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Abstract—Object detection plays a fundamental role in many
content-based video systems while it is still challenging to
preserve a reasonable accuracy and a fairly fast processing
speed at the same time. In this paper, we propose a new object
detection framework which utilize information from pixel domain
and compressed domain jointly. Various pixel-level detection
algorithms can be embeded in it and by segmenting the moving
region out of the background with the Hit-times Map (HTM), we
can save a lot of time since the search area has been restricted to
a relatively small region. Once the pixel-level detection finishes,
we perform an additional regulation process to refine the coarse
detection result employing both temporal consistency and spatial
compactness in MV field. The proposed method is tested on
a number of standard sequences and achieves a considerable
improvement both in detection accuracy and processing speed.

Index Terms—object detection, motion segmentation, com-
pressed domain analysis, video coding, motion vector

I. INTRODUCTION

Object detection is one of the most important components
in computer vision and is also the base step of some up-
level analysis, such as action recognition, human-computer
interaction, surveillance, etc. Although it has been studied for
several decades and obtained huge progress in recent years, it
remains a challenging work. Many different factors affect the
performance of an object detection algorithm and there is no
single method that perform good enough in all situations.

Based on which domain the algorithms work in, early works
on object detection mainly fall into two categories: pixel do-
main methods and compressed domain methods. In general,
the former approaches[1–7] will achieve a higher accuracy but
also appear to be more computational-demanding. Moreover,
most video contents stored in hard disk or transmitted over
networks nowadays are not raw pixel data but some kind of
encoded bitstreams. Thus, the former approaches require addi-
tional computational cost to fully decode the video bitstreams.
On the contrary, the compressed domain approaches[8–13]
usually process much more faster by utilizing only encoded in-
formation such as motion vectors(MVs) and DCT coefficients.
Despite the processing speed advantage that the compressed
domain algorithms owned, their performance of object detec-
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tion are often much worse than the pixel domain algorithms.
Thus, most compressed domain algorithms are only applicable
in some restricted simple scenes.

Feature representation is very important for object detection
and Histograms of Oriented Gradients (HOG)[1] is probably
the most popular method in recent years. It is also the basis
of a number of other state of the art algorithms including
Deformable Parts Model (DPM)[2] and the Exemplar-SVM
model[4]. Sparse coding provides another way for feature
representation[3, 5, 6]. Ren et al. present a method named
Histograms of Sparse Codes (HSC)[3] and state it outperforms
HOG on some benchmarks like PASCAL and INRIA. Wang et
al.[7] propose a simple yet effective coding scheme to generate
the local feature representation. Moreover, with only linear
classifier, this feature coding scheme can achieve a remarkable
performance on many benchmarks.

While in the compressed domain, we do not have much
information about the visual features in each frame. Thus, we
need to use the MVs very carefully. Fei et al.[10] use mean
shift clustering to segment moving region from background
image in H.264 bitstreams. They apply a spatial-range mean
shift to find motion-homogenous region and then smoothes
the region by temporal-range mean shift. Probabilistic Spa-
tiotemporal Macroblock Filtering (PSMF) and partial decod-
ing are used in [9] to detect and track multiple objects in
H.264—AVC Bitstream Domain. There exists another group
of methods addressing the detection problem with Markov
Random Field (MRF) models. In [12], MVs are quantized into
several representative classes and then obtain the MRF label
using a maximum a posteriori estimation. The boundaries of
segmented moving regions are refined using color and edge
information. Khatoonabadi et al.[13] propose a new Spatio-
temporal Markov Random Field (ST-MRF) model which nat-
urally integrates the spatial and temporal aspects of the objects
motion.

This paper aims to provide a new detection framework
while preserving high accuracy and fast processing speed.
We achieve this by combining the two conventional groups
of approaches together. First, a fast moving segmentation
operation is performed using the Hit-times Map (HTM) in
compressed domain. Second, backing to the pixel domain, we
employ a conventional pixel domain detection algorithm to
search posible targets in the moving region. Third, a regulation



process combining temporal consistency and spatial compact-
ness of MVs is performed on the coarse detection results. In
our experiments, the final HTM-based object detector shows
a significant improvement both in detection accuracy and
processing speed comparing with the original pixel domain
algorithms.

This paper is orginized as follows. Section II presents the
details of our proposed method, including how to obtain
reliable MVs, how to segment the moving region, etc. Section
III demonstrates the evaluating experiments, the corresponding
results and some comparisions with other methods. The final
conclusions are drawn in Section IV.

II. PROPOSED METHOD

In order to preserve a high detection accuracy and obtain a
much faster processing speed, we propose to exploit infor-
mation from pixel domain and compressed domain jointly.
Fig.1 shows the framework of our proposed method briefly.
In each frame, we get the MVs and raw pixel data from
HEVC bitstreams and divide them into two control branch
corresponding to the compressed domain and pixel domain
respectively. The former branch first approximates MVs of
intracoded blocks, removes the unreliable MVs and estimates
the moving region as the foreground mask. Then, this fore-
ground mask can be employed to determine the potential
object region where the pixel domain detection algorithm will
search later. This operation can usually reduce more than half
unnecessary computational cost comparing with the original
pixel domain detection algorithm which need to search the
entire image. After the detection algorithm finishes, there is a
post-refinement step to optimize these coarse results.

In our experiments, it is assumed that the background
regions of the videos are static and all the target objects are
moving all the time. Moreover, the MVs are extracted from
HEVC encoded bitstreams. Since our method is based on some
existing pixel-level detection algorithms, we choose two of
the most popular approaches, HOG[1] and Deformable Parts
Model (DPM)[2] to test the improvement in detection accuracy
and processing speed with our hybrid framework. Despite
the two popular pixel domain detection algorithms and the
HEVC coding standard we have chosen in our experiments,
some other algorithms and coding standards should also be
applicable.

Here we define some notations before going forward. It is
assumed that the frame is divided into many small blocks(4x4
in our experiments) and the MV we get from the compressed
bitstreams are assigned to each of these blocks. For instance,
in frame t, B(x,y) denotes the block located at (x ∗ b, y ∗ b),
with its width and height both equal to the block size b (1 ≤
x ≤ w/b, 1 ≤ y ≤ h/b and w, h are the width and height
of video frame respectively). In this case, the corresponding
MV assigned to B(x,y) is V(x,y), where V(x,y) ∈ R2. Ideally, a
block with a zero MV should belong to the background region,
which means it doesn’t has any change comparing with the
reference frame, and the block with a nonzero MV should
belong to a moving object.

Fig. 1. Flowchart of the proposed method

A. Moving Object Segmentation

For the purpose of reducing the search area of pixel domain
object detection algorithms, we need to extract moving region
from background first. But it is really dangerous to take the
MVs as the foreground region directly since there exists a
lot of unreliable MVs among them. After observing a large
number of realworld scene sequences, we find that there are
mainly three different types of MVs which make it difficult
to get the moving region directly: intracoded MVs, random
noise and some strangely gathered nonzero MV groups.

Intracoded blocks with no associated MVs may randomly
rise up both in foreground and background regions. Here, we
employ an effective method called Polar Vector Median(PVM)
proposed in [13] to assign proper values to these blocks.

Noise data exists in almost any realworld data and in
general, we can elimate them with some filtering methods.
But things become a bit different when the strange MV groups
appear. They have larger size and sometimes even comparable
to the target objects. Thus, the small region filtering methods
do not work any more. Fig.2(a) shows the existance of these
annoying MVs. Intercoded blocks are labeled with yellow
color and intracoded blocks are labeled with orange color.
Small region noise MVs have already been elimated. Notice
that a number of strange MV groups randomly appear both in
foreground region and background region.

(a) (b) (c)

Fig. 2. Hit-times Map. (a) Single frame MVs: intercoded blocks are indicated
by yellow color and intracoded blocks are indicated by orange color. (b) HTM
of M frames. (c) Foreground mask.

We propose to handle these two types of ’bad’ MVs
using a new method called Hit-Times Map(HTM) based on
a hypothesis that random noise and strange MV groups share
together: they seldom rise up continusly in the sequences.
In details, we first preserve a buffer of MVs of the past
M frames(e.g., {Vt−M+1,Vt−M+2, . . . ,Vt} where t is the
current frame index). Then, the occurence times of nonzero
MVs can be used to analyse the temporal continuity of each
MV block using a simple thresholding operation. We call the
occurence of nonzero MVs in M continus frames as Hit-times
Map(HTM) and denote it as H. M is the length of a time slice



and should be small enough to prevent strong displacement
of target objects. Fig.2 gives a straightforward image of this
process: single frame MVs in Fig.2(a) are not suitable to use
directly for moving region segmentation while the HTM in
Fig.2(b) are much more reliable. The larger H(x,y) is, the more
likely B(x,y) belongs to the moving region. Thus, we can get
the foreground mask with a simple thresholding operation:

Mask(x,y) =
{

1 if H(x,y) ≥ θH
0 otherwise (1)

where θH is a constant parameter and we usually assign it
with the value of 2

3M or 3
4M .

B. Pixel Domain Object Detection and Result Refinement

Since the pure pixel domain detection approaches often have
high computational cost, it will be useful if we can restrict the
search region only to the moving region instead of the entire
image. And this is straightforward after extracting the moving
region mask in the previous step: use a graph connected
components search mechanism(e.g. Depth First Search) to find
every disjoint region in Mask and for each disjoint region,
find the smallest rectangles that can cover it. Thus, the search
area for pixel domain detection algorithm is restricted to the
moving region and we can avoid wasting time searching the
entire image.

After the pixel domain detection algorithm finishes, there
may still exists a number of false detections. We need to
refine each detection result about its confidence score and
position. For each detection result Y i = (ri, si), where
ri = (rix, r

i
y, r

i
w, r

i
h) is the target rectangle and si is the

confidence score, we have two steps to perform:
1) Regulate the confidence score. First, we need to com-

pute the proportion of its nonzero MV blocks defined
as

pi =
#{(x, y) | B(x,y) ∈ ri & V(x,y) ̸= 0}

#{(x, y)|B(x,y) ∈ ri}
(2)

where # means the number of elements in the set.
If pi is extremely small(e.g. 10%), it’s reasonable to
suspect that ri is a false detection and then we add a
penalty to its confidence score. The penalty function is
defined as

Penalty(pi, si) =

{
0 if pi ≥ θp
−(C + λe−si)(θp − pi) otherwise

(3)
where θp is a the nonzero MV proportion threshold.

2) Regulate the rectangles. In order to find the similar
MV groups, we first convert the MV blocks into a graph
model G = {V,E}:

V = {B(x,y) | 1 ≤ x ≤ w

b
, 1 ≤ y ≤ h

b
} (4)

E = {(V(x1,y1),V(x2,y2)) | |x1 − x2| ≤ 1 &

|y1 − y2| ≤ 1 &

ρ(V(x1,y1),V(x2,y2)) ≤ θs}
(5)

where ρ(v1, v2) is a similarity function and θs is the
similarity threshold. ρ(v1, v2) is defined as

ρ(v1, v2) = e−∥v1−v2∥2

(6)

Second, search the connected components and the cor-
responding cover rectangles in this graph, denote as
O = {O1,O2, . . . ,On} and R = {R1,R2, . . . ,Rn}
respectively(Rj = (Rj

x, R
j
y, R

j
w, R

j
h)). Third, compute

the proportion of area that each component intersect with
ri

qj =
area(Oj ∩ ri)

area(Oj)
(1 ≤ j ≤ n) (7)

The last, update ri = (rix, r
i
y, r

i
w, r

i
h) as follows:

rix = min
j

{Rj
x | qj ≥ θq} (8)

riy = min
j

{Rj
y | qj ≥ θq} (9)

riw = max
j

{Rj
x +Rj

w | qj ≥ θq} − rix (10)

rih = max
j

{Rj
y +Rj

h | qj ≥ θq} − riy (11)

Fig.3 shows how these two steps work and the entire
refinement process is demonstrated in Algorithm 1.

(a) (b) (c) (d)

Fig. 3. Detection refinement. (a)The connected MV components in different
colors. (b-d)The refine process of detection results. Groundtruth is labeled with
red color. Rectangles with high nonzero MV proportion are labeled with blue
color and yellow rectangles correspond to low nonzero MV proportion. (b)→
(c) present the score regulation. (c)→ (d) present the shape regulation. The
new detection result is in green color.

Algorithm 1: Refinement of the Detection Result
Input: Original detection result

Y = {(r1, s1), (r2, s2), . . . , (rm, sm)}, MVs of the current
frame V .

Output: Updated detection result
Y = {(r1, s1), (r2, s2), . . . , (rm, sm)}

for i← 1; i ≤ m; i← i+ 1 do

1) pi ←
#{(x,y)|B(x,y)∈ri & V(x,y) ̸=0}

#{(x,y)|B(x,y)∈ri} ;

if pi < θp then
si ← si + Penalty(pi, si);

end
2) MV clustering to get:

O = {O1,O2, . . . ,On}
R = {R1,R2, . . . ,Rn}

Update ri using eqs. (8) to (11).
end



III. EXPERIMENTS

We evaluate the performace of our proposed method on two
different datasets:

1) Pets20121 is a well-established outdoor pedestrian
dataset and we choose three sequences in S2.L1 subset
for testing: View 001, View 005 and View 006. Each
sequence has 795 frames and the resolution of them are
768× 576, 720× 576 and 720× 576 respectively.

2) PKU-SVD-B2 is the second dataset. It is a very chal-
lenging realworld dataset. All the sequences are recorded
using the full HD(1920 × 1080) campus surveillance
cameras. We evaluate our method on two sequences and
each of them has 3000 frames.

On each sequence, we will compare the detection accuracy
of original HOG[1], DPM[2] with the new versions embe-
ded in our method(HOG+HTM, DPM+HTM). A predicted
bounding box is considered correct if it overlaps more than
40% with a ground-truth bounding box. Fig.4 demonstrates
the recall-precision curves of four sequences. It’s evident that
our method outperforms the original detection approaches a lot
both in detection precision and recall. We also record the best
F1-scores(F1 = 2 × precision∗recall

precision+recall ) that each algorithm can
achieve on these sequences. The result is presented in Table.I.

(a) (b)

(c) (d)

Fig. 4. Recall/Precision curves. (a-b) HOG vs HOG+HTM tested on Pets2012
S2.L1 View1 and Pets2012 S2.L1 View5. (c-d) DPM vs DPM+HTM tested on
PKU ch03 and PKU ch04

IV. CONCLUSION

In this paper, we present a novel hybrid object detection
framework which combines pixel domain detection methods
and compressed domain information together. Through ef-
fectively utilizing the MVs extracted from compressed video
bitstreams, our new object detection method shows not only a
faster processing speed but also a higher accuracy comparing
with the pure pixel domain approaches. We believe that
our work opens up the door for many realtime large-scale

1website of Pets2012: http://pets2012.net/
2website of PKU-SVD-B: http://mlg.idm.pku.edu.cn/resources/dataset.html

TABLE I
THE DETECTION F1-SCORE

Sequence Precision Recall F1-score

Pets View1

HOG 0.835 0.795 0.814
HOG+HTM 0.924 0.828 0.874

DPM 0.930 0.759 0.836
DPM+HTM 0.945 0.795 0.864

Pets View5

HOG 0.937 0.728 0.820
HOG+HTM 0.891 0.788 0.836

DPM 0.886 0.798 0.840
DPM+HTM 0.907 0.812 0.857

Pets View6

HOG 0.713 0.695 0.704
HOG+HTM 0.827 0.651 0.729

DPM 0.877 0.821 0.848
DPM+HTM 0.913 0.840 0.875

PKU Ch03 DPM 0.720 0.525 0.607
DPM+HTM 0.688 0.607 0.645

PKU Ch04 DPM 0.799 0.676 0.732
DPM+HTM 0.797 0.710 0.751

surveillance systems which suffer a lot with computational cost
and can be extended to more content-based video applications
in the future.
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