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ABSTRACT
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Methods for Cellular Structures
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ABSTRACT

With the rapid advancement of biomedical research, electron microscopy (EM) has emerged
as a core technique for resolving the ultrastructure of organelles and elucidating their biolog-
ical functions. In recent years, the development of high-resolution EM imaging technologies
has enabled the acquisition of large-scale, nanoscale image datasets. However, the automated
analysis of such massive datasets—particularly the accurate and efficient segmentation of EM
images—continues to face significant challenges. These include high image noise, low con-
trast, structural complexity of biological tissues, and the scarcity of high-quality annotated
data. Consequently, leveraging advanced computational methods—especially deep learning
techniques—to enhance the accuracy, robustness, and generalization ability of EM image seg-
mentation has become a critical research direction in the field of biomedical image analysis.

To address these challenges, this study focuses on the segmentation of EM images, propos-
ing a series of innovative approaches ranging from task-specific to general-purpose segmen-
tation models for biological cellular structures. These include perceptual consistency-aware
segmentation, uncertainty correction based on evidential theory, multi-semantic adaptation,
and self-supervised pretraining. Key contributions are as follows:

First, to tackle the issue of structural discontinuity in cell membrane segmentation, a
method based on perceptual consistency evaluation is proposed. A novel metric, the Perceptual
Hausdorff Distance (PHD), is introduced and integrated into a segmentation network called
PS-Net. By employing a global-local collaborative learning strategy, the method significantly
improves the completeness and accuracy of membrane segmentation. Moreover, eye-tracking
experiments are conducted to analyze human visual attention patterns during segmentation
assessment, leading to refined evaluation standards. Experimental results demonstrate that
the proposed method substantially enhances segmentation completeness across several public

EM datasets and more accurately captures biological tissue boundaries compared to traditional
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approaches.

Second, to address the uncertainty in 3D mitochondrial segmentation, a method based
on evidential uncertainty correction is developed. Using Dempster-Shafer theory, the method
quantifies model prediction uncertainty and introduces a multi-scale neighborhood attention
module to suppress uncertainty propagation. Additionally, morphological constraints are in-
corporated to improve continuity modeling of elongated structures, thereby enhancing segmen-
tation coherence and stability. Experimental evaluations reveal that this method effectively re-
duces mis-segmentation areas and achieves state-of-the-art performance across multiple chal-

lenging EM datasets, exhibiting strong generalization under varied imaging conditions.

Third, to overcome generalization bottlenecks in multi-semantic segmentation tasks, a
morphology-guided fine-tuning approach is proposed based on a segmentation foundation
model. Given the coexistence of diverse structures and significant scale variation in EM im-
ages, a long-range dependency modeling framework is built upon the 3D Mamba-2 archi-
tecture. By integrating local curvature and texture descriptors, the method enhances domain
adaptability and optimizes segmentation of various semantic structures such as membranes,
mitochondria, and nuclei. Experimental results show superior performance across multiple
EM datasets, particularly in cross-dataset generalization, effectively addressing segmentation

needs for different biological tissues.

Fourth, in response to the challenge of large-scale data heterogeneity, the first general-
purpose multi-task foundation model for EM images, named Omni-EM, is proposed. Trained
on a large-scale heterogeneous EM dataset using self-supervised learning, Omni-EM builds a
vision encoder (EM-ViT) and integrates a U-shaped architecture to unify diverse segmentation
tasks. The model demonstrates strong zero-shot generalization and task adaptability across
several public datasets. Additionally, an unsupervised fine-tuning strategy is introduced to
further improve performance on novel datasets. Omni-EM offers a unified and efficient solution

for EM image analysis and exhibits broad application potential.

Comprehensive experimental evaluations on multiple public EM datasets confirm that
the proposed methods outperform existing state-of-the-art approaches in terms of segmenta-
tion accuracy, generalization, and computational efficiency. These advancements significantly
improve the automation of EM image analysis and reduce the reliance on manual annotation
in biomedical research. The findings contribute to accelerating scientific discovery in fields
such as neuroscience, cell biology, and pathology by providing robust computational support.

Looking ahead, the integration of large-scale pretraining, self-supervised learning, multimodal
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fusion, and generative Al is expected to drive EM image segmentation toward a more intelligent
and efficient analytical paradigm, enabling more precise and comprehensive data interpretation

for life science research.

KEY WORDS: Electron microscopy, image segmentation, deep learning, uncertainty rectifi-

cation, foundation model



