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Abstract

In the past decades, hundreds of saliency models have

been proposed for fixation prediction, along with dozens of

evaluation metrics. However, existing metrics, which are of-

ten heuristically designed, may draw conflict conclusions in

comparing saliency models. As a consequence, it becomes

somehow confusing on the selection of metrics in compar-

ing new models with state-of-the-arts. To address this prob-

lem, we propose a data-driven metric for comprehensive e-

valuation of saliency models. Instead of heuristically de-

signing such a metric, we first conduct extensive subjective

tests to find how saliency maps are assessed by the human-

being. Based on the user data collected in the tests, nine

representative evaluation metrics are directly compared by

quantizing their performances in assessing saliency map-

s. Moreover, we propose to learn a data-driven metric by

using Convolutional Neural Network. Compared with exist-

ing metrics, experimental results show that the data-driven

metric performs the most consistently with the human-being

in evaluating saliency maps as well as saliency models.

1. Introduction

Due to the booming of visual saliency models in the past

decades, model benchmarking has become a popular top-

ic in the field of computer vision (e.g., [3, 4, 7]). Usual-

ly, such large-scale benchmarking efforts require several e-

valuation metrics so as to simultaneously assess a saliency

model, especially a fixation prediction model, from multi-

ple perspectives. However, the performance of a saliency

model may change remarkably when different heuristically

designed metrics are used. As a consequence, it becomes

somehow confusing on which metrics should be used and

which models should be compared with in designing new

saliency models.

Actually, this phenomenon has already been noticed by

many researchers, and a lot of efforts have been spent on
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Figure 1. A representative question in the subjective tests. Multi-

ple subjects are asked to determine which estimated saliency map

(ESM) is more similar to the ground-truth saliency map (GSM).

refining existing metrics. For each metric, many variants

have been proposed to refine its performance, which, un-

fortunately, raise new problems. For example, the met-

ric Kullback-Leibler Divergence (KLD) can be comput-

ed as the relative entropy between: 1) saliency histogram-

s at recorded fixations and random points [3, 17, 18, 36];

2) saliency histograms at recorded fixations and shuffled

fixations randomly gathered from different images [29, 34,

38]; 3) saliency distributions over the estimated saliency

map (ESM) and the ground-truth saliency map (GSM) [32].

Note that the computation of KLD can also take either the

symmetric form [3] or the asymmetric form [32]. Without

knowing the implementation details of these variants, it be-

comes difficult to directly compare saliency models, even

though their performances on the same dataset have been

reported by using the same metric (e.g., KLD).

To address this problem, this paper proposes a data-

driven metric for comprehensive evaluation on saliency

models. Instead of heuristically designing such a metric, we

first conduct extensive subjective tests to find how saliency

maps are assessed by the human-being. As shown in Fig.

1, subjects are asked to determine which of the two ESMs

performs better in approximating the GSM (i.e., the fixa-

tion density map). By collecting 50,400 binary annotations

from 22 subjects, the performances of nine representative

metrics are now quantized, which enables the direct com-

parisons between metrics. Based on the user data, we also

propose to learn a comprehensive evaluation metric by us-
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ing the Convolutional Neural Network (CNN). Compared

with the heuristically designed metrics, experimental result-

s show that the data-driven metric performs the most con-

sistently with the human-being in evaluating saliency maps

as well as saliency models. Moreover, we also provide the

ranking lists of state-of-the-art saliency models by using the

learned CNN-based metric.

The main contributions of this paper include: 1) We col-

lect massive user data through subjective tests, which we

promise to release so as to facilitate the design of robust

and effective metrics for saliency model evaluation; 2) The

performances of nine representative metrics are quantized

for direct comparisons; 3) We propose a data-driven met-

ric for saliency model evaluation, which performs the most

consistently with the human-being.

2. A Brief Review of Evaluation Metrics

In the literature, there already exist many surveys of vi-

sual saliency models and evaluation metrics (e.g., [5, 8,

32]). Thus we only briefly introduce nine representative

metrics that are widely used in existing studies without e-

laborating their implementation details. Let S be an ESM

and G be the corresponding GSM, some metrics select a set

of positives and/or negatives from G so as to validate the

“predictions” in S. Representative metrics that adopt such

an evaluation methodology include φ1 − φ5.

Area Under the ROC Curve (AUC, φ1). AUC is a classic

metric that is widely used in many works (e.g., [13, 20, 25]).

It first selects all the fixated locations as positives and takes

all the other locations as negatives. Multiple thresholds are

then applied to S, and the numbers of true positives, true

negatives, false positives and false negatives are computed

at each threshold. Finally, the ROC curve can be plotted

according to the true positive rate and false positive rate at

each threshold. Perfect S leads to an AUC of 1.0, while

random prediction has an AUC of 0.5.

Shuffled AUC (sAUC, φ2). Since fixated locations often

distribute around image centers (i.e., the center-bias effect),

the classic AUC favors saliency models that emphasize cen-

ter regions or suppress peripheral regions. To address this

problem, sAUC selects negatives as the fixated locations

shuffled from other images in the same benchmark (e.g.,

[15, 27, 37]). In this study, we adopt the implementation

from [37] to compute sAUC.

Resampled AUC (rAUC, φ3). One drawback of sAUC is

that label ambiguity may arise when adjacent locations in

images are simultaneously selected as positives and nega-

tives (e.g., locations from the same object). Due to the ex-

istence of such ambiguity, even the GSM G cannot reach

a sAUC of 1.0, and such “upper-bound” may change on

different images. To address this problem, Li et al. [24]

proposed to re-sample negatives from non-fixated locations

(i.e., regions in G with low responses) according to the fixa-

tion distribution over the whole dataset. In this manner, the

selected positives and negatives have similar distributions,

and the ambiguity can be greatly alleviated in computing

rAUC. Note that we re-implement this metric to enforce

that the same number of positives and negatives are select-

ed from each image.

Precision (PRE, φ4). Metrics such as AUC, sAUC and

rAUC only focus on the ordering of saliency [28, 39], while

the saliency magnitude is ignored. To measure the salien-

cy magnitudes at positives, PRE was proposed in [26] to

measure the ratio of energy assigned only to positives (i.e.,

fixated locations). In our implementation, we select posi-

tives and negatives as those used in computing rAUC.

Normalized Scan-path Saliency (NSS, φ5). To avoid the

selection of negatives, NSS only selects positives (i.e., fix-

ated locations [9, 31]). By normalizing S to zero mean and

unit standard deviation, NSS computes the average saliency

value at selected positives. Note that NSS is a kind of Z-

score without explicit upper and lower bounds. The larger

NSS, the better S.

Instead of explicitly selecting positives and/or negatives,

some metrics propose to directly compare S and G as two

probability distributions. Representative metrics that adopt

such an evaluation methodology include φ6 − φ9.

Similarity (SIM, φ6). As stated in [14], SIM can be com-

puted by summing up the minimum saliency value at every

location of S and G, while S and G are both normalized

to sum up to one. SIM can be viewed as the intersection

of two probability distribution, which falls in the dynamic

range of [0, 1]. Larger SIM indicates a better S.

Correlation Coefficients (CC, φ7). CC describes the lin-

ear relationship between two variables [1, 21]. It has a dy-

namic range of [−1, 1]. Larger CC indicates a higher simi-

larity between S and G.

Kullback-Leibler Divergence (KLD, φ8). KLD is an

entropy-based metric that directly compares two probabili-

ty distributions. In this study, we combine the KLD metrics

in [3] and [32] to compute a symmetric KLD according to

the saliency distributions over S and G. In this case, smaller

KLD implies a better performance.

Earth Mover’s Distance (EMD, φ9). EMD measures

the minimal cost to transform one distribution to the oth-

er one [9, 39]. Compared with φ1 − φ8, the computation

of EMD is often very slow since it requires complex opti-

mization processes. Smaller EMD indicates a better perfor-

mance.

Most existing saliency models adopted φ1 − φ9 for per-

formance evaluation. There also exist some works for met-

ric analysis. For example, Riche et al. [32] investigated the

correlation between metrics and provided several ranking
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lists of saliency models. Emami et al. [8] adopted human

fixation to identify the best metric. These works usually

built upon a latent assumption that existing metrics are con-

sistent with human perception, which, however, may not

always hold (e.g., in the extensive subjective tests we con-

ducted). Therefore, it is still difficult to find the best salien-

cy models to date unless the performances, or reliabilities,

of various metrics can be quantized and directly compared.

3. Subjective Tests for Metric Analysis

In this section, we conduct extensive subjective tests to

find how saliency maps are assessed by the human-being.

Based on the user data collected in these tests, we carry out

image-level and model-level analysis to quantize and com-

pare the performance of nine representative metrics φ1−φ9.

3.1. Subjective Tests

To conduct the subjective tests, we select 300 images

from two image fixation datasets, including 120 images

from Toronto [6] and 180 images from MIT [20]. For

each image, we generate 7 ESMs with 7 saliency models,

including M0 (AVG, which simply outputs the average fix-

ation density map from Toronto or MIT, see Fig. 2), M1

(IT [19]), M2 (GB [13]), M3 (CA [11]), M4 (BMS [37]),

M5 (HFT [22]) and M6 (SP [24]). For each of the 300

images, these 7 ESMs form C2

7
= 21 ESM pairs.

Based on the ESM pairs, we carry out subjective tests

with 300 × 21 = 6, 300 questions in total. As shown in

Fig. 1, each question consists of a pair of ESMs and the

corresponding GSM (i.e., the fixation density map). A sub-

ject needs to determine which ESM is more similar to GSM,

without knowing which two models are actually being com-

pared. In total, 22 subjects (17 males and 5 females, aged

from 22 to 29) participate in the tests. 4 subjects (3 males

and 1 female) will answer all the questions, while the rest

18 subjects (14 males and 4 females) will answer a ran-

dom number of questions. Note that each question will be

presented to exactly 8 subjects, and all subjects know the

meaning of colors in ESMs and GSMs. Finally, we obtain

6, 300× 8 = 50, 400 answers (i.e., binary annotations). For

the sake of simplification, we represent the user data as

{(Sg
k, S

p
k,Gk) , nk|k ∈ I} , (1)

where I = {1, . . . , 6300} is the set of indices of all ques-

tions. S
g
k and S

p
k are the two ESMs being compared in the

kth question, and the “good” ESM S
g
k performs better than

or comparable to the “poor” ESM S
p
k in approximating Gk.

The integer label nk ∈ {4, 5, 6, 7, 8} records how many

subjects (among the eight subjects) select the “good” ESM

S
g
k in the kth question. Larger nk implies higher confidence

that S
g
k outperforms S

p
k.

In the tests, subjects also report the reasons why they

think certain saliency maps are “good” or “poor.” By in-

Figure 2. The average fixation density maps of Toronto and MIT.

Figure 3. The histogram of user annotations over all the 6,300

questions. In most cases, the majority of subjects perform con-

sistent in determining which ESM is better (i.e., nk = 6, 7, 8).

vestigating these explanations, we find the following key

factors that may affect the evaluation of saliency maps:

1) The most salient locations. In most cases, both ESMs

unveil visual saliency to some extent, and the most salient

regions play a critical role in determining which ESM per-

forms better. In particular, the overlapping ratio of the most

salient regions in ESM and GSM is the most important fac-

tor in assessing saliency maps.

2) Energy distribution. The compactness of salient lo-

cations is an important factor for assessing saliency maps

as well. ESMs that only pop-out object borders are often

considered to be unsatisfactory. Moreover, the cleanness of

background is also taken into account in the evaluation.

3) Number and shapes of salient regions. A perfect ESM

should contain exactly the same number of salient region-

s as in the corresponding GSM. Moreover, salient regions

with simple and regular shapes are preferred.

3.2. Statistics of User Data

Given the user data obtained from tests, we first address

a concern that may arise: whether the annotations from var-

ious subjects stay consistent? Therefore, we show the distri-

bution of {nk|k ∈ I} in Fig. 3, from which we find that the

majority of subjects act consistent in most cases. To further

clarify that, we define two types of annotations, including:

1) Consistent annotations. In 4, 536 questions (72.0%), at

least 6 subjects select the same ESMs (i.e., nk = 6, 7, 8).

Such annotations often occur when one ESM performs sig-

nificantly better than the other one (see Fig. 4 (a)).
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Figure 4. Representative examples of consistent and ambiguous annotations (1st row: GSM; 2nd and 3rd rows: ESMs). In (a), ESMs at the

2nd row outperform those at the 3rd row. Note that the ESMs from AVG, in certain cases, outperform the ESMs generated by M1 −M6

(the last two columns of (a)).

2) Ambiguous annotations. In 1, 764 questions (28.0%),

the answers of eight subjects becomes ambiguous or even

conflict (i.e., nk = 4, 5). Usually, both ESMs in most of

these questions perform unsatisfactory and it is difficult to

determine which ESM is better (see Fig. 4 (b)).

In the following studies, we will mainly rely on the us-

er data obtained from the 4, 536 questions with consistent

annotations. The indices of these questions are denoted as

C. Based on the ordered pairs in {(Sg
k, S

p
k,Gk) |k ∈ C},

we count the times that one model outperforms the other

six models. The results of such one-vs-all comparisons are

shown in Tab. 1, from which we obtain a subjective ranking

list of the seven models:

M5 > M6 > M4 > M0 > M3 > M2 > M1. (2)

We can see that state-of-the-arts (HFT, SP and BMS) out-

perform AVG and classic models (IT, GB and CA). Surpris-

ingly, the average fixation density maps outperform ESM-

s from saliency models in 35.1% subjective comparisons.

This indicates that it is unreasonable to heuristically design

a metric that assigns the lowest score to AVG, since AVG

outperforms many “poor” ESMs given by existing saliency

models (see the last two columns of Fig. 4 (a)).

3.3. Analysis of Nine Representative Metrics

Based on the user data, we quantize the performance of

φ1 − φ9 so as to directly compare them. The comparisons

are conducted from two perspectives, including image-level

and model-level comparisons. In image-level comparison,

we aim to see if existing metrics can correctly predict which

ESM acts better. Given a metric φi, its accuracy in predict-

ing the ordering of ESMs can be computed as:

Pi =
1

|C|
·

{
∑

k∈C
[φi(S

g
k) > φi(S

p
k)]I , i = 1, ..., 7

∑

k∈C
[φi(S

g
k) < φi(S

p
k)]I , i = 8, 9

(3)

where [e]I = 1 if the event e holds, otherwise [e]I = 0.

|C| = 4, 536 is the number of such ESM pairs with con-

sistent annotations. Note that in (3) we omit the GSM G

in φi(S,G). The accuracies of nine metrics are shown in

Fig. 5, from which we can draw several conclusions:

Table 1. The times and probability that a model outperforms all

the other six models in 4, 536 questions

# comparison # winner win rate (%)

M0 1,211 425 35.1

M1 1,320 256 19.4

M2 1,301 315 24.2

M3 1,257 370 29.4

M4 1,285 933 72.6

M5 1,339 1,124 83.9

M6 1,359 1,113 81.9

Figure 5. Prediction accuracy of nine representative evaluation

metrics. Note that two accuracies are reported, which is computed

with or without considering the ESMs generated by AVG.

1) The best metrics. The top three metrics that perform the

most consistently with the human-being are φ5 (NSS), φ7

(CC) and φ6 (SIM). Note that we also test the performances

of these metrics when the ESMs generated by AVG are ig-

nored in the evaluation. In this case, φ7 (CC), φ5 (NSS) and

φ6 (SIM) are still the best three metrics, which further val-

idates their effectiveness and robustness. However, the best

metric, NSS, only reaches an accuracy of 82.7% in compar-

ing all the ESM pairs, while random prediction achieves an

accuracy of 50% in such binary classification problems.

2) The worst metrics to handle AVG. When the ESMs

from AVG are excluded in computing the prediction accu-

racy, the prediction accuracy of φ8 (KLD) and φ9 (EMD)

increase by 6.1% and 6.2%, respectively. This may imply
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that these two metrics are sensitive to post-processing oper-

ations such as center-bias Gaussian re-weighting.

3) Classic AUC is flawed. The classic AUC (φ1) only ranks

the 4th place, which may be caused by the fact that it relies

solely on the interpolated ROC curve without considering

the distribution of thresholding points [28]. In particular,

if the ESMs from AVG are ignored in (3), AUC will even

decrease to the 5th rank.

4) Shuffled metrics perform unsatisfactory. Shuffled

metrics such as φ2 (sAUC), φ3 (rAUC) and φ4 (PRE) per-

form inconsistent with subjects. Actually, it is insufficient

to provide comprehensive evaluation if both positives and

negatives are from center regions (imagine an ESM with

wrongly popped-out regions at image corners). Moreover,

ESMs generated by AVG often obtain extremely low scores

when the shuffled metrics are used, which, however, outper-

form 35.1% ESMs generated by other models in subjective

tests (see Tab. 1 and the last two columns of Fig. 4 (a)).

Beyond the image-level comparison, we also compare

these nine representative metrics at model-level. That is,

we generate a ranking list of the seven saliency models with

each metric, and compare them with the ranks reported in

(2). The ranking lists of models generated by various met-

rics, as well as the numbers of erroneously predicted model

pairs, can be found in Fig. 6. We find that φ5 (NSS), φ7

(CC) and φ1 (AUC) perform the best, while φ2 (sAUC)

and φ3 (rAUC) still perform the worst. These results are

almost consistent with those in the image-level comparison.

In particular, we find recent models, such as HFT, SP and

BMS, outperform AVG and classic models such as IT, GB

and CA by using certain metrics. This implies the perfor-

mances of saliency models keep on improving in the past

decades, even though the evaluation metrics are imperfect.

4. Learning a Comprehensive Evaluation Met-

ric with Convolutional Neural Network

From the quantized performances, we find that the nine

representative metrics perform somehow inconsistent with

subjects. The best metric NSS, which successfully ranks all

the seven models, achieves only 82.7% agreement with sub-

jects in assessing saliency maps. Therefore, it is necessary

to develop a metric which can assess saliency maps as the

human-being does. Toward this end, we propose to learn

a comprehensive metric φL(S
1, S2,G) from the user data.

Different from existing metrics, the learned metric focuses

on the ranking of S1 and S2. In other words, we treat the

CNN-based metric as a binary classifier and optimize its pa-

rameters so as to maximize its accuracy on classifying the

correlation of two ESMs. By using this metric, the com-

parison between two saliency models can be conducted by

measuring the times (and probability) that ESMs from one

model outperform those from the other model.

Figure 6. The ranking lists of seven models generated by nine rep-

resentative evaluation metrics. The number above each bar indi-

cates how many pairs of models are wrongly ranked.

Figure 7. The structure of the Convolutional Neural Network (C:

Convolutional Layer; P: Max pooling layer; F: Full connection

layer). The CNN takes two ESMs (S1 and S2) and one GSM (G)

as input, which are resized to the resolution of 128× 128. A soft-

max function is applied to the output of CNN so as to infer a binary

label, which equals to 1 if S1 outperforms S2, and 0 otherwise.

The structure of CNN is shown in Fig. 7, which consist-

s of 8 layers in total. The input layer takes two ESMs S1

and S2 and one GSM G as the input. Note that both ESMs

and GSM are resized to the same resolution of 128 × 128
through bilinear interpolation. The 2nd and 4th layers are

convolutional layers, and the sizes of convolutional kernels

are 11×11 and 7×7, respectively. Note that we use rectified

linear unit (ReLU) activation function [30] in all convolu-

tional layers. The 3rd and 5th layers are max pooling layers

that sub-sample the input over each 4 × 4 non-overlapping

window. The last three layers are full connection layers, and

the CNN will output a 2D feature vector. Finally, a soft-max

function is adopted to generate a binary label, which equals

to 1 if S1 outperforms S2, and 0 otherwise.

To train the CNN-based metric, we adopt the user data

obtained in the 4,536 questions with consistent annotation-

s (i.e., {(Sg
k, S

p
k,Gk) |k ∈ C}, with binary label 1). More-

over, we expand the training data by swapping S
g
k and S

p
k

(i.e., {(Sp
k, S

g
k,Gk) |k ∈ C}, with binary label 0). To alle-

viate the over-fitting risk, we adopt the dropout technique

by setting the output of each hidden neuron in the full con-

nection layers to zero with probability 0.5. In this manner,

we enforce the learning of more robust features that best fit

for the comparison of ESMs. In the experiments, we opti-

mize the CNN parameters with 80 feed-forward and back-

propagation iterations, and it takes about 21.6s per iteration

on a GPU platform (NVIDIA GTX 980). The testing speed
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of the learned metric is much faster (i.e., 0.085s to compare

100 pairs of ESMs preloaded into memory), since it only

involves convolution, pooling and connection operations.

5. Experiments

In this section, we first conduct several experiments to

validate the effectiveness of the learned metric. After that,

we benchmark 23 saliency models with the data-driven met-

ric to find the best saliency models.

5.1. Validation of the Learned Metric

We conduct three experiments to validate the effective-

ness of the learned metric. In the first experiment, we train

the CNN-based metric with the user data obtained on 250

randomly selected images (i.e., 3783 × 2 = 7566 train-

ing instances with consistent annotations), and test the met-

ric with the user data obtained on the rest 50 images (i.e.,

753 × 2 = 1506 testing instances with consistent annota-

tions). The main objective is to validate the effectiveness,

especially the generalization ability, of the learned metric.

The prediction accuracies of the learned metric, when dif-

ferent numbers of iterations are reached in training CNN,

are shown in Fig. 8. From Fig. 8, we can see that the pre-

diction accuracy reaches up to 90.2% when 80 iterations are

reached in training CNN. Note that on these testing images,

the best heuristically designed metric, φ5 (NSS), reach on-

ly an accuracy of 84.9% on these testing instances. This

indicates that the data-driven metric performs the most con-

sistently with human perception and can be generalized to

the comparison of ESMs from new images.

In the second experiment, we re-train the CNN-based

metric on all the user data with 80 iterations (i.e., 4536 ×
2 = 9072 training instances with consistent annotation-

s), and test the metric on 9,072 synthesized data, in-

cluding {(Gk, S
p
k,Gk) |k ∈ C} (with binary label 1) and

{(Sp
k,Gk,Gk) |k ∈ C} (with binary label 0). Intuitively, the

GSM Gk should always outperform the ESM S
p
k which per-

forms worse than S
g
k in subjective tests. The objective of

this experiment is to see whether the learned metric well

captures this attribute. On the synthesized data, we find that

prediction accuracy reaches 99.6%. This ensures that the

fixation density maps always achieve the best performance,

even though such synthesized data are not involved in train-

ing CNN.

In the third experiment, we test whether the CNN-based

metric trained in the second experiment can be generalized

to a completely new dataset. Toward this end, we select 100

images from the ImgSal dataset [22] and have the 21 ES-

M pairs on each image assessed by 8 subjects (6 males, 2

females, only two of them participated in the tests conduct-

ed on MIT and Toronto). Finally, we obtain 1, 342 con-

sistent annotations and generate 1, 342 × 2 = 2, 684 test-

ing instances. On these testing instances, the learned metric

Figure 8. The performance of the data-driven metric when differ-

ent numbers of iterations are reached in training CNN.

has an accuracy of 87.6%, while NSS reaches only 79.5%.

These results further validates the generalization ability of

the CNN-based metric, implying that it can be re-used on

new datasets without being re-trained.

5.2. Benchmarking Stateofthearts

Given the metric learned from all user data, we use it

to benchmark state-of-the-art saliency models. In total, 23

models are involved, including three baselines: RND, AVG

and GND. RND outputs a random ESM, while GND out-

puts the GSM of each image. The other 20 saliency models

can be categorized into three groups, including:

1) The first group contains 8 bottom-up saliency models, in-

cluding IT [19], GB [13], CA [11], RARE [33], AWS [10],

LG [2], COV [9] and BMS [37].

2) The second group contains 7 models that utilize the

prior knowledge obtained through unsupervised or super-

vised learning, including: AIM [6], SUN [38], ICL [17],

JUD [20], SER [36], BST [1] and SP [24].

3) The third group contains 5 models that estimate visual

saliency in the frequency domain, including: SR [16], PFT

and PQFT [12], QDCT [35] and HFT [23].

Different from existing metrics that measure model per-

formance by averaging the scores over all images, we adopt

the one-vs-all comparisons to provide a comprehensive e-

valuation of saliency models (i.e., the way we adopted in

generating the subjective ranking list of models). We count

the times and the “win rate” that a model outperforms all

the other 22 models on all images. The more frequently a

model outperforms other models, the better it is. As shown

in Fig. 9, we think this one-vs-all ranking methodology can

provide a more comprehensive evaluation of saliency mod-

els than directly using the average performance scores.

According to the times and win rate that a model out-

performs all the other models, we provide three ranking

lists of 23 models, as shown in Fig. 10. We can see that

on all the testing images, HFT, SP and RARE are the top

three models, and these three models also perform the best

on both Toronto and MIT. Surprisingly, IT slightly out-

performs GB by 0.7% due to the fact that IT wins in more
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Figure 9. Models are compared according to the times of winning

the competition instead of the average performance scores. From

the NSS score of each ESM, model B outperforms model A three

times on the four images. However, its average NSS score is still

lower than that of model A, indicating a worse performance.

cases than GB in the comparisons with many other models

beyond M0 − M6. Moreover, even the best model, HFT,

only outperforms the other models in 80.7% comparisons

(i.e., 83.7% if RND and GND are excluded). This implies

that existing saliency models perform far from satisfacto-

ry, and there is still a long way to go in the area of visual

saliency estimation.

6. Discussion and Conclusion

In visual saliency estimation, many researchers have no-

ticed that it is often insufficient to use only one metric in

model comparison. Usually, only marginal improvements

can be achieved with some metrics, while the scores given

by certain metrics can be easily improved to a large exten-

t by using simple tricks (e.g., re-parameterizations, Gaus-

sian smoothing, center-biased re-weighting and border cut).

This makes the selection of evaluation metric a much con-

fusing step in developing new saliency models. Therefore,

it is necessary to address a long-standing concern: how to

measure the performance (in other words, the reliability) of

a metric in evaluating saliency maps and saliency models?

To compare various metrics, we conduct extensive sub-

jective tests to find how saliency maps are assessed by sub-

jects. By assuming that human performs the best in as-

sessing saliency maps, we can thus provide a quantitative

performance score for each metric. Among nine represen-

tative metrics, we find that NSS performs the most consis-

tently with the human-being, while the classic AUC only

ranks the 4th place with the prediction accuracy of 78.0%.

That also explains the reason why human often thinks ex-

isting models are far from perfect in real-world application-

s, even though some models can achieve extremely high

AUC scores. Moreover, shuffled metrics such as sAUC and

rAUC, which are frequently used in recent studies, perform

inconsistent with subjects. This is due to the fact that shuf-

fled metrics are designed to alleviate the center-bias effect.

However, it is often insufficient to focus only on the cen-

ter regions. For instance, a distractor wrongly popped-out

at the corner of ESM will be ignored in computing sAUC,

since shuffled fixations distribute around image center as

well. Therefore, the feasibility of using shuffled fixations in

the evaluation should be carefully instigated.

In this study, we propose a data-driven metric for com-

prehensive evaluation of saliency models. This metric dif-

fers from existing metrics in two aspects: First, it is learned

from user-data other than being heuristically designed. Sec-

ond, it focuses on predicting the ordering of ESMs other

than assigning each ESM a real-valued score. Experimental

results show that this CNN-based metric outperforms nine

representative metrics in assessing saliency maps. We al-

so provide three ranking lists of 23 models to reveal the

best saliency models. In the future work, we will incorpo-

rate eye-tracking devices so as to discover the latent mech-

anisms in assessing saliency maps. We will also explore

the feasibility of designing new saliency models under the

guidance of such a CNN-based metric.
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