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Abstract—In this paper, we propose a novel reduced reference
stereoscopic image quality assessment (RR-SIQA) metric by using
binocular perceptual information (BPI). BPI is represented by the
distribution statistics of visual primitives in left and right views’
images, which are extracted by sparse coding and representation.
Specifically, entropy of the left view’s image and entropy of
the right view’s image are used to represent monocular cue.
Their mutual information is used to represent binocular cue.
Constructively, we represent BPI as three numerical indicators.
The difference of the original and distorted images’ BPIs is
taken as perceptual loss vector. The perceptual loss vector is
used to compute the quality score for a stereoscopic image by
a prediction function which is trained using support vector
regression (SVR). Experimental results show that the proposed
metric achieves significantly higher prediction accuracy than the
state-of-the-art reduced reference SIQA methods and better than
several state-of-the-art full reference SIQA methods on the LIVE
phase II asymmetric databases.
Index Terms—Binocular perceptual information (BPI), mutual

information, sparse representation, stereoscopic image quality
assessment (SIQA).

I. INTRODUCTION

S TEREOSCOPIC image quality assessment (SIQA) is one
of the most fundamental yet challenging issues in 3D

image processing technology. Because of the remarkable dis-
tinction between human monocular and binocular vision, SIQA
can’t be replaced by a simple combination of two individual
views’ quality assessment [1]. Apart from some novel visual
experience issues (e.g.,unnatural depth experience, visual
discomfort, visual fatigue, crosstalk), as a traditional distortion
issue, asymmetric distortion assessment is a new question in
image quality assessment (IQA). This paper focuses on asym-
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metric quality assessment for stereoscopic image in which two
views’ images have different visual quality levels.
Driven by the rapid development of 3D image applications,

several works have been done in the last decade to design
objective SIQA metrics which can automatically predict the
perceived distortion in the distorted stereoscopic image. Since
a 3D image consists of two views’ 2D images, Gorley et al.
[2], Benoit et al. [3], Campisi et al. [4] and You et al. [5] used
a straightforward way to apply the state-of-the-art 2D-IQA
methods in their SIQA metrics. They evaluated the qualities of
the left and right view’s images by 2D IQA metrics separately
and then combined the two qualities into one quality score. Ob-
viously, the simple combination of two views’ images quality is
not consistent with human binocular visual perception. Based
on the study of binocular visual properties, Bensalma et al.
proposed a binocular energy based SIQA metric [6]. Chen et al.
proposed a SIQA metric accounting for rivalry [7]. Shao et al.
proposed a SIQA metric by using binocular visual characteris-
tics [8]. Zhou et al. proposed a perceptual modulated feature
similarity metric for SIQA [9]. The aforementioned metrics
depend on the entire original stereoscopic image to predict the
quality of the distorted image, they are termed as full-reference
(FR) SIQA. Without any information about the reference
image, Chen et al. employed the natural scene statistics features
to train a support vector machine model for their no-reference
(NR) SIQA metric [10]. Akhter et al. proposed a NR metric to
predict 3D image quality by perceptual features extracted from
stereopairs and an estimated disparity map [11]. Sazzad et al.
proposed two NR metrics for stereoscopic images and videos
based on the segmented local features of artifacts, disparity
and spatio-temporal segmentation, respectively [12][13]. Ryu
et al. explored the relationship between the perceptual quality
of stereoscopic images and visual information, and proposed
a NR quality metric by a binocular quality perception model
[14]. Since the NR-SIQA metrics are designed for specific and
limited types of distortion, they may not be mature enough to
some 3D applications.
Reduced reference (RR) metrics achieve a good tradeoff be-

tween FR and NR metrics [15], [16], as they can achieve higher
prediction accuracy in terms of a limited transmitting data ex-
tracted from the reference image. Several studies have been con-
ducted for RR-SIQA in recent years. Hewage et al. evaluated
color plus depth 3D video by using the extracted edge infor-
mation of depth maps and extracted information from the cor-
responding color image in the areas in the proximity of edges
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Fig. 1. Framework of the proposed SIQA metric.

[17]. Maalouf et al.’s metric is based on the discrepancy in the
disparity maps of the reference and the distorted pair of images
and the perceptual difference between the reference and the dis-
torted cyclopean images [18]. Considering the binocular fusion
and binocular rivalry, Zheng et al. proposed a RR-SIQA model
based on binocular perceptual properties of HVS [19]. Xu et
al. proposed a RR-SIQA model through measuring structural
degradation and saliency based parallax compensation model
[20].
Human eyes are the front-end binocular system. It has been

discovered that cells in the retina of each eye individually
encode their received visual signal, and then the coded in-
formation, later merged in lateral geniculate nucleus (LGN),
formulate the ultimate stereoscopic image in the brain [20].
Human visual perception depends on both monocular and
binocular cues. Image artifacts may make the unnatural percep-
tion of HVS. When the artifacts are asymmetric, the balance of
monocular perception is broken and the binocular perception
is also changed. Therefore, both the monocular and binocular
cues should be taken into account in SIQA metric.
Neurobiological studies have suggested that sparse coding is

one of the most important properties of receptive field in re-
sponse to natural images [21]. Sparseland model is a powerful
method to describe signals based on the sparsity and redun-
dancy of signal representations [22] and it is efficient in dealing
with visual information contained in natural scenes [23]. Since
sparse representation is closely related to the cognitive behavior
of HVS, it has been an efficient approach in image quality as-
sessment [24], [25]. In this paper, inspired by the concept of
sparse representation and visual primitive [26], we propose a
RR-SIQA metric based on binocular perceptual information. In
the proposed RR-SIQA, both monocular and binocular cues are
taken into account. To measure monocular loss, we first exploit
sparse coding to calculate the visual perceptual information for
each view’s image, which is termed as entropy. Then, monoc-
ular loss is expressed as the difference of visual perceptual infor-
mation between the original and distorted two views’ images. To
measure binocular loss, the mutual information of both view’s
images is calculated. Similar with the monocular loss, binoc-
ular loss is expressed as the difference of mutual information
between the original and distorted two views’ images. Finally,

both monocular loss and binocular loss are combined into one
quality score by a perdition function.
The rest of this paper is organized as follows. Section II elab-

orates the proposed SIQA metric. Section III provides the ex-
perimental results and Section IV concludes the paper.

II. THE PROPOSED SIQA METRIC

The framework of the proposed SIQA metric is shown in
Fig. 1. Taking the instance of a typical 3D visual communication
system, at the transmitter side, binocular perceptual information
(BPI) which consists of each view’s entropy and both views’
mutual information are calculated. An off-line visual primitive
set (VPS) is used in BPI calculation. Note that VPS is con-
structed by the sparse representation model and is independent
of the testing stereoscopic image. The BPI of original stereo-
scopic image is transmitted to the receiver side by an ancillary
channel. At the receiver side, by loading the same off-line VPS,
the distorted stereoscopic image’s BPI is calculated. A percep-
tual loss vector is constructed by the difference between the
original and distorted stereoscopic images’ BPIs. Finally, the
quality score is computed using the perceptual loss vector d
by a prediction function . More details will be described in
the following subsections.

A. Visual Primitive Set
To obtain compact representation from the observed signal,

sparse representation can adaptively account for all or most of
the information of a signal with the linear combination of a small
number of elementary signals [24]. As for an image, its visual
information can be efficiently described by its visual primitives
[26]. Specifically, for a given image, the basic units of sparse
representation are the patches. The vector representation of the
image and image patches of size at location

are mathematically denoted by and
, where is the number of the image vectors, is the size

of each patch vector, and is the number of patches in an image
[27], [28]. Then, we have

(1)

where is a matrix operator that extracts patch
from . Note that patches are usually overlapped, and such
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Fig. 2. Illustration of VPS construction.

patch-based representation is highly redundant. Therefore, the
recovery of from becomes an over-determined system,
from which it is straightforward to obtain by the least-square
solution [29] as follows:

(2)

which is nothing but an abstraction strategy of averaging all the
overlapped patches.
Given patches , the purpose of dictionary learning is to

search the best possible dictionary for the sparse representation
of .
In our case, since the given patches are extracted from

a number of images, the optimal dictionary is able to represent
these images in the sparsest way. If image samples are large
enough, the dictionary can represent any image efficiently. We
regard the dictionary as visual primitive set (VPS) which is the
basis to express visual information for any image. In sparse rep-
resentation, the dictionary learning process is formulated as

(3)

where is an over-complete dictionary matrix that
contains visual primitives. The vector is coefficient
vector for patch . is the norm, which counts the
non-zero entries of the vector , and is the constraint of the
non-zero number of . In the experiment, is set to 256 and
is set to 3.
Generally, (3) can be efficiently solved by the K-SVD algo-

rithm [27]. How to construct VPS is shown in Fig. 2. In our
implementation, 30 reference images in LIVE IQA database1
are chosen as image samples. Each image is decomposed into
patches. All the patches are concatenated to form the patches

. VPS is trained from the patches by the dictionary
learning algorithm.

B. Binocular Perceptual Information Expression

The visual primitives in VPS are the basic visual perceptual
elements to represent an image. How to use visual primitives
to express visual perceptual information of an image is still a
problem that needs to be solved. In this paper, we attempt to use
the distribution statistics of visual primitives in left and right

1“LIVE image quality assessment database release 2,” [Online]. Available:
http://live.ece.utexas.edu/research/quality

views’ images to quantify visual perceptual information of a
stereoscopic image.
For a stereoscopic image , the visual primitive set ( ) ap-

proximates as

(4)

where denotes the th column of , is the coefficient matrix
of , which is computed by the orthogonal matching pursuit
(OMP) algorithm [30]. is the number of patches in . Assume

is the th visual primitive of , where is the number of
visual primitives in . The sum of coefficients that is used
to reconstruct both the th patch in left view and the th patch
in the right view can be expressed as

if and
otherwise

(5)

where , , are the coefficients of
in the th patch of left view’s image and the th patch of right
view’s image, respectively. Then, the sum of coefficients that

is used to reconstruct the patches in both the left view and
the right view is calculated by

(6)

Then, the joint probability density of visual primitive for the
left view’s image and the right view’s image is calculated
by

(7)

The probability density of visual primitive for is calcu-
lated by

(8)

where is the sum of coefficients that are used by to
reconstruct . The probability density of visual primitive to
reconstruct can be calculated in the same way.
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According to Shannon theory, entropy is the uncertainty of a
single random variable, which is used to represent the informa-
tion quantities. Mutual information is a measure of the depen-
dence between the two random variables. In this paper, entropy
is used to represent the monocular visual perceptual information
of one view’s image. Mutual information of two views’ images
is used to represent the binocular visual perceptual information.
The entropy of can be calculated by

(9)

In the same way, we can obtain the entropy of .
The mutual information of two views’ images can be calcu-

lated by

(10)

where .
Therefore, the binocular perceptual information

(BPI) of a stereoscopic image can be represented by
.

C. Quality Calculation

As aforementioned, when observer watches an asymmetric
distorted stereoscopic image, both monocular and binocular
visual perceptual information have some loss. The value of
visual perceptual information loss reflects the distortion level
between the original and distorted stereoscopic images. The
loss of binocular perceptual information can be represented by

.
and are binocular
perceptual information of original and distorted stereoscopic
images, respectively. Specifically, for the left view’s distortion,
the loss of visual perceptual information is computed by

(11)

where and are the original and distorted left view images,
respectively. Similarly, the loss of right view’s visual perceptual
information is computed by

(12)

where and are the original and distorted right view im-
ages, respectively. The loss of binocular perception information
is computed by

(13)

The BPI difference between the original and distorted stereo-
scopic images can be expressed as a perceptual loss vector

. The quality score of a stereoscopic
image is computed using the perceptual loss vector by a pre-
diction function . That is, the final quality score is given by

(14)

where is trained in advance using support vector regression
( -SVR) [31]. Here, takes as input and pro-
duces output as a corresponding quality score.
In the -SVR, the unknown function is constructed by

linearly combining the results of a nonlinear transformation of
the input samples

(15)

where and are the Lagrange multipliers, and is
the kernel function to perform nonlinear transformation. Here,
we choose the radial basis function (RBF) kernel as follows:

(16)

where is a positive number, which represents the variance of
the kernel function. In solving the SVR, there are two param-
eters should be determined. The -insensitive loss function is
used to ignore errors that are smaller than a certain threshold,
and the penalty parameter is used to control the complexity of
the prediction function . In the experiment, the regression of
the prediction function is performed using the LIBSVM.2 Three
parameters are finally fixed by a grid search, e.g. ,

, .

III. EXPERIMENTAL RESULTS

A. Experiment Setting
To the best of our knowledge, there are only one public data-

base for asymmetric distortion assessment of SIQA. The LIVE
PhaseII 3D IQA database consists of 8 reference stereoscopic
images and 360 distorted stereoscopic images with difference
mean opinion scores (DMOS) [7], [10]. The database provides
5 distortion types, including White Noise (WN), JP2 K, JPEG,
Gaussian Blur (GB), and Fast Fading (FF). For each distortion
type, every reference stereopair is processed to create three
symmetric distorted stereopairs and six asymmetric distorted
stereopairs. Therefore, each distortion type has 72 distorted
stereopairs.
To better divide the training and testing set for each distor-

tion type stereopairs, we use 100-times 9-fold cross validation in
the performance evaluation. Eight-ninths of all distorted stere-
opairs are randomly chosen for training, the rest stereopairs are
used for testing. Three popular evaluation criteria are chosen to
compare the predicted quality score after nonlinear regression
with DMOS, e.g. Pearson linear correlation coefficient (PLCC),
Spearman rank order correlation coefficient (SROCC) and root
mean square error (RMSE). A good objective method should
have high PLCC and SROCC values but low RMSE value.

B. Performance Evaluation
To evaluate the efficiency of the proposed SIQA metric, we

choose seven state-of-the-art objective metrics for comparison,
i.e., Benoit et al.’s metric [3], You et al.’s metric [5], Chen
et al.’s metric [7], Zhou et al.’s metric [9], Shao et al.’s metric
[8], Hewage et al.’s metric [15], and Xu et al.’s metric [20].

2“LIBSVM: A library for support vector machines,” [Online]. Available:
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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TABLE I
PERFORMANCE COMPARISON OF PLCC ON LIVE PHASEII DATABASE

TABLE II
PERFORMANCE COMPARISON OF SROCC ON LIVE PHASEII DATABASE

Fig. 3. PLCC and SROCCwith different fold cross validation on LIVE phaseII
database.

Note that Hewage et al.’s and Xu et al.’s metrics are RR-SIQA
methods, while other metrics are FR-SIQA methods. The
performance comparisons of PLCC and SROCC values for
each distortion type on the LIVE phaseII database are listed
in Table I and Table II, where the indicator that gives the best
performance is highlighted in bold.
As shown in Table I, from the values of PLCC in the last

line, the proposedmetric achieves the best performance. Among
individual distortion types, the proposed metric performs best in
JPEG and GB distortion types. It should be noted that only Zhou
et al.’s metric and the proposed metric adopt the same 9-fold
cross validation method.

TABLE III
PERFORMANCE OF ENTROPY AND MI ON LIVE PHASEII DATABASE

From the values of SROCC in Table II, the proposed metric
ranks three for all distortion types. In sum, Chen et al.’s metric,
Zhou et al.’s metric and the proposedmetric have close perdition
accuracy. Since Chen et al.’s, Zhou et al.’s, Shao et al.’s and Xu
et al.’s metrics all take the monocular and binocular perception
properties into account, they achieve better prediction perfor-
mance than the other SIQA metrics.
When compared to RR metrics: Hewage et al.’s metric and

Xu et al.’s metric, the proposed metric achieves better perfor-
mance both on PLCC and SROCC.
In addition, we also used 100-times cross validation to test

the proposed metric under different proportion of training set
and testing set. The same SVR parameters are applied. The ex-
perimental result is shown in Fig. 3. The blue line is the PLCC
result, while the red line is the SROCC result. It can be seen that
when the proportion is larger than 4/9, the PLCC and SROCC
values change slightly.
Table III compares the performances only usingMI factor and

only using both views’ entropy factors and their combination. It
can be seen that both views’ entropy factor contributes more
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prediction accuracy than MI factor. The combination achieves
the best performance in the overall evaluation. It can be easily
understood from the utilization of monocular and binocular cues
point of view. The MATLAB source code of RR-SIQA and the
experimental results are publicly available online at http://www.
escience.cn/people/qifeng/index.html.

IV. CONCLUSION
This paper proposes a RR-SIQAmetric based upon the binoc-

ular perceptual information (BPI). In the proposed SIQAmetric,
a visual primitive set is firstly constructed by offline training on
the LIVE IQA 2D database. Then, according to the distribu-
tion statistics of visual primitives, entropy of each view’s image
and their mutual information are calculated by sparse coding
and representation model. These three numerical indicators con-
sist of BPI, which is used to describe monocular perception
and binocular perception of a stereoscopic image. The differ-
ence of the original and distorted stereoscopic image’s BPIs is
taken as a perceptual loss vector. The perceptual loss vector is
used to compute the quality score for the stereoscopic image
by a prediction function which is trained using support vector
regression.
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