemented rapidly. We

theoretically prove that Bayesian inference can be approx-

imated in such a hierarchical structure with a distributed

fashion. Experimental simulations of multi-cue information

demonstrate that the proposed algorithm can achieve the

adequate accuracy for Bayesian inference.
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Figure 1. Neural network model represented by Bayesian network. (a) An
illustration of typical neural network model with computation done by hier-
archical and localized structures. Here is a three-layer (represented by A, B,
C for each layer) network with input evidence in three difference sources
(indicated by green, yellow, purple, respectively). Each triangle represents
a neuron. Each circle represents a group of neurons for local computation
(the Winner-Take-All circuit, for instance). Then, C1

1 represents the neuron
No. 1 of the group No. 1 in the first layer C. (b) Represented Bayesian
network corresponding to the neural network in (a) with a tree-structure
(left) can be decomposed into distributed basic network motifs (right). The
basic network in each box is composed of a parent node and a group of
children nodes. (c) The basic network motif with one parent node A and a
group of children nodes Bi, (i = 1, . . . , n). In (b) and (c), the evidence are
represented by Ii, (i = 1, 2, 3), and each symbol (A,B,C), corresponding
to the blue circle of neurons in (a), represents a group of neurons for local
computation.

The rest of this paper is organized as follows. We first

introduce the sampling-based inference algorithm in section

II, and then give some theoretical analysis of inference in

section III. We show the experimental results in section IV

and conclude in section V.

II. BAYESIAN INFERENCE WITH IMPORTANCE SAMPLING

In this section, we consider how to realize inference for

Bayesian models. In particular, we consider a network of

Bayesian model with tree-structure that has been studied

intensively [14]. Several inference methods, such as belief

propagation (BP) [14] and Markov chain Monte Carlo

(MCMC) [15], can get accurate results with the benefit

of tree structure. In addition, the tree-structured Bayesian

models could represent other non-tree structured Bayesian

models since they could be converted to tree-structured

Bayesian models by combining some variables together [14].

A. Decomposition of global inference to local inference

Inference of a tree-structured Bayesian model is to infer

the state of the root node according to the states of leaf nodes

by calculating posterior probability and the maximum of a

posterior probability. To be specific, considering a generic

neural network typically used for modeling in Fig. 1a, one

can represent it with a tree-structured Bayesian network as

in Fig. 1b, the root node is A and the leaf nodes are I1, I2
and I3. Supposing that we have known the prior probability

P (A) and conditional probabilities P (B1|A), P (B2|A),
P (C1|B1), P (C2|B1), P (C3|B2), P (I1|C1), P (I2|C2),
P (I3|C3). Since the states of the leaf nodes are also known,

one can express the inference problem as follows:

• computing posterior probability P (A|I1, I2, I3)
• maximum a posterior (MAP) estimation

arg max
A

P (A|I1, I2, I3).
As seen in Fig. 1b, the beliefs propagate from bottom

to top when we infer the state of the root node. One

can decompose the whole network into a set of simple

subnetworks. Each subnetwork is able to receive beliefs from

the children nodes and pass its belief to the parent nodes.

Note that these simple subnetworks share similar structures

and consist of a set of basic network motifs as in each

box of Fig. 1b. In the end, this is the only type of most

basic network motif with one parent node and a group of

children nodes (shown in Fig. 1c). One only need to design

a suitable algorithm to perform inference for this most basic

network motif. Then the implementation of all basic motifs

can be combined to perform inference of the whole network

problem from bottom to top.

B. Inference with importance sampling

Importance sampling is a method to calculate the proba-

bility by sampling from a simple distribution (a distribution

from which the samples are easy to be generated, e.g. in

terms of a Gaussian distribution or a uniform distribution)

rather than the actual distribution to be computed [16]. Shi

and Griffiths [17] used importance sampling to calculate

the conditional expectation of some function over a discrete

random variable x given y:

E (f (x) |y) =
∑
x

f (x)P (x|y) =
E(f(x)P (y|x))P (x)

E(P (y|x))P (x)

≈∑
xi

f
(
xi
) P

(
y|xi

)
∑
xi

P(y|xi)
, xi ∼ P (x),

(1)

where xi ∼ P (x) shows that xi is drawn from the distri-

bution P (x). Note that x can be seen as the parent node

of y. Equation (1) converts conditional expectation to the

weighted combination of normalized conditional probabili-

ties with samples drawn from the prior probability, which

means we can calculate the expectation of a parent node

with samples of its children nodes.

Equation (1) can be generalized to perform inference of

the basic motif in Fig. 1c. The inference problem is to

calculate posterior probability P (A|I1, I2, ..., In) , where

I1, I2, ..., In represent evidence variables of B1, B2, ..., Bn

respectively. By using importance sampling, this problem

can be converted to:

P (A|I1, I2, ..., In)
=

∑
B1,...,Bn

P (A|B1, ..., Bn)P (B1, ...Bn|I1, ...In)

≈∑
i
P
(
A|Bi

1, B
i
2, ..., B

i
n

) P
(
I1,I2,...In|Bi

1,Bi
2,...,Bi

n

)
∑
i

P(I1,I2,...In|Bi
1,Bi

2,...,Bi
n)

=
∑
i
P
(
A|Bi

1, B
i
2, ..., B

i
n

) P
(
I1|Bi

1

)
P
(
I2|Bi

2

)
...P

(
In|Bi

n

)
∑
i

P(I1|Bi
1)P(I2|Bi

2)...P(In|Bi
n)

Bi
1, B

i
2, ..., B

i
n ∼ P (B1, B2, ..., Bn) .

(2)

Equation (2) can be used for further inference when A is

a child node of other nodes. Therefore, this is the most
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Figure 2. Basic models for justification of conditional independence
assumptions. (a) A simple Bayesian network for Theorem 1 and Set 1
assumptions, where X expresses a parent node or ancestor nodes of Y1,
Y2. (b) A multi-hierarchy Bayesian network for Theorem 2 and Set 2
assumptions.

fundamental building block of computation for any size of

network with multiple groups of evidence and layers to be

distributed in parallelism.

Note that the number of children nodes n in the generic

motifs is arbitrary. Therefore, by using Equation (2), we can

perform inference for any tree-structured Bayesian model

by decomposing it into a set of basic motifs as in Fig. 1b

(right). Here we illustrate the process with the example of

calculation for the model in Fig. 1b (left), we have the

posterior probability calculated by Equation (3) (next page):

Here I (A = a1) is an indicative function, which equals to

1 when A = a1 holds and 0 elsewise. Ci
1, C

i
2 ∼ P (C1, C2),

Cj
3 ∼ P (C3), B

k
1 , B

k
2 ∼ P (B1, B2), A

l ∼ P (A). In this

example, the inference Equation (3) is based on a series of

conditional independence assumptions:

Set 1: B1⊥C3|C1, C2, B1⊥B2|C3, B1⊥Cj
3 |Ci

1, C
i
2, and

B1⊥B2|Cj
3 ,

Set 2: C1, C2⊥I3|I1, I2 and C1, C2⊥C3|I3.

We will give the theoretical analysis of these conditional

independence assumptions in the next section.

Correspondingly, MAP estimation

argmax
A

P (A|I1, I2, I3) is to find the state that maximize

the posterior probability, which can be calculated easily

given the posterior probability P (A|I1, I2, I3).

C. Calculation of prior probabilities based on importance
sampling

The inference algorithm above should meet the require-

ment that the samples are drawn from the prior probabil-

ities. However, we don’t know all the prior probabilities.

Considering Equation (3), there are four prior probabilities

which should be known in advance, including P (C1, C2),
P (C3), P (B1, B2) and P (A), but we only know P (A)
and some conditional probabilities. An algorithm should be

designed to calculate all the prior probabilities. Interestingly,

importance sampling could also be used to calculate the prior

probabilities:

P (B1, B2) =
∑
A

P (A,B1, B2) ≈
1

M

M∑
i=1

P
(
B1, B2|Ai

)
. (4)

Here Ai is drawn from the distribution P (A). Then the

posterior probabilities of P (C1, C2) and P (C3) could be

calculated based on P (B1, B2). For example, P (C3) is

calculated by:

P (C3) =
∑
B2

P (B2, C3) ≈
1

M

M∑
i=1

P
(
C3|Bi

2

)
. (5)

All together, our proposed inference algorithm based on

importance sampling could perform fast inference for tree-

structured Bayesian model. The strategy of local inference

is comparable to the idea of local computation done by

some neural circuit motifs, such as cortical minicolumn in

different sensory modalities in neuronal system.

III. THEORETICAL ANALYSIS OF CONDITIONAL

INDEPENDENCE ASSUMPTIONS

Our proposed inference algorithm above includes a series

of conditional independence assumptions. Now we will

prove that they do not effect the inference accuracy and the

results will converge to the exact solution as the sample size

and the network layers go to infinity. The following theo-

rems resolve these two sets of assumptions in Equation (3)

respectively.

Theorem 1. Considering a Bayesian network as in
Fig. 2a, we define that:

f1 (Y 1, Y2) =
∑

Z1,Z2

P (Y 1, Y2|Z1, Z2)P (Z1|T1)P (Z2|T2) ,

f2 (Y1, Y2) =
M∑
i=1

N∑
j=1

P
(
Y 1, Y2|Zi

1, Z
j
2

) P
(
T1|Zi

1

)
M∑
i=1

P
(
T1|Zi

1

) P
(
T2|Zj

2

)
N∑

j=1
P
(
T2|Zj

2

) ,

Z
i
1 ∼ P (Z1) , Z

j
2 ∼ P (Z2) ,

then for arbitrary small number ε,

lim
M→∞
N→∞

P (|f2 (Y 1, Y2)− f1 (Y 1, Y2)| < ε) = 1. (6)

The proof of Theorem 1 is provided in Appendix A. The-

orem 1 means that f2 (Y1, Y2) is an estimator of f1 (Y1, Y2)
and converges to f1 (Y1, Y2) with probability 1 when M
and N tend to infinite. Based on this theorem, it is easy

to show that assumptions Set 1 will not affect the accuracy

of our algorithm. Now note that the inference process in

Equation (3) can be expressed as a series of four steps g1
to g4 below:

g1 =
∑
A

I (A = a1)
∑

B1,B2

P (A|B1, B2)
∑

C1,C2,C3

{ (7)

P (C1, C2|I1, I2)P (C3|I3)P (B1, B2|C1, C2, C3) } ,
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P (A = a1|I1, I2, I3) (3)

=
∑

A,B1,B2,C1,C2,C3

I (A = a1)P (A,B1, B2, C1, C2, C3|I1, I2, I3)

=
∑

A,B1,B2,C1,C2,C3

I (A = a1)P (C1, C2, C3|I1, I2, I3)P (B1, B2|C1, C2, C3)P (A|B1, B2)

=
∑

A,B1,B2,C1,C2,C3

I (A = a1)P (C1, C2|I1, I2, I3)P (C3|C1, C2, I3)P (B1, B2|C1, C2, C3)P (A|B1, B2)

≈
∑

A,B1,B2,C1,C2,C3

I (A = a1)P (C1, C2|I1, I2)P (C3|I3)P (B1, B2|C1, C2, C3)P (A|B1, B2)

≈
∑

A,B1,B2,C1,C2,C3

I (A = a1)P (C1, C2|I1, I2)P (C3|I3)P (B1|C1, C2)P (B2|C3)P (A|B1, B2)

≈
∑

A,B1,B2

I (A = a1)P (A|B1, B2)

⎛
⎝∑

i

P
(
B1|Ci

1, C
i
2

) P
(
I1, I2|Ci

1, C
i
2

)
∑
i

P
(
I1, I2|Ci

1, C
i
2

)
⎞
⎠

⎛
⎜⎜⎝
∑
j

P
(
B2|Cj

3

) P
(
I3|Cj

3

)

∑
j

P
(
I3|Cj

3

)

⎞
⎟⎟⎠

≈
∑

A,B1,B2

I (A = a1)P (A|B1, B2)
∑
i

∑
j

P
(
B1, B2|Ci

1, C
i
2, C

j
3

) P
(
I1, I2|Ci

1, C
i
2

)
∑
i

P
(
I1, I2|Ci

1, C
i
2

)
P

(
I3|Cj

3

)

∑
j

P
(
I3|Cj

3

)

≈
∑
A,i,j

I (A = a1)
∑
k

P
(
A|Bk

1 , B
k
2

) P
(
Ci

1, C
i
2, C

j
3 |Bk

1 , B
k
2

)

∑
k

P
(
Ci

1, C
i
2, C

j
3 |Bk

1 , B
k
2

) P
(
I1, I2|Ci

1, C
i
2

)
∑
i

P
(
I1, I2|Ci

1, C
i
2

)
P

(
I3|Cj

3

)

∑
j

P
(
I3|Cj

3

)

≈
∑
l

I
(
Al = a1

)∑
k

P
(
Bk

1 , B
k
2 |Al

)
∑
l

P
(
Bk

1 , B
k
2 |Al

) ∑
i,j

P
(
Ci

1, C
i
2, C

j
3 |Bk

1 , B
k
2

)

∑
k

P
(
Ci

1, C
i
2, C

j
3 |Bk

1 , B
k
2

) P
(
I1, I2|Ci

1, C
i
2

)
∑
i

P
(
I1, I2|Ci

1, C
i
2

)
P

(
I3|Cj

3

)

∑
j

P
(
I3|Cj

3

) .

g2 =
∑
A

I (A = a1)
∑

B1,B2

P (A|B1, B2)
∑

C1,C2,C3

{ (8)

P (C1, C2|I1, I2)P (C3|I3)P (B1|C1, C2)P (B2|C3) } ,

g3 =
∑
A

I (A = a1)
∑

B1,B2

{
P (A|B1, B2)

(∑
i

P
(
B1|Ci

1, C
i
2

)
(9)

P
(
I1, I2|Ci

1, C
i
2

)∑
i
P
(
I1, I2|Ci

1, C
i
2

)
⎞⎟⎠
⎛⎜⎜⎝∑

j

P
(
B2|Cj

3

) P
(
I3|Cj

3

)
∑
j

P
(
I3|Cj

3

)
⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

C
i
1, C

i
2 ∼ P (C1, C2) C

j
3 ∼ P (C3) ,

g4 =
∑
A

I (A = a1)
∑

B1,B2

P (A|B1, B2)
∑
i

∑
j

{ (10)

P
(
B1, B2|Ci

1, C
i
2, C

j
3

) P
(
I1, I2|Ci

1, C
i
2

)∑
i
P
(
I1, I2|Ci

1, C
i
2

) P
(
I3|Cj

3

)
∑
j

P
(
I3|Cj

3

)
⎫⎪⎪⎬⎪⎪⎭

C
i
1, C

i
2 ∼ P (C1, C2) C

j
3 ∼ P (C3) .

The transformation from Equation (7) to Equation (8)

includes the conditional independence assumptions

B1⊥C3|C1, C2, B1⊥B2|C3. Equation (9) is the importance

sampling result of Equation (8). From Equation (9) to

Equation (10), we use the conditional independence

assumptions B1⊥Cj
3 |Ci

1, C
i
2, B1⊥B2|Cj

3 . With theorem

1, it is easy to show that for arbitrary small number ε,

lim
M→∞
N→∞

P (|g4 − g1| < ε) = 1, where M and N are the

sample sizes of Ci
1, Ci

2 and Cj
3 respectively.

Therefore, this result shows that assumptions Set 1 have

no influence on the accuracy of our algorithm. We treat

Equation (10) as a generalized importance sampling result

of Equation (7). In a biological neural system this inference

process can be implemented by neurons with simple oper-

ations. This result is universal for different models as long

as it has a structure as in Fig. 2a.

Theorem 2. Considering a Bayesian network as Fig. 2b
shows, the prior probabilities P (X) and conditional prob-
abilities P (Zt|Yt,n) are random for t = 1, 2. Similarly, the
conditional probabilities P (Yt,1|X) and P (Yt,i+1|Yt,i) are
random and non-zero for i = 1, 2, ..., n − 1 and t = 1, 2.
Then we conclude that Z1⊥Z2 when n tends to infinite.

The proof is provided in Appendix B. This theorem

states that the dependence between Z1 and Z2 decreases

as the hierarchy increases and will converge to zero when
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the hierarchy tends to infinite. In practice, we found that

variables Z1 and Z2 are already approximately indepen-

dently when the hierarchy has two layers in our numerical

experiments. Assumptions Set 2 can be justified by Theorem

2. It is easy to show that the variables C1, C2 and C3 are

approximately independent, as a result, P (C1, C2, C3) =
P (C1, C2)P (C3). Then we can get:

P (C1, C2|I1, I2, I3) (11)

=

∑
C3

P (C1, C2, C3, I1, I2, I3)∑
C1,C2,C3

P (C1, C2, C3, I1, I2, I3)

=

∑
C3

P (C1, C2)P (C3)P (I1, I2|C1, C2)P (I3|C3)∑
C1,C2

P (C1, C2)P (I1, I2|C1, C2)
∑
C3

P (C3)P (I3|C3)

=
P (I1, I2, C1, C2)P (I3)

P (I1, I2)P (I3)
= P (C1, C2|I1, I2) ,

P (C3|C1, C2, I3) =
P (C1, C2, C3, I3)∑

C3

P (C1, C2, C3, I3)
(12)

=
P (C1, C2)P (C3)P (I3|C3)∑

C3

P (C1, C2)P (C3)P (I3|C3)
= P (C3|I3) ,

which proves C1, C2⊥I3|I1, I2, C1, C2⊥C3|I3 as in Set 2

assumptions. In the perspective of probabilistic graphical

models, C1, C2 and C3 are not independent. However, in

a biological neural system, this independence can be hold

approximately since there are multiple layers organized in a

hierarchy fashion. For instance, the ventral visual pathway

starts from the retina to the visual cortex and reaches inferior

temporal cortex [18]. An intuitive understanding is that if the

neurons representing C1, C2 affect the neurons representing

C3, it should pass belief to C3 through A. As the path

becomes longer enough, the effects will become smaller and

close to zero.

With these two theorems together, we have proved that

all the conditional independence assumptions raised in our

algorithm do not affect the inference accuracy.

IV. SIMULATIONS

We test the accuracy of our proposed algorithm by using

a classical problem of the sensory integration of multi-cue

information. Certainly one can test it with more complex

cognitive tasks with a large scale of hierarchical Bayesian

model, which is beyond the current study.

Human brain could receive cues from multiple sensory

modalities and then integrate them in an optimal way, which

is called multi-cue integration. To be specific, when we

hear a sound from an object, look at it and touch it si-

multaneously, we receive auditory, visual and somatosensory

information. We consider a 3-cue integration problem, which

could be modeled by a two-layer Bayesian network (shown

in Fig. 3a). Here S represents the location of the stimulus,

SH , SV and SA denote visual, haptic, and auditory cues

respectively. Supposing that P (S) is a uniform distribution,

Haptic
Visual
Haptic+Visual (theory)
Haptic+Visual (simulation).

Haptic
Visual

Haptic+Visual+Auditory 

(theory)
Haptic+Visual+Auditroy

(simulation)

.

Auditory

Postion

P
ro

b
a

b
ili

ty
P

ro
b

a
b

ili
ty

(b)

(a)

Figure 3. Simulations of multi-cue integration. (a) A two-layer Bayesian
model for haptic-visual-auditory integration (left). (right) The result of our
method compared to the theoretical value. Theoretical result indicated in
red, and simulation indicated in blue. σ2

SH
= 64, σ2

SV
= 16 and σ2

SA
=

36. Each point is averaged over 10 trials of different results of sampling.
(b) Similar to (a) but for haptic-visual integration. σ2

SH
= σ2

SV
= 16.

P (SH |S), P (SV |S) and P (SA|S) are three different Gaus-

sian distributions with the same mean value S and different

variances σ2
SH

, σ2
SV

and σ2
SA

. Then we can use importance

sampling to infer the state of S given SH , SV and SA:

P (S = s|SH , SV , SA) =
∑
S

I (S = s)P (S|SH , SV , SA)

=
∑
i
I (Si = s)

P(SH,SV ,SA|Si)∑
i

P(SH,SV ,SA|Si)
Si ∼ P (S) .

(13)

The neural circuit to implement inference for this problem is

based on probabilistic population coding and two plausible

neural operations: normalization and linear combinations.

There are 1000 Poisson spiking neurons which encode

stimuli. The distributions of these Poisson spiking neurons

are determined by prior probabilities P (S). The tuning

curve of the neuron i is proportional to the conditional

probability P (SH , SV , SA|Si). Then the inhibitory neurons

are used to get normalization. If we use yi to express the

individual firing rate of Poisson spiking neuron i and Y
to express the total firing rate as Y =

∑
i

yi, we can get

E (yi/Y = n) = P (SH ,SV ,SA|Si)∑
i
P (SH ,SV ,SA|Si)

. The normalized results

are linearly combined with their synaptic weights I (Si = s)
to get the inference result P (S = s|SH , SV , SA).

Simulation results are shown in Fig. 3a, where the model-

ing results obtained by our proposed method with important

sampling fit the theoretical value very well. A previous

study [17] implemented Bayesian inference with importance

sampling for 2-cue integration. Here we illustrate the case

of 2-cue integration for the completeness as in Fig. 3b.
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V. CONCLUSION AND DISCUSSION

Theoretically, it is important to understand how the neural

network performs inference in a Bayesian fashion. In this

study, we proposed the sampling-based inference algorithm,

which is a distributed algorithm for large-scale Bayesian

model. We showed by theoretical analysis and simulations

that our method can generate the accurate inference.

A. Comparison to previous work

Shi and Griffiths [17] have shown that the inference of

chain Bayesian network with importance sampling can be

implemented by neural networks. Our work is an extension

to more general Bayesian network. Besides, here we proved

the convergence of the sampling-based inference method,

which is not discussed in [17].

For any non-tree structured feedford network, one can

transfer it into a more general tree structured network [3]

by combining those relevant variables together at the cost

of greater state space [14]. Thus more neurons are needed

to express all the states so that one can speed up inference

by avoiding temporal iterations with more neurons sampled

over space but in a parallel and local fashion.

B. Distributed computation

Distributed Bayesian inference has become a rich research

direction [19]. In addition, it has been suggested that human

collective intelligence follows distributed Bayesian inference

[20]. With the great advancements of hardware devices,

including neuromorphic chips in recent years, we expect

that our method can be implemented in these hardwares.

The hardware devices also provide the base for large-scale

distributed Bayesian inference, which is the main feature of

our algorithm.

Bayesian computations have been implemented on hard-

wares according to specific tasks [21]. However, most of

the previous studies are to split the data into small parts,

then perform the inference for each part independently, and

combine the results in the end [22]. Such an approach

violates the principle that each separate part/area in the brain

should exchange information with the others. The inference

algorithm we proposed takes advantage of this principle,

specifically, each part of the neural network can exchange

information with neighboring networks (parent and children

networks), which may shed new light on neural plausible

implementation of distributed Bayesian inference.

There are different representations of distribution depen-

dent on the context. For instance, in terms of sensory inputs

in our brain, different resources, such as visual, auditory,

haptic inputs, and etc., are processed individually by the

corresponding sensory organs. Even in each sensory organ,

different features are processed by different types of neurons.

In the retina, there are many types of retinal ganglion cells

to compute different visual features, such as contrast, spatial

and temporal frequencies, speed, orientation, direction, etc.

[23]. In neuromorphic engineering, one could represent these

different features by some hard-coded circuits, for example,

a circuit of event pixels based on the dynamics visual sensor

of silicon retina for objection motion [24]. Such feature

specific circuits could be furthermore distributed in hardware

to implement complex tasks.

Here we only conducted some simple experiments of

multi-cue integration. Although most of the current neu-

roscience experiments are conducted for relatively sim-

ple cognition behaviors, some more complex tasks have

been proposed, for example hierarchical decision-making

task [25]. We are making some efforts in this direction in

larger-scale of simulations and hardware implementations.

APPENDIX A.

PROOF OF THEOREM 1

Proof of Theorem 1. We rewrite f2 (Y1, Y2) as

f2 (Y 1, Y2) (14)

=
M∑
i=1

N∑
j=1

P
(
Y 1, Y2|Zi

1, Z
j
2

) P
(
T1|Zi

1

)
M∑
i=1

P
(
T1|Zi

1

) P
(
T2|Zj

2

)
N∑

j=1
P
(
T2|Zj

2

)
Zi

1 ∼ P (Z1), Zj
2 ∼ P (Z2)

=

1
MN

M∑
i=1

N∑
j=1

P
(
Y 1, Y2|Zi

1, Z
j
2

)
P
(
T1|Zi

1

)
P
(
T2|Zj

2

)
1

MN

M∑
k=1

M∑
l=1

P
(
T1|Zk

1

)
P
(
T2|Zl

2

) ,

Zi
1 ∼ P (Z1) , Zj

2 ∼ P (Z2), Zk
1 ∼ P (Z1) Zl

2 ∼ P (Z2)

The expectation and variance take the form

E
(
P
(
Y 1, Y2|Zi

1, Z
j
2

)
P
(
T1|Zi

1

)
P
(
T2|Zj

2

))
(15)

=
∑
Zi
1

∑
Z

j
2

{
P
(
Y 1, Y2|Zi

1, Z
j
2

)
P
(
T1|Zi

1

)
P
(
T2|Zj

2

)
P
(
Z

i
1

)
P
(
Z

j
2

)}

=
∑
Z1

∑
Z2

P (Y 1, Y2|Z1, Z2)P (T1, Z1)P (T2, Z2)

= f1 (Y 1, Y2)P (T1)P (T2) ,

E
(
P
(
T1|Zk

1

)
P
(
T2|Zl

2

))
(16)

=
∑
Zk
1

∑
Zl
2

P
(
T1|Zk

1

)
P
(
T2|Zl

2

)
P
(
Z

k
1

)
P
(
Z

l
2

)
= P (T1)P (T2) ,

V ar
(
P
(
Y 1, Y2|Zi

1, Z
j
2

)
P
(
T1|Zi

1

)
P
(
T2|Zj

2

))
(17)

=
∑
Z1

∑
Z2

{
P (Y 1, Y2|Z1, Z2)

2
P (T1|Z1)

2
P (T2|Z2)

2

·P (Z1)
2
P (Z2)

2
}
− f1(Y 1, Y2)

2
P (T1)

2
P (T2)

2
,

V ar
(
P
(
T1|Zk

1

)
P
(
T2|Zl

2

))
(18)

=
∑
Z1

∑
Z2

P (T1|Z1)
2
P (T2|Z2)

2
P (Z1)P (Z2)− P (T1)

2
P (T2)

2
.

Since f1 (Y 1, Y2)P (T1)P (T2) /P (T1)P (T2) = f1 (Y 1, Y2), it is

easy to show that for arbitrary small number ε,

lim
M→∞
N→∞

P (|f2 (Y 1, Y2)− f1 (Y 1, Y2)| < ε) = 1.
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APPENDIX B.

PROOF OF THEOREM 2

Lemma 1. Supposing that A1, A2, ..., An is randomly generated matrix with

the equality that row (Ai) = col (Ai+1) for i = 1, 2, ..., n. The arbitrary

element in A1, A2, ..., An is in [ε, 1− ε], where ε is a small number. Besides,

the sum of arbitrary row of arbitrary matrix A1, A2, ..., An is 1. We define that:

Ck =

(
k∏

i=1
AT

i

)T

, we can conclude that all elements in a special col of Ck

will tend to a same value when k tends to infinity. Proof of theorem 2 It is

easy to get that Ci = AiCi−1 if i ≥ 2 and Ci = Ai if

i = 1. Besides, col (Ci) = col (A1), row (Ci) = row (Ai). Suppos-

ing that Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai,1,1 ai,1,2 ... ai,1,n(i)

ai,2,1 ai,2,2 ... ai,2,n(i)

.

.

.

.

.

.

.

.

ai,m(i),1 ai,m(i),2 ... ai,m(i),n(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci,1,1 ci,1,2 ... ci,1,n(1)

ci,2,1 ci,2,2 ... ci,2,n(1)

.

.

.

.

.

.

.

.

ci,m(i),1 ci,m(i),2 ... ci,m(i),n(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where m (i) and n (i)

are function of i which show the row and col of the matrix

Ai. We use ĉi,j to express the vector of all the elements in

col j of matrix Ci. Then max (ĉi,j) represents the maximum

element in col j of matrix Ci and min (ĉi,j) represents the

minimum element in col j of matrix Ci. Now for arbitrary

ci+1,s,t, where s ∈ (1, 2, ...,m(i + 1)) , t ∈ (1, 2, ..., n(1)), we can

get:

ci+1,s,t = ai+1,s,1ci,1,t + ai+1,s,2ci,2,t + .... + ai+1,s,n(i+1)ci,m(i+1),t.

(19)

As
n(i+1)∑
j=1

ai+1,s,j = 1, the equation above can be treated as

the weighted average of col t of matrix Ci. By using the

condition that the arbitrary element of A1, A2, ..., An is in

[ε, 1− ε], we can get that:

(1− ε)min (ĉi,t) + εmax (ĉi,t) ≤ ci+1,s,t (20)

≤ εmin (ĉi,t) + (1− ε)max (ĉi,t) ,

which is equivalent to

0 ≤ max (ĉi+1,t)−min (ĉi+1,t) ≤ (1− 2ε) (max (ĉi,t)−min (ĉi,t)) .

(21)

The equation above can be rewritten as

0 ≤ max (ĉi+1,t)−min (ĉi+1,t) ≤ (1− 2ε)
i
(max (ĉ1,t)−min (ĉ1,t)) .

(22)

If we calculate the limit for both sides as i tends to infinite,

we can get

lim
i→∞

(max (ĉi+1,t)−min (ĉi+1,t)) = 0, (23)

which means all elements in a special col of Ci will tend to

a same value.

Proof of Theorem 2. Supposing that Ut,1 (t = 1 or 2) is a

matrix with its element in row i and col j expressed as

ut,1,i,j and ut,1,i,j = P (Yt,1 = Yt,1(j)|X = X (i)), where Yt,1(j)

stands for jth element of variable Yt,1 and X (i) stands

for ith element of variable X. Similarly, (t = 1or2 and

s = 1, 2, , n) is a matrix with its element in row i and col j ex-

pressed as Ut,s and ut,s,i,j = P (Yt,s = Yt,s(j)|Yt,s−1 = Yt,s−1(i)).

Moreover, Ut,n+1 (t = 1or2) is a matrix with its element

in row i and col j expressed as ut,n+1,i,j and ut,n+1,i,j =

P (Zt,1 = Zt,1(j)|Yt,n = Yt,n(i)). Then

P (Z1) =
∑
X

∑
Y1,1

∑
Y1,2

...
∑
Y1,n

P (X)P (Y1,1|X)P (Y1,2|Y1,1) (24)

...P (Y1,n|Y1,n−1)P (Z1|Y1,n)

=
∑
X

P (X)
∑
Y1,1

P (Y1,1|X)
∑
Y1,2

P (Y1,2|Y1,1)

...
∑
Y1,n

P (Y1,n|Y1,n−1)P (Z1|Y1,n)

=
∑
X

P (X) f (X,Z1).

Similarly,

P (Z2) =
∑
X

∑
Y2,1

∑
Y2,2

...
∑
Y2,n

P (X)P (Y2,1|X)P (Y2,2|Y2,1) (25)

...P (Y2,n|Y2,n−1)P (Z2|Y2,n)

=
∑
X

P (X) g (X,Z2),

P (Z1, Z2) =
∑
X

∑
Y1,1

∑
Y1,2

...
∑
Y1,n

∑
Y2,1

...
∑
Y2,n

{P (X)P (Y1,1|X)

(26)

...P (Y1,n|Y1,n−1)P (Z1|Y1,n)P (X)P (Y2,1|X)

· P (Y2,2|Y2,1) ... P (Y2,n|Y2,n−1)P (Z2|Y2,n)}
=
∑
X

P (X)
∑
Y1,1

P (Y1,1|X)
∑
Y1,2

P (Y1,2|Y1,1)

...
∑
Y1,n

P (Y1,n|Y1,n−1)P (Z1|Y1,n)
∑
Y2,1

P (Y2,1|X)

·
∑
Y2,2

P (Y2,2|Y2,1) ...
∑
Y2,n

P (Y2,n|Y2,n−1)P (Z2|Y2,n)

=
∑
X

P (X) f (X,Z1) g (X,Z2),

where f (X = i, Z1 = j) is the same as the ith row and jth

col of matrix
n+1∏
i=1

U1,i, and g (X = i, Z2 = j) is same as the ith

row and jth col of matrix
n+1∏
i=1

U2,i. When n goes to infinite,

we can get that all elements in a special col of
n+1∏
i=1

U1,i or
n+1∏
i=1

U2,i tend to a same value by using lemma 2. It means

that f (X,Z1) and g (X,Z2) are independent of X respectively.

In other words f (X,Z1) ≈ f1 (Z1) and g (X,Z2) ≈ g1 (Z2). As a
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result, when n goes to infinite, we can get:

P (Z1, Z2) =
∑
X

P (X) f (X,Z1) g (X,Z2) =
∑
X

P (X) f1 (Z1) g1 (Z2)

= f1 (Z1) g1 (Z2)

=

(∑
X

P (X) f1 (Z1)

)(∑
X

P (X) g1 (Z2)

)
=

(∑
X

P (X) f (X,Z1)

)(∑
X

P (X) g (X,Z2)

)
= P (Z1)P (Z2) .

(27)
This means Z1⊥Z2 as n tends to infinite.
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