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Abstract—Compressive sensing (CS) has drawn quite an amount
of attention as a joint sampling and compression approach. Its
theory shows that when the signal is sparse enough in some domain,
it can be decoded from many fewer measurements than suggested
by the Nyquist sampling theory. So one of the most challenging re-
searches in CS is to seek a domain where a signal can exhibit a
high degree of sparsity and hence be recovered faithfully. Most of
the conventional CS recovery approaches, however, exploited a set
of fixed bases (e.g., DCT, wavelet, and gradient domain) for the en-
tirety of a signal, which are irrespective of the nonstationarity of
natural signals and cannot achieve high enough degree of sparsity,
thus resulting in poor rate-distortion performance. In this paper,
we propose a new framework for image compressive sensing re-
covery via collaborative sparsity, which enforces local 2-D sparsity
and nonlocal 3-D sparsity simultaneously in an adaptive hybrid
space-transformdomain, thus substantially utilizing intrinsic spar-
sity of natural images and greatly confining the CS solution space.
In addition, an efficient augmented Lagrangian-based technique is
developed to solve the above optimization problem. Experimental
results on a wide range of natural images are presented to demon-
strate the efficacy of the new CS recovery strategy.

Index Terms—Augmented Lagrangian, compressive sensing
(CS), image recovery, sparsity.

I. INTRODUCTION

T HE RECENT development of compressive sensing (CS)
theory has drawn quite an amount of attention as an al-

ternative to the current methodology of sampling followed by
compression [1]–[3]. By exploiting the redundancy existed in
a signal, CS conducts sampling and compression at the same
time. From many fewer acquired measurements than suggested
by the Nyquist sampling theory, CS theory demonstrates that,
a signal can be reconstructed with high probability when it ex-
hibits sparsity in some domain.
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In CS theory, a signal is usually sampled by a random pro-
jection that is signal-independent and reconstructed by mini-
mizing the or optimization problem with the prior that
the signal is sparse in some transformation domain. Since the
minimization is discontinuous and an NP-hard problem, the

most common one is to use the norm, which is the optimal
convex approximation of norm and has been proved that for
many problems it is probable that the norm is equivalent to
the norm in a technical sense. This equivalence result al-
lows one to solve the problem, which is easier than the
problem. Many CS recovery algorithms are recently proposed:
linear programming [4], gradient projection sparse reconstruc-
tion [5], matching pursuit [6], and iterative thresholding [7].
However, in order to reconstruct the signal exactly and ef-

ficiently, the convex optimization method with norm often
needs more observations than directly minimizing the norm.
Some algorithms are then proposed to reconstruct the original
signal with fewer measurements than those needed by the
norm minimization method. A nonconvex method via solving
a series of weighted minimization problems was proposed
in [8], where the weight for the entries with a larger value is
iteratively decreased. Due to the fact that the norm is a dis-
continuous, Mohimani et al. [9] proposed to approximate it by
a series of suitable continuous ones and minimize it by means
of a minimization algorithm for continuous functions. Babacan
et al. [10] utilized a hierarchical form of the Laplace prior to
model the sparsity of the unknown signal. Wang et al. [11] de-
veloped a sparse signal reconstruction method by an iterative
support detection technique, aiming to reduce the requirement
on the number of measurements. Alternatively, Baron et al. [12]
performed approximate Bayesian inference using belief propa-
gation (BP) decoding, which represents the CS encoding matrix
as a graphical model. All these algorithms try to solve the com-
binational optimization problem more efficiently with the tool
of nonconvex optimization method.
An attractive strength of CS-based compression is that

the encoder is made signal-independent and computationally
inexpensive at the cost of high decoder complexity, namely,
simple encoder and complex decoder, which quite resembles
distributed source coding in spirit. More specifically, in the en-
coding process, the same random projection can be conducted
on all input signals, which is nonadaptive and irrespective of
any differences in their structures. It is up to the decoder to solve
a large scale optimization problem to recover the randomly
sampled signal in a domain where the signal exhibits sparsity.
This asymmetric design is severely desirable in some image
processing applications when the data acquisition devices must
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be simple (e.g., inexpensive resource-deprived sensors), or
when oversampling can harm the object being captured (e.g.,
X-ray imaging) [13].
CS theory shows that the sparsity degree of a signal plays a

significant role in recovery. The higher degree of a signal, the
higher recovery quality it will have. So, seeking a domain in
which the signal has a high degree of sparsity is one of the main
challenges CS recovery should face. However, natural signals
such as images are typically nonstationary, there exists no uni-
versal domain in which all parts of the signals are sparse. The
most current CS recovery methods explore a set of fixed do-
mains (e.g., DCT, wavelet, and gradient domain) [14]–[16], and
therefore are signal-independent or not adaptive, resulting in
poor rate-distortion performance compared to the conventional
coding techniques.
Towards this problem, Wu et al. [13] proposed a

model-guided adaptive recovery of compressive sensing
(MARX) utilizing a piecewise autoregressive model to adapt
to the changing second order statistics of natural images. Many
recent works incorporated additional prior knowledge about
transform coefficients (statistical dependencies, structure,
etc.) into the CS recovery framework, such as Gaussian scale
mixtures (GSM) models [17], tree-structured wavelet (TSW)
[18], tree-structured DCT (TSDCT) [19]. Additionally, in [20],
a projection-driven CS recovery coupled with block-based
random image sampling is developed, which aims to encourage
sparsity in the domain of directional transforms.
Considering the fact that the natural image signal is nonsta-

tionary and its sparse domain varies spatially, in this paper, we
first establish a new sparsity measure, called collaborative spar-
sity measure (CoSM), and then propose a novel strategy for
CS recovery via collaborative sparsity (RCoS). Part of our pre-
vious work has been published in [33]. The collaborative spar-
sity enforces local 2-D sparsity and nonlocal 3-D sparsity simul-
taneously, which offers a powerful mechanism of characterizing
the structured sparsity of a natural image and enables a natural
image to be highly sparse in an adaptive hybrid space-transform
domain. To make RCoS tractable and robust, an augmented La-
grangian-based technique is developed to efficiently solve the
above severely underdetermined inverse problem. Extensive ex-
periments on a wide range of CS-acquired images manifest that
RCoS is able to increase recovery quality by a largemargin com-
pared with the conventional CS recovery methods or require
many fewer measurements for a given reconstruction quality.
The remainder of the paper is organized as follows. Section II

briefly reviews CS theory and introduces the classic augmented
Lagrangian method for constrained optimization problem.
Section III provides the design of collaborative sparsity mea-
sure (CoSM) in details. Section IV shows how CoSM is
incorporated into the framework of CS recovery and gives
the implementation details of RCoS. Experimental results are
reported in Section V. In Section VI, we conclude this paper.

II. BACKGROUND

A. Compressive Sensing

A signal of size is said to be sparse in domain , if its
transform coefficients are mostly zeros, or nearly sparse if the

dominant portion of coefficients are either zeros or very close
to zeros. The sparsity of in is quantified by the number of
significant elements within the coefficients vector .
More specifically, given linear measurements, the CS re-

covery of from is formulated as the following constrained
optimization problem:

(1)

where represents the random projections (RS). is usually
set to 1 or 0, characterizing the sparsity of the vector .
is norm, adding all the absolute values of the entries in a
vector, while is norm, counting the nonzero entries
of a vector. According to [21], CS is capable of recovering
-sparse signal (with an overwhelming probability) from

of size , provided that the number of random samples meets
. The required sampling rate ( ), to incur

lossless recovery, is roughly proportional to ( ). A com-
pressive imaging camera prototype using RS has been presented
in [22].

B. Augmented Lagrangian Method

Consider the constrained optimization problem

(2)

where , , and , i.e., there are
linear equality constraints. The so-called augmented Lagrangian
function for this problem is defined as

(3)

where is a vector of Lagrangian multipliers and
is called the penalty parameter [23].
The basic idea of the augmented Lagrangian method (ALM)

is to find a saddle point of , which is also the solution
of the original (2). ALM consists in minimizing with
respect to , keeping fixed, then updating , and repeating
these two steps until some convergence criterion is satisfied.
Formally, the ALM works as follows [24]:

Algorithm ALM

1. Set , choose , and .

2. repeat

3.

4.

5.

6. until stopping criterion is satisfied.

The augmented Lagrangian function differs from the standard
Lagrangian function by adding a square penalty term, and dif-
fers from the quadratic penalty function by the presence of the
linear term involving the multiplier . In this respect, the aug-
mented Lagrangian function is a combination of the Lagrangian
and quadratic penalty functions [16].
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In order to facilitate the discussions in the following opti-
mization section, we briefly introduce two lemmas [16], [24]
.
Lemma 1: The minimization problem

has a closed form, which can be expressed as

Lemma 2: The minimization problem

has a closed form, which can be expressed as

Here, stands for the element-wise product of two vectors.

III. COLLABORATIVE SPARSITY MEASURE IN HYBRID
SPACE-TRANSFORM DOMAIN

Asmentioned before, on one hand, one of the most significant
challenges in CS is to seek a domain where a signal can be
represented sparsely and hence be recovered faithfully. On the
other hand, CS recovery is typically an image linear inverse
problem, for which it has been demonstrated that image priors
play a key role to achieve high-quality results.
Integrating the above two points, one straightforward solution

is to design a new type of sparsity measure according to image
priors, which means that a natural image signal can be mapped
into an adaptive domain where the image signal exhibits a high
degree of this type of sparsity. This is just the motivation of this
paper.
This paper utilizes two kinds of image priors, namely local

smoothness and nonlocal self-similarity. The former type de-
scribes the piecewise smoothness within local region, while the
latter one depicts the repetitiveness of the textures or structures
in natural images within nonlocal region. Therefore, a new type
of sparsity should be consistent with the two properties of nat-
ural images, which is the purpose of this work.
In this section, a generic sparsity measure, called collabora-

tive sparsity measure (CoSM) for high fidelity image CS re-
covery is established in a data-adaptive hybrid space-transform
domain by merging two complementary sparsities—local 2-D
sparsity in space domain and nonlocal 3-D sparsity in
transform domain . That is

(4)

where and are usually set to values from the interval [0, 1],
and is a regularization parameter, which controls the trade-off
between two competing sparsity terms. corresponds to
the above local smoothness prior and keeps image local consis-
tency, suppressing noise effectively, while corresponds
to the above nonlocal self-similarity prior and maintains image
nonlocal consistency, retaining the sharpness and edges effec-

tually. More details on how to design CoSM to characterize the
two above properties are provided below.

A. Local 2-D Sparsity in Space Domain

Local smoothness describes the similarity of neighboring
pixels in the space domain of images. That means the intensities
of the neighboring pixels are quite similar.
To characterize the smoothness of images, there exist many

models. Total variation (TV) model that favors the piecewise
smoothness is one of the most popular regularizers and has been
widely employed for image recovery in recent years [24]. From
the view of statistics, a natural image is preferred when its re-
sponses for a set of filters are as small as possible [25]. That
means the filtered image after some convolution with a high-
passing filter is sparse (most pixels intensities are near zero). In
this paper, this type of sparsity can be called local 2-D sparsity
in space domain.
The widely-used filters in practice are vertical and hori-

zontal finite difference operators, denoted by and ,
which correspond to vertical gradient picture and horizontal
gradient picture, respectively. In literatures, the gradient pic-
ture is widely modeled by generalized Gaussian distribution
(GGD) [26]. Without loss of generality, in this paper, let

and set to be 1 in (4) to achieve the
local 2-D sparsity in space domain , expressed as

(5)

which essentially underlies the fact that an image exhibits
Laplacian sparsity.
Note that has the same expression as anisotropic total

variation [9], and can be regarded as a statistical interpretation
of anisotropic TV.
Recently, many algorithms to solve CS problems with

anisotropic TV regularization have been proposed [15], [16],
[36]. To the best of our knowledge, [16] and [36] achieve
the state-of-the-art CS recovery results. In this paper, as part
of collaborative sparsity measure, is used to charac-
terize the local smoothness prior of natural images. It is worth
stressing that can also be substituted by the second order
derivatives or the more sophisticated learned filters [27] and by
setting to be 1/2 or 2/3 as hyper-Laplacian priors [25]. MARX
[13] also belongs to this case by utilizing auto-regressive model
with adaptive filtering coefficients adjusted by the structures of
images.

B. Nonlocal 3-D Sparsity in Transform Domain

Besides local smoothness, nonlocal self-similarity is another
significant property of natural images, which was first proposed
in the classic work for image denoising [28]. It characterizes the
repetitiveness of the textures or structures embodied by natural
images within nonlocal area, which can be used for retaining
the sharpness and edges effectually to maintain image nonlocal
consistency [28], [29], [35].
To resolve the problem of CS recovery, nonlocal self-sim-

ilarity should be characterized in term of some sparsity mea-
sure. Inspired by the success of sparse representation [31] and
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Fig. 1. Illustrations of nonlocal 3-D sparsity in transform domain.

TABLE I
DEFINITIONS ON NONLOCAL 3-D SPARSITY IN TRANSFORM DOMAIN

self-similarity [28] in image restoration [30], we integrate them
and characterize the self-similarity by means of the sparsity of
the coefficients, which are achieved by transforming the 3-D
group generated by stacking similar image patches. This kind
of sparsity can be named as nonlocal 3-D sparsity in transform
domain .
Specifically, as illustrated in Fig. 1, for each block, we

first find some blocks that are similar to it within a searching
window. Then, these blocks are stacked into a 3-D array, which
we call a group. Next, a 3-D transform is conducted on the
3-D array to obtain the coefficients. Finally, the number of
the nonzero coefficients is used to measure the nonlocal 3-D
sparsity of this patch. The nonlocal 3-D sparsity of the whole
image is achieved by summing all the ones of each block.
To solve the problem, the detailed mathematical description

for nonlocal 3-D sparsity in transform domain is provided in
Table I.
Therefore, the mathematical formulation of the nonlocal

3-D sparsity of the whole image in transform domain is
written as

(6)

Similarly, for the convenience of computing, the inverse oper-
ator corresponding to can be defined in the fol-
lowing procedures. After obtaining , split it into groups of

3-D transform coefficients, which are then inverted to generate
estimates for each block in the group. The block-wise estimates
are returned to their original positions and the final image esti-
mate is achieved by averaging all of the above block-wise esti-
mates. Therefore, given , the new estimate for is expressed
as .
Here, we make a discussion about the relationship between

the proposed nonlocal 3-D sparsity and the traditional nonlocal
means (NLM) [28]. It is obvious that both the proposed nonlocal
3-D sparsity and NLM essentially take advantage of the prop-
erty of self-similarity exhibited by natural images. The main
difference is the traditional NLM for image denoising makes
use of the weighted filtering thinking of the degree of similarity
among similar blocks, while the proposed method character-
izes self-similarity of natural images by means of the sparsity
of the coefficients, which are achieved by transforming the 3-D
group generated by stacking similar image blocks. The advan-
tage of the nonlocal 3-D sparsity is that images are mapped into
a high-dimensional transform space, where they exhibit high
degree of sparsity, while well characterizing the self-similarity.
Experiments demonstrate that this sparsity can not only reserve
the common textures and details among all similar patches, but
also keep the distinguished features of each block in a certain
degree.
Fig. 2 shows a group of comparison results to demonstrate the

effectiveness of the proposed nonlocal 3-D sparsity over the tra-
ditional NLM method, Fig. 2(a) is the original image. Fig. 2(b)
is the CS recovery result by TV [16], which is regarded as local
2-D sparsity in our paper. Since the traditional NLM algorithm
can be represented by the form of regularization term [29], [35],
Fig. 2(c) is achieved by TV+NLM. Fig. 2(d) is the CS recovery
results by local 2-D sparsity and nonlocal 3-D sparsity together,
i.e., TV+ Nonlocal 3-D sparsity.
It can be observed that Fig. 2(c) is better than Fig. 2(b) in

suppressing noise and preserving edge owing to the NLM regu-
larization term in CS recovery. However, the best image quality
of recovery result is obtained by Fig. 2(d) with almost invisible
noise and artifacts, which fully substantiate the superiority of
the proposed nonlocal 3-D sparsity over NLM.
Note that the nonlocal 3-D sparsity is data-adaptive because

of its search for similar patches within nonlocal region. It is
worth stressing that although (6) seems complicated as one reg-
ularization term in minimization function, we will give an ef-
fective solution by a reasonable assumption in next section.
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Fig. 2. CS recovered results for crops of image leaves in the case of ratio . (a) Original image. (b) CS recovery result by TV, i.e., local 2-D sparsity
(PSNR ). (c) CS recovery results by TV+NLM (PSNR ). (d) CS recovery result by TV+Nonlocal 3-D sparsity (PSNR ).

C. Collaborative Sparsity Measure (CoSM)

Considering local smoothness and nonlocal self-similarity in
a whole, a new sparsity measure, called collaborative sparsity
measure (CoSM), can be defined by combining the local 2-D
sparsity in space domain and nonlocal 3-D sparsity in transform
domain, which is expressed as

(7)
Note that CoSM richly characterizes local smoothness

and nonlocal self-similarity of natural images, mapping a
natural image into a high-dimensional data-adaptive hybrid
space-transform domain with high degree of sparsity,
which greatly confines the space of CS solution.
Experimental results demonstrate that the proposed CoSM

can combine the best of the both worlds, and significantly im-
prove the reconstruction quality of CS-acquired images.

IV. CS RECOVERY VIA COLLABORATIVE SPARSITY

Incorporating (5) and (6) into (7), the proposed constrained
optimization problem for CS recovery via collaborative spar-
sity (RCoS) in an adaptive hybrid space-transform domain is
formulated as

(8)

Note that (8) is essentially nonconvex and quite difficult to
solve directly due to the nondifferentiability and nonlinearity of
the collaborative sparsity term. Solving it efficiently is one of
the main contributions of this paper. In this section, the imple-
mentation details of RCoS are provided.
Instead of solving (8) directly, (8) is first transformed into an

equivalent variant by introducing auxiliary variables and

(9)

According to (3), the corresponding augmented Lagrangian
function of (9) is

(10)

where , , are regularization parameters associated with
quadratic penalty terms , , ,
respectively.
The basic idea of the augmented Lagrangian method is to

seek a saddle point of , which is also the solution
of (8). We utilize the augmented Lagrangian method to solve
constrained (9) by iteratively solving (11) and (12)

(11)

(12)

Here, the subscript denotes the iteration number, and , ,
are the Lagrangian multipliers associated with the constraints

, , , respectively.
In addition, (11) is still hard to solve efficiently in a direct

way due to its nondifferentiability. Here, an alternating direction
technique [32] is employed, which alternatively minimizes one
variable while fixing the other variables, to split (11) into the
following three subproblems. In the following, we argue that
the every separated subproblem admits an efficient solution. For
simplicity, the subscript is omitted without confusion.

A. Subproblem

Given , , after simplifications, the optimization problem
associated with can be expressed as

(13)

According to Lemma 1, the closed form of (13) is written as

(14)

B. Subproblem

With the aid of , , the subproblem is equivalent to

(15)
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Clearly, is a quadratic function and its gradient can be
expressed as

(16)

Setting gives us the exact minimizer of (15),
that is

(17)

where stands for the Moore–Penrose pseudoinverse of ma-
trix . Theoretically, it is ideal to accept the exact minimizer
as the solution of the subproblem. However, computing the
inverse or pseudoinverse at each iteration is too costly to im-
plement numerically. Therefore, an iterative method is highly
desirable. Here, the steepest descent method with the optimal
step is used to solve (15) iteratively by applying

(18)

where is the gradient direction of the objective function
, represents the optimal step,

, and is the identity matrix.
Therefore, solving subproblem requires computing (18) from
iteration to iteration.

C. Subproblem

Given , , similarly, the subproblem becomes

(19)

After making a straightforward complete-the-squares proce-
dure and omitting a constant independent of , (19) can be
written as

(20)

where .
Note that it is difficult to solve (20) directly due to the compli-

cated definition of . To enable solving (20) tractable, in this
paper, a general assumption is made, with which even a closed
form of (20) can be achieved. Concretely, we regard as some
type of the noisy observation of , denote the error vector by

, and then make an assumption that each element of fol-
lows an independent zero-mean distribution with the same vari-
ance It is worth emphasizing that the above assumption does
not need to be Gaussian process, which is more general and rea-
sonable. Based on the assumption, since , , , by in-
voking the Law of Large Numbers in probability theory, we have
the following equation with very large probability (limited to 1)

(21)

TABLE II
CS RECOVERY VIA COLLABORATIVE SPARSITY

At the same time, since the orthogonal transform for
every group has the property of energy conservation and ,

, according to the Law of Large Numbers, there also
exists the following equation with very large probability:

(22)
Incorporating (22) into (21) leads to

(23)

Owing to Lemma 2, the closed form of (23) is written as

where . Thus, the efficient solution for the (19)
is

(24)

D. Summary of RCoS

So far, all issues in the process of handing the subproblems
have been solved. In fact, we achieve the efficient solution for
each separated subproblem, which will enable the whole algo-
rithm more efficient and effective. In light of all derivations
above, the complete description of RCoS for CS-acquired im-
ages is composed of two loops: inner loop and outer loop, as
stated clearly in Table II.

V. EXPERIMENTAL RESULTS

In this section, extensive experimental results are presented
to evaluate the performance of the proposed RCoS. For thor-
oughness and fairness of our comparative study, we exploit a
broad class of natural images, including six conventional im-
ages (256 256) and two biomedical images (112 112). In
our experiments, the CSmeasurements are obtained by applying
a random projection matrix to the original image signal, where
the random projection matrix is generated by Matlab command
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Fig. 3. CS recovered results by RCoS with various choices of and (30% measurements). (a) Recovered by TV [16], PSNR . (b)
and , PSNR . (c) and , PSNR . (d) and , PSNR . (e) and ,

PSNR .

Fig. 4. CS recovered results by RCoS with various choices of and (30% measurements). (a) Recovered by TV [16], PNSR . (b)
and , PNSR . (c) and , PNSR . (d) and , PNSR . (e) and ,

PNSR .

. To save memory required to store the projec-
tion matrix, we first split an image with size 256 256 into
four 128 128 subimages, conduct the CS recovery for each
subimage, respectively, and merge them into a whole recovered
image at last.

A. Parameter Setting

All the experiments are performed in Matlab 7.12.0 on a
Dell OPTIPLEX computer with Intel Core 2 Duo CPU E8400
processor (3.00 GHz), 3.25 G memory, and Windows XP
operating system. The 3-D transform denoted by is 3-D
wavelet transform, composed of 2-D bior1.5 and 1-D Haar. The
way for the stopping criteria in Table II is the relative change
of is sufficiently small, i.e., and is set
to be .
In our implementation, all the parameters of RCoS including
, , , , , , are set empirically, where , , , , are

set fixed for all test images and , can be changed according
to different images. Concretely, the size of each block, i.e.,
is set to be 8 8, the size of training window for searching
matched blocks, i.e., is set to be 41 41, and the number
of best matched blocks, i.e., is set to be 10. We empirically
set and . From our experiments, a reasonable
and for a natural image lies in the range [32, 64] and [8, 12],
respectively. Figs. 3 and 4 show the recovery results by using
different values and .
From Figs. 3 and 4, it can be seen that the reconstruction re-

sults obtained by the four combinations of and [see Fig. 3
and Fig. 4(b)–(e)] are very close in visual perception, and are
all better than the results by TV method [Fig. 3 and Fig. 4(a)].
In practice, for any natural image, the default setting of and
can be and . Here, in this paper, we set

or 64, and or 12, and chose the optimal combination
for the best image quality to demonstrate the performance of
the proposed algorithm. It is fair since all the results of other
comparative methods (TV [16], TSW [18], TSDCT [19]) are all
generated by the original authors’ codes with the corresponding
parameters manually optimized. Further study on determining
the regularization parameters of the proposed RCoS automati-
cally is our future work.

B. Experimental Comparisons

RCoS is compared with three representative image CS
recovery methods in literatures, i.e., tree-structured wavelet
(TSW) method [18], tree-structured DCT (TSDCT) method
[19] and total variation (TV) method [16], which deal with the
image signal in the wavelet domain, the DCT domain and the
gradient domain, respectively. It is worth emphasizing that total
variation (TV) method is known as one of the state-of-the-art
algorithms for image CS recovery. PSNR, a classical quality
metric, is used to evaluate the results obtained by different
methods. The RCoS software and more experimental results
can be found online.
The PSNR results reconstructed by various methods for all

test images are provided in Table III. TSW [18] obtains the
lowest PSNR among the four comparative algorithms. The
proposed RCoS considerably outperforms the other methods in
all the cases, with PSNR improvements of up to 5.3, 12.6, and
12.8 dB, compared with TV, TSDCT, and TSW, respectively.
Furthermore, we compare the average performance of these

four methods. For all test images, each average PSNR result
with regarding to every ratio of measurement generated by each
comparative algorithm is plot in Fig. 5. It is clear to see that

1Available online: http://idm.pku.edu.cn/staff/zhangjian/RCoS/.
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TABLE III
PSNR RESULTS OF FOUR CS RECOVERY ALGORITHMS (UNIT: DB)

RCoS gains asmuch as about 3 dB over the second best recovery
method (i.e., TV), 6 dB over TSDCT and 8 dB over TSW. Addi-
tionally, as shown in Fig. 5, the reconstruction quality achieved
by RCoS in the case of ratio is still higher than the one
by TV in the case of ratio and the one by TSDCT in the
case of ratio .
Some visual results of the recovered images for the four

algorithms are presented in Figs. 6–10, which verify the su-
periority of RCoS in preserving the image structures and fine
details, showing much better visual results than the other
competing methods. Moreover, we use a new image quality
assessment (IQA) model FSIM to evaluate the visual quality,
which is proposed recently and achieves much higher con-
sistency with the subjective evaluations than state-of-the-art
IQA metrics [34]. The higher FSIM value means the better
visual quality. It could be seen that proposed RCoS achieves
the highest FSIM scores in all the figures, which again demon-
strates that RCoS can achieve better performance on the image
visual quality.
The high performance of RCoS is attributed to the proposed

adaptive hybrid space-transform domain, which offers a pow-
erful mechanism of characterizing the structured sparsities of
natural image signals.
To investigate the robustness of the proposed algorithm, we

further consider a CS recovery problem with Gaussian noise.
That means the measurement observation in (1) becomes

where has mean zero and standard deviation .
Table IV shows the PSNR results of the four test images in

20% and 30% measurements with Gaussian noise under dif-
ferent standard deviations from 50 to 200. It can be observed
that TV and RCoS are both robust to the observation Gaussian
noise, while the recovered results by RCoS significantly outper-
forms the ones by TV.

C. Convergence Study

Because the objective function (1), comprising mixed and
norms, is nonconvex, it is difficult to give its theoretical proof

for convergence. In this subsection, we only provide empirical

Fig. 5. Average PSNR result achieved by each algorithm for all test images
versus different numbers of measurements.

evidence to illustrate the convergence of the proposed RCoS
and show some important results. Fig. 11 plots the evolutions of
PSNR versus iteration numbers for Image Vessels with various
ratios of measurements.
It is observed that with the increase of iteration number,

the PSNRs of the reconstructed image increase greatly at first
and then tend to be stable. Another observation is that the
rising curves in Fig. 11 are not smooth and have many sharp
points about every one hundred iterations. There are probably
two reasons, which lead to the above phenomenon. One is
the inherent nonconvex property the problem possesses. The
other manifests that the proposed RCoS has the ability to avoid
converging local optimal solution, trying to achieve the global
optimal solution.

D. Computational Time

Finally, we provide computational time comparison for all
the test images between TV [16] and the proposed RCoS in
Table V. On average, the time computational complexity of
RCoS is rough 2.2 times that of TV. Comparing the , ,
problems described in Table II, it is obvious to conclude that
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Fig. 6. CS recovered image cameraman (15% measurements). (a) TSW (21.35 dB, FSIM ). (b) TSDCT (22.77 dB, FSIM ). (c) TV (25.73
dB, FSIM ). (d) RCoS (28.61 dB, FSIM ).

Fig. 7. CS recovered image leaves (15% measurements). (a) TSW (16.94 dB, FSIM ). (b) TSDCT (17.66 dB, FSIM ). (c) TV (21.28 dB,
FSIM ). (d) RCoS (25.67 dB, FSIM ).

Fig. 8. CS recovered image vessels (20% measurements). (a) TSW (19.16 dB, FSIM ). (b) TSDCT (22.64 dB, FSIM ). (c) TV (24.56 dB,
FSIM ). (d) RCoS (28.81 dB, FSIM ).

Fig. 9. CS recovered image parrots (20% measurements). (a) TSW (24.61 dB, FSIM ). (b) TSDCT (27.92 dB, FSIM ). (c) TV (29.44 dB,
FSIM ). (d) RCoS (32.33 dB, FSIM ).

the main complexity of RCoS comes from the subproblem,
which needs similar block searching and the operations of 3-D
and inverse 3-D transforms.

To speed up RCoS, on one hand, we can exploit the results
of TV instead of zeros as initialization, which could decrease
the number of iteration enormously. On the other hand, ongoing
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Fig. 10. CS recovered image Barbara (25% measurements). (a) TSW (21.82 dB, FSIM ). (b) TSDCT (23.65 dB, FSIM ). (c) TV (25.18 dB,
FSIM ). (d) RCoS (29.60 dB, FSIM ).

TABLE IV
PSNR RESULTS OF TWO CS RECOVERY ALGORITHMS WITH GAUSSIAN NOISE (UNIT: DB)

TABLE V
COMPUTATIONAL TIME COMPARISON OF TWO CS RECOVERY ALGORITHMS (UNIT: S)

Fig. 11. Progression of the PSNR (dB) of the reconstructed Image vessels with
respect to the iteration count in the cases of different ratios of measurements.

work addresses the parallelization, leveraging GPU hardware to
speed up RCoS.

VI. CONCLUSION

In this paper, a novel sparsity measure, called collaborative
sparsity measure is introduced, and a new strategy for CS RCoS
is proposed, which efficiently characterizes the intrinsic spar-
sities of natural images in an adaptive hybrid space-transform
domain. Extensive experiments on a wide range of CS-acquired
images manifest that RCoS is able to increase recovery quality
by a large margin compared with the current methods or require
many fewer measurements for a desired reconstruction quality.
Our work offers a fresh and successful instance to corroborate
the CS theory applied for real signals (i.e., natural images).
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