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ABSTRACT

Traditional communication systems usually suffer from the

threshold effect when channel signal-to-noise ratio (CSNR)

fluctuates unpredictably in wireless and mobile scenarios.

The SoftCast scheme, however, provides graceful quality

transition in wide CSNR range. In SoftCast, input image is

decorrelated by a transform and modulated directly to a dense

constellation for transmission, leaving out the conventional

quantization, entropy coding and channel coding. A key point

of SoftCast is that the transmission power needs to be allo-

cated among the transform coefficients unequally, according

to the energy of coefficients. Importantly, the energy diver-

sity used to guide power allocation should be shared between

the sender and the receiver for correct decoding. This paper

addresses the power distortion optimization problem, intro-

ducing a new adaptive chunk division scheme to describe the

energy diversity among coefficients. A concrete algorithm is

developed to determine the chunk boundaries that achieve op-

timal transmission power usage. Experimental results show

that the proposed scheme can improve the performance of

the original SoftCast by 4∼8dB using a smaller number of

chunks.

Index Terms— wireless visual communication, SoftCast,

power allocation, transform coefficients modeling, optimiza-

tion

1. INTRODUCTION

Communication system based on source and channel coding

generally requires the channel statistics to be known at the

time of encoding, in order to choose an appropriate coding

rate. If the actual channel quality falls below a threshold,

the decoding process tends to break down completely; if the

channel quality increases beyond that threshold, such system
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cannot provide further improvement in the quality of received

signal. This “threshold effect” brings great challenges for the

design of wireless and mobile communication system.

Recently, a scheme named SoftCast [1, 2, 3] was proposed

for wireless video. Unlike typical image or video coders that

compress input signal into a binary stream, SoftCast trans-

forms the image signal into a stream of real numbers from

which exact reconstruction is possible, leaving out the con-

ventional quantization and entropy coding. SoftCast also

abandons the conventional channel coding. Instead, it modu-

lates the number stream directly to a dense constellation for

transmission. The transmission in SoftCast is lossy in na-

ture and the noise level in the received numbers is commen-

surate with the channel signal-to-noise ratio (SNR). The most

prominent advantage of SoftCast is that it provides graceful

quality transition in very wide channel SNR range and can

serve various clients of different channel conditions simulta-

neously, using the same transmitted signal in the air. For this

reason, SoftCast has attracted much research attention in re-

cent years [4, 5, 6, 7, 8, 9].

To achieve the best performance, SoftCast allocates trans-

mission power among the transform coefficients unequally,

by scaling each coefficient individually according to its en-

ergy. Importantly, the energy diversity used to guide power

allocation should be shared between the sender and the re-

ceiver via meta data for correct decoding. To limit the over-

head, SoftCast divides the coefficients into a set of chunks

of the same size and perform scaling at chunk level. This

turns out to be inefficient in terms of power usage. In this pa-

per, we address the problem by introducing an adaptive chunk

division scheme, exploiting the fact that the energy of trans-

form coefficients decay rapidly from low frequency to high

frequency. A concrete algorithm is developed to optimize the

chunk division boundaries, based on a mathematical formu-

lation of the overall performance of SoftCast. Experimental

results indicate that the proposed approach can improve the

performance of the original SoftCast scheme significantly.

The paper is organized as follows. Section 2 reviews

the SoftCast scheme. Section 3 and 4 describe the proposed

chunk division scheme and optimization algorithm. Section 5



shows experimental results and Section 6 concludes the paper.

2. REVIEW OF SOFTCAST

In a typical conventional visual communication system, as

shown in Fig. 1, input image is compressed into a stream of

bits, using transform, quantization and entropy coding. The

bit stream is protected by some channel code and mapped to a

constellation using quadrature amplitude modulation (QAM)

(e.g. BPSK, 4-QAM, 16-QAM and 64-QAM) for OFDM

transmission. In the case of 16-QAM, for example, four bits

are extracted from the stream each time and mapped to one of

the 16 candidate points in the constellation.
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Fig. 1. Diagram of conventional visual communication.

In SoftCast, as shown in Fig. 2, the compression stage is

solely a transform to decorrelate the image signal, producing

a stream of transform coefficient numbers. The transmission

stage scales each coefficient individually, applies a Walsh-

Hardmard Transform (WHT) to whiten the whole stream, and

modulates the resulted numbers directly to a dense constella-

tion (e.g. 64k-QAM) for OFDM transmission. A pair of real

numbers is extracted from the stream each time and mapped

to a point in the dense QAM constellation, using the two

numbers as the I- and the Q- components, respectively. The

scaling operation serves the purposes of power allocation and

unequal protection against channel noises. The scaling fac-

tors are determined by a power-distortion optimization (PDO)

procedure, and will be shared by the SoftCast sender and re-

ceiver via a limited number of meta data.
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Fig. 2. Diagram of the SoftCast scheme [1, 2, 3].

3. POWER-DISTORTION OPTIMIZATION FOR

SOFTCAST

Suppose x = (x1, x2, . . . , xN ) ∈ R
N are the coefficients to

transmit. To achieve efficient power usage, the encoder scales

each xi by a factor gi and sends out yi = gi · xi using a dense

constellation and OFDM1. After demodulation, the receiver

1The Walsh-Hardmard transform can be ignored during power-distortion

analysis, because the WHT transform of a white noise is still a white noise.

gets ŷi = yi + ni, where ni is additive white Gaussian noise

(AWGN) with variance σ2
n. The decoder gets an estimation

of xi by x̂i = ŷi/gi = xi + ni/gi.
In this process, the expected distortion in x̂i is Di =

E[(x̂i − xi)
2] = σ2

n/g
2
i . The expected transmission power

for sending xi is Pi = E[y2i ] = g2i · E[x2
i ]. Therefore,

Di · Pi = σ2
n · E[x2

i ]. To achieve optimal performance, the

transmission power is allocated among {xi} by

(P1): minimize
∑

i

Di s. t.
∑

i

Pi 6 Ptotal (1)

The problem is easily solved by setting ∂Di/∂Pi to a con-

stant. This eventually leads to Pi ∝
√

E[x2
i ] and gi ∝

(E[x2
i ])

−1/4
. Using the optimal power allocation, the total

distortion in the reconstructed image is

Dtotal =
∑

i

Di =
σ2
n

Ptotal

(

∑

i

√

E[x2
i ]

)2

(2)

Equivalently, we have

PSNRdB = c+ CSNRdB − 10log10

(

∑

i

√

E[x2
i ]

)2

(3)

with c = 10log10(255
2N). For a general signal x, We define

the “activity” of x by H(x) =
∑

i

√

E[x2
i ].

4. ADAPTIVE CHUNK DIVISION

4.1. Why Chunk Division in SoftCast?

Ideally, to achieve optimal power usage, the scaling factors gi
should be selected individually according to E[x2

i ]. However,

the receiver needs to know the scaling factors employed by

the sender, for the purpose of correct decoding. Of course,

sending one gi for each coefficient may introduce significant

communication overhead. Therefore, SoftCast groups the co-

efficients into a set of chunks and perform scaling at chunk

level. In other words, all the coefficients in a chunk choose

the same gi value, based on the mean coefficient energy (i.e.

E[x2
i ]) of that chunk. Fig. 3(a) illustrates the equal-size chunk

division approach in the original SoftCast scheme. Typically,

64 chunks are used so that a total of 64 meta data is sent to

the receiver via a reliable channel, to signal the value E[x2
i ]

of each chunk.

4.2. The Proposed Chunk Division Scheme

In this section, we consider the statistical characteristics of

DCT coefficients and propose a new chunk division approach,

for implementing efficient power allocation using a limited

number of metadata.

Suppose F (u, v) is the DCT domain representation of

two-dimensional image f(i, j). For most natural images, we
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Fig. 3. Chunk division for SoftCast power allocation. (a) The

scheme in original SoftCast. (b) The proposed scheme.

have the following observations (as shown in Fig. 3): (1)

The amplitude of F (u, v) decays rapidly from low frequency

region to high frequency region, as the value of ||(u, v)||2 =√
u2 + v2 increases; (2) The amplitude of F (u, v) varies with

the angle of frequency (i.e. θ = arctan(u/v)) only slightly.

Based on these observations, we propose a chunk divi-

sion scheme as illustrated by Fig. 3(b). To be precise,

for identifying the chunk boundaries, we introduce a vector

r = (r1, r2, . . . , rM ), satisfying 0 = r0 < r1 < · · · <
rM−1 < rM = 1. For an H × W image, the vector r de-

fines a set of similar rectangles R(ri) in the (u, v)-plane:

R(r) = {(u, v) | 0 6 u 6 r ·H, 0 6 v 6 r ·W} (4)

Based on these rectangles, we construct a set of chunks Ci,

letting chunk Ci contain the coefficients in R(ri) but not in

R(ri−1). The proposed strategy allows chunks with non-

equal sizes. For typical natural images, we prefer dense di-

vision at the up-left corner and sparse division at the bottom-

right corner of the transform coefficient plane.

4.3. Chunk Division Optimization

Given the total number (denoted by M ) of chunks to use, the

parameters ri, i = 1, 2, . . . ,M −1 should be optimized in or-

der to achieve the best possible transmission performance. In

this section, we propose an optimization algorithm for solving

the parameters {ri}.

According to Section 3, the problem is equivalent to find-

ing the optimal values of {ri} that minimize the data “ac-

tivity” H(F ) associated with the chunk division result con-

structed from {ri}. To facilitate the optimization, we define

TE(r) as the total energy of the coefficients in R(r):

TE(r) =
∑

(u,v)∈R(r)

F (u, v)2 (5)

and TN (r) as the total number of the coefficients in R(r):

TN (r) = # {(u, v)|(u, v) ∈ R(r)} (6)

With the aid of TE(r) and TN (r), the mean energy of coeffi-

cients in chunk Ci can be formulated by

E[F (u, v)|(u, v) ∈ Ci] =

√

TE(ri)− TE(ri−1)

TN (ri)− TN (ri−1)
. (7)

Therefore, the data activity associated with the chunk division

becomes:

H(F, {ri})

=

M
∑

i=1

{TN (ri)−TN (ri−1)} · E[F (u, v)|(u, v) ∈ Ci]

=

M
∑

i=1

√

(TN (ri)−TN (ri−1))(TE(ri)−TE(ri−1))

(8)

Here we explicitly include {ri} as arguments of H(·) in (8)

to reveal its dependence on the chunk division result. Note

that TE(r) and TN (r) can be calculated beforehand. For the

special case r0 = 0, we have TE(r0) = 0 and TN (r0) = 0.

Before presenting our algorithm, we note that the coeffi-

cients F (u, v) locate only at integer positions in the (u, v)-
plane. Therefore, we only need to consider a finite set of val-

ues V for parameter ri. Since an exhaustive full search for

joint optimization of all the M − 1 parameters can be compu-

tationally prohibitive, we employ a more practical iterative al-

gorithm. In this algorithm, each parameter is firstly initialized

by ri = i/M (and rounded to the nearest value in V), which

corresponds to equal division in each direction. Then, the al-

gorithm iteratively updates the parameters r1, r2, . . . , rM−1

one by one, with only one of them being optimized while the

others being fixed each time. This iteration process is termi-

nated when a maximum number of iterations is reached or

when the changes in H(F, {ri}) is small enough.

Now we consider the sub-problem of choosing the opti-

mal rk for a particular k, with all the other parameters {ri}i6=k

being fixed. This is to select a rectangle boundary that divides

the region R(rk+1) \ R(rk−1) into two chunks (i.e. Ck and

Ck+1) so that H(F, {ri}) is minimized. Since all the other

chunks are unchanged, the optimization problem is reduced

to choosing a value r ∈ V, subject to rk−1 < r < rk+1, that

minimizes

H
(k)
sub (r) =

√

(TN (rk+1)−TN (r))(TE(rk+1)−TE(r))

+
√

(TN (r)−TN (rk−1))(TE(r)−TE(rk−1)).

(9)

This problem can be easily solved.

5. EXPERIMENTAL RESULTS

In this section, we conduct some experiments to evaluate the

performance of the proposed chunk division scheme and com-

pare it with the equal-size chunk division scheme in the orig-

inal SoftCast. Lena, Peppers, Elaine, Barbara, Baboon and

Fishingboat (512× 512, gray) are used as test images.
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Fig. 4. Performance comparison between the proposed approach and the equal-chunk approach.

We first evaluate the benefit of employing chunk division

schemes, based on the formulation (3). The benefit is mea-

sured by the performance gain in the reconstruction quality,

compared with the case that all coefficients are transmitted

without chunk division (i.e. using the same scaling factor),

subject to the same channel SNR condition and the same

channel usage. The results are shown in Fig. 4.

We first check the results of the equal-size chunk division

scheme in original SoftCast. We can see that, as the num-

ber of chunks increases, a maximum chunk division gain of

15 ∼ 25dB can be achieved. The actual number of maxi-

mum chunk division gain is image dependent and reflects the

strength of correlation in the image signal. We also note that,

with equal-size chunk division, only about 40% and 70% of

the whole gain can be achieved by using 10 and 102 chunks,

respectively. To realize 95% of the whole gain, it requires

more than 104 equal chunks. Such huge number of chunks

(and meta data) is of course undesired. With the proposed

adaptive chunk division scheme, however, employing only 2,

4 or 12 chunks can achieve a performance comparable to the

original SoftCast using 102, 103 or 104 equal-size chunks.

Therefore, the proposed chunk division approach is very ef-

ficient in differentiating the transform coefficients with dif-

ferent energies. Fig. 7 illustrates the chunk division results,

produced by the proposed chunk division optimization algo-

rithm.

Fig. 6 summarizes the simulated performance of SoftCast

transmission using the proposed approach and the equal-size

chunk approach. These simulation results confirm the results

in Fig. 4 obtained from theoretical analysis in (3). Using as

few as 12 chunks, the proposed strategy can achieve much

better performance than the equal-size chunk approach using

256 chunks.

The reconstructed images are shown in Fig. 5 to provide

a subjective performance comparison between the proposed

approach and the equal-size chunk approach. Since the pro-



Fig. 5. Reconstructed images by the proposed chunk division and the equal-size chunk division at CSNR= 0dB. In this

experiment, whole-frame DCT is used for decorrelation. The columns from left to right: equal-size chunk division with 16

chunks, equal-size chunk division with 64 chunks, equal-size chunk division with 256 chunks, and the proposed chunk division

approach with 12 chunks.

posed approach works much better than the equal-size chunk

approach, we consider a relatively low channel quality, i.e.

CSNR= 0dB. In such case, the reconstruction images pro-

duced by the equal-size chunk approach are far from satisfac-

tory. They contains very annoying artifacts and noises, espe-

cially for the case of using 64 chunks or less. The reconstruc-

tion images by the proposed approach using 12 chunks only,

on the other hand, are much better. The noises remained in

the decoded images are almost invisible.

6. CONCLUSIONS AND DISCUSSIONS

SoftCast is a flexible scheme for visual communication in

wireless and mobile environment. It provides graceful qual-

ity degradation for very wide channel SNR range. A key issue

in SoftCast is that the transmission power should be allocated

among the coefficients unequally, according to the diversity in

the energy of coefficients. This paper proposed a new chunk

division scheme for SoftCast. Compared with the previous

approach in the original SoftCast, the proposed scheme can

describe the diversity in the energy of transform coefficients

more accurately, using very limited number of meta data.

Therefore, it facilitates efficient power allocation in SoftCast

transmission. Experimental results show that the proposed

method can improve both the objective and subjective quality

significantly.
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Fig. 7. Examples of chunk division results by the proposed scheme.
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