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Abstract

Image Quality Assessment (IQA) is a fundamental problem in image processing. It is

a common principle that human vision is hierarchical: we first perceive global structural

information such as contours then focus on local regional details if necessary. Following

this principle, we propose a novel framework for IQA by quantifying the degenerations

of structural information and region content separately, and mapping both to obtain the

objective score. The structural information can be obtained as contours by contour detec-

tion techniques. Experiments are conducted to demonstrate its performance in comparison

with multiple state-of-the-art methods on two large scale datasets.

Mathematics subject classification: 68U10, 94A08.
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1. Introduction

With the coming of information era, multimedia has become the primary carrier of infor-

mation in our daily life. Digital images, as an important part, attracts tremendous attention.

However, digital images are subject to a wide variety of distortions during the procedure such

as acquisition, processing, compression, storage, transmission, and display. Image Quality As-

sessment as one of the fundamental problems attracts tremendous interest in recent years.

Generally IQA methods are classified into two categories: one is subjective assessment by

humans and the other is objective assessment by human-designed algorithms. Image quality de-

pends on its ultimate receiver, therefore subjective evaluation by humans is a correct criterion.

Nevertheless, it’s time-consuming, expensive and unable to be implemented in a real-time sys-

tem. The objective assessment aims to develop computational models to automatically predict

the image quality in consistent with subjective assessment.
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According to the availability of reference source, objective assessment is classified as full-

reference, reduced-reference and no-reference. In this paper, we only focus on full-reference

methods. The interested readers are referred to the book of Wang and Bovik [1] for more

details.

Due to the availability of datasets with human-labeled groundtruth, a variety of full-reference

IQA methods are proposed in last decade. Existing approaches could roughly be divided into

the following categories: the statistic of errors based model (e.g. Mean Squared Error (MSE),

Peak Signal to Noise Ratio (PSNR)), Human Visual System (HVS) based model [2-4], structural

similarity based model [5, 6], information theory based model [7, 8], and visual saliency based

model [9-11]. Most approaches evaluate local quality at pixels based on patches, and generate

a quality map after all pixel evaluation is finished.

In our opinion, a pixel as a low level representation unit is too fine to assess image quality.

Human visual perception is adapted for extracting structural information such as contour and

segmentation. The perceptual process of images is hierarchical: human first perceive global

structural information such as contours and further focus on local regional details such as

texture. In this paper, we propose a contour and region based framework for full-reference IQA.

Our model separates an image into structure part and local regions. We detect the contour for

representing structure, and use local descriptors for representing local region content. Existing

models weight each pixel by information content in a low level. As opposed to this, we assess

image quality in a higher level: on the one hand, we consider the contour as a whole and try

to quantify the degeneration of the contour, on the other hand, we measure the degeneration

of the region content. Finally we map both to obtain the objective score.

To evaluate the performance, we test our model on two large-scale benchmark dataset-

s, LIVE2 [12] and TID2013 [13]. We demonstrate its promise through the comparison with

multiple state-of-the-art objective methods.

The remainder of this paper is as follows. In Section 2, we review the related works. Next,

we introduce our model in detail in Section 3. Section 4 covers the algorithms of two modules.

We present experiments in Section 5, and discuss in Section 6.

2. Related Works

In this section, we first cover the review of full-reference IQA, contour detection and image

segmentation, then introduce the most related work to our model.

2.1. Full-reference Image Quality Assessment

Traditional full-reference methods, including MSE, PSNR, base on the statistic of errors.

They have been the dominant quantitative metrics in image quality assessment for decades

due to “their simplicity to calculate, clear physical meanings, and mathematical convenience

in the context of optimization” [5]. But these methods focus on the difference on single pixel

independently, ignoring the fact that neighbouring pixels in an image are not independent

but highly correlated. Furthermore, spatial structure in an image contains abundant visual

information. So it’s inevitable these metrics don’t correlate well with perceptual image quality.

To solve above problems, researchers make great efforts to take the characteristics of HVS

into account. Representative work are referred to Just Noticeable Difference (JND) model [2],

Noise Quality Measure (NQM) [3], Visual Signal-to-Noise Ratio (VSNR) [4] and so on. JND

penalizes the errors in accordance with visibility, considering the spatial contrast sensitivity
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and contrast masking. NQM and VSNR emphasize the sensitivity to luminance, contrast, and

frequency content. Overall HVS-based model attempts to model the properties of HVS, and

makes an improvement compared with traditional methods. Nevertheless, HVS is a complex

and highly nonlinear system, we have little knowledge to model its properties, hence it’s still a

challenging problem. This issue limits the development of HVS-based methods, but subsequent

methods all take use of the knowledge of HVS implicitly.

Under the assumption that human visual perception is highly adapted for extracting struc-

tural information from a scene, Wang et al. [5] propose the structural similarity index (SSIM).

SSIM tries to measure the degradation of local structural information as the perceptual quality

and surpasses the traditional methods across-the-aboard. Later, Wang et al. [6] propose a

multiscale extension of SSIM which produces a better result than SSIM in single scale.

From the view of information theory, Sheikh et al. [7] regard the full-reference quality as-

sessment as the measure of information fidelity, which measures the shared information between

the reference image and the distorted image. They propose the Information Fidelity Criterion

(IFC) and its extension, Visual Information Fidelity (VIF) [8].

Another line is to adopt appropriate strategies at the pooling stage of quality score. Wang

and Li [9] propose a modified version of SSIM weighted by information content. Zhang et al.

[10] choose phase congruency as a low-level feature and a weighting function to derive a single

similarity score. In their later work [11], they replace the phase congruency with visual saliency,

proposing a metric called Visual Saliency-Induced (VSI), which is confirmed to get beneficial.

2.2. Contour Detection and Image Segmentation

Contour detection and image segmentation are related but not identical problems. They

both correspond to the edges of objects in some way. However, contour detection may produce

discontinuous result but image segmentation which aims to partition an image into several

regions, leads to closed result. There are different lines of approaches to investigate those

problems.

Traditional methods of contour detection base on first-order and second-order derivative

of the gray-value of neighborhoods. Local operator methods including Prewitt, Sobel, Log,

Roberts and Canny operator [14], detect contour by convolving a gray-scale image with special

local operators. Later, filters of multiple scales and orientations are adapted to describe the

contour. Morrone and Owens [15] propose the Oriented Energy model by using quadrature

pairs of even and odd symmetric filters to detect contour.

In recent years, researchers try to combine the features in different channels and detect

contour in a learning method. Martin et al. [16] propose the Pb feature which combines

gradient in brightness, color, and texture channels. They use a logistic regression to predict the

probability of a pixel belonging to the contour. Inspired by their work, subsequent researches

go further. In [17], a multi-scale extension of Pb is proposed to work better. Arbelaez et al. [18]

integrate multiple local cues into a globalization framework by spectral clustering, and recover

regions from a contour detector. Ren and Bo [19] compute Sparse Code Gradients (SCG) which

measures contrast using patch representations automatically learned through sparse coding.

On the other hand, different approaches have been proposed to segment images.

Image threshold segmentation is a simple and common method based on the threshold

of the magnitude of an image. It’s appealing for simplicity to calculate and high efficiency.

Researchers have developed many variants such as global threshold, adaptive threshold and so

on. However it’s sensitive to noise and fails in complex images.
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In recent years, some complex and robust algorithms have been proposed. The region-based

model integrates features such as color, texture, shape, then segments pixels into different

regions. Region growing [20] is representative. It initializes segmentation with a seed set, then

merges similar pixels or regions step by step.

The graph-based model, e.g. [21], regards the image segmentation problem as a min-cut

problem in mathematics. Pixels in an image are treated as nodes, and the weight on edges

measures the dissimilarity between pixels. Furthermore, spectral graph theory is proposed to

integrate global image information into the grouping process. Shi and Malik [22] propose the

normalized cut criterion to “measure both the total dissimilarity between the different groups

as well as the total similarity within the groups”.

2.3. Existing Contour and Region Based Model for IQA

In some variants of SSIM, extra information of contour and region is utilized. Three com-

ponents weighted SSIM [23] pools quality score by assigning different weights to different type

(edge, texture, smooth area) of local region.

Similar idea is applied in video quality assessment. Pessoa et al. [24] introduce a region-

based objective measurement for video quality assessment. They segment natural scenes into

plane, edge and texture regions with different objective parameters. Then, a logistic regression

is applied to approximate the relationship between the objective parameters and the subjective

impairment. Telecommunications Research and Development Center proposes the CPqD-IES

algorithm [25] which measures the objective impairment on plane, edge, and texture regions

likewise.

Our model is inspired by Guo et al. [26]. They propose the primal sketch model, where they

use sparse coding model and Markov random field model for representing geometric structure

and stochastic texture respectively. They use primal sketch model to represent real images and

provide a lossy image coding scheme.

3. Contour and Region Based Framework for IQA

Our model separates an image into structure part and local regions. Specially, we detect the

contour for representing the structure, and use local descriptors for representing local region

content. For each component, we quantify the degeneration by measuring the dissimilarity

between the reference image and the distorted image.

3.1. The Representation of Image Contour

With the availability of public datasets which offer human-marked groundtruth contours,

various approaches of contour detection are able to be compared with each other. To keep

consistent with human perception as much as possible, we try several top-ranking algorithms

on the Berkeley benchmarks [18] and finally select Ren’s method [19] which has the highest

score.

Built on the top of gPb [18], they replace hand-designed features with representation au-

tomatically learned through sparse coding. Orthogonal Matching Pursuit [27] and K-SVD [28]

are taken to learn the dictionary and extract sparse codes at every pixel. They pool the sparse

codes on the pixels over all scales for each orientation. Afterwards power transforms are applied

before classifying them with a linear SVM.
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The detected contour is represented as a matrix, where each entry denotes the probability

of a pixel being the contour. A threshold is set to obtain the binary map of the contour. Figure

3.1 shows an example. (a) is the reference image “ocean” from LIVE2 database. (b) is the

distorted image. (c,d) are the contours of (a,b) detected by Ren’s method accordingly. (e,f)

are the binary maps of the contours. The difference between the detected contours reveals the

degradation of structure.

3.2. Measuring the Dissimilarity between Contours

To measure the dissimilarity between two contours, we choose shape context [29] as shape

descriptor. The shape context captures the spatial distribution of the shape relative to the

reference point on the contour. It’s appealing for invariance to scaling, rotation, translation,

without the requirement that the contour must be closed.

The processing pipeline includes the following steps:

First, for each contour, sample N points on the contour uniformly to obtain a sample set.

Second, for each point in the sample set, we can construct a vector set from this point to

the other N − 1 points. This vector set describes the spatial distribution of the shape relative

to the point. To get a compact and discriminative descriptor, the histogram of the relative

coordinates of the other N − 1 points is computed.

Third, for all pairs of points p on the first contour and q on the second contour, calculate

the matching cost Cp,q, which comprises of the shape context term CS and local appearance

term CA by

CS =
1

2

K∑
k=1

[g(k)− h(k)]2

g(k) + h(k)
, (3.1)

CA =
1

2

∥∥∥∥( cos(θp)

sin(θp)

)
−
(

cos(θq)

sin(θq)

)∥∥∥∥ , (3.2)

Cp,q = αCS + (1− α)CA, (3.3)

where g(k), h(k) denote the two K-bin (normalized) histograms, θp, θq denote the tangent ori-

entations of two points on the images. CS measures the difference on spatial distribution by χ2

distance [30] and CA measures the difference on local orientation. α balances their contribution.

Finally, given the set {Cp,q} between two contours as the weights, solve the weighted bipar-

tite graph matching problem to get optimal matching π∗ and the minimum of the total cost

SC as (3.4-3.5).

SC =
∑
i

Ci,π(i), (3.4)

π∗ = argminπSC, (3.5)

where π is a permutation of 1, 2, · · ·N .

In our experiment, to improve efficiency, we cut the binary map into blocks, calculate the

matching cost between the binary maps block-by-block and use average pooling on non-zero

entries. The dissimilarity score of contour DSC is defined as

DSC =

∑
i SCi∑

i ISCi>0
, (3.6)
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(e) (f)

(g) (h)
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(i) (j)

(k)

Fig. 3.1. Calculate the dissimilarity between contours. (a) reference image. (b) distorted image. (c,d)

contours detected by Ren’s method. The value of each pixel predicts the probability of the boundary.

(e,f) the binary maps of the contours by threshold 0.1. (g,h) the block of the first row of the ninth

column of (e,f) accordingly. (i,j) the sample sets with the orientation. The arrow shows the tangent

orientation of the point on the image. (k) the matching of two contours. Black line connecting two

points reflects the correspondence.

where I is the indicator function whether SCi is nonzero. Higher DSC means more severe

degeneration in the view of the contour.

Figure 3.1 demonstrates the whole flow. (h) has similar structure with (g). In (k) most

point pairs are well matched and there are few outliers. The match cost SC of this block is

0.18 and DSC of the distorted image is 0.55.

3.3. The Representation of Region Content

Image segmentation reduces the complexity for representation of images by clustering mil-

lions of pixels into hundreds of regions. Every region corresponds to the whole or parts of

objects, provides various domains for details such as color, texture, and complements the rep-

resentation with the contour.

We use the gPb-ucm [18] to segment images. This method integrates multiple local cues into

a globalization framework by spectral clustering, and recovers hierarchical segmentations from

a contour detector. More specifically, it carries the Oriented Watershed Transform to take the



710 C. HUANG, M. JIANG AND T.T. JIANG

contour signal to produce initial regions. Then an agglomerative clustering method proceeds

to construct hierarchical segmentations from the boundaries of the initial regions. Figure 3.2

(b) is the segmentation of (a) which has been segmented into more than twenty regions.

(a) (b)
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(d)

Fig. 3.2. The representation of region content. (a) original image. (b) the segmentation. 5th and 11th

regions are labeled. (c,d) the histograms of the 5th and 11th region. The x-axis represents for the

index of visual words, and the y-axis represents for the number of the visual words.

Within each region, local descriptors are extracted and pooled for the representation of

region content. Scale Invariant Feature Transform (SIFT) [31] is a popular method which

extracts distinctive invariant features from images. In this paper, we use dense SIFT [32], a

variant of SIFT as local descriptors. It should be pointed out that original SIFT and dense

SIFT both operate on gray-scale images.

It’s improper to make use of the full set of dense SIFT because it could lead to great

cost in memory and time. We apply Bag Of Words (BOW) model [33] to produce compact

representation. Dense SIFT is extracted from all images and clustered to form the visual

dictionary. Within each region the dense SIFT is mapped into the words of the the visual

dictionary and pooled to get a histogram. An example of such a statistical histogram computed

on the single region is shown in Figure 3.2.
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3.4. Measuring the Dissimilarity between Regions

The BOW model based on dense SIFT describes the region content as low dimension vector-

valued attribute. The χ2 distance [30] is calculated as the measurement of the dissimilarity

between regions by

d(g, h) =
1

2

K∑
k=1

[g(k)− h(k)]2

g(k) + h(k)
, (3.7)

where g(k), h(k) denote the two K-bin (normalized) histograms of visual words.

For the sake of simplicity, we weight every region according to their area in the whole image.

In conclusion, the dissimilarity score of the region content DSR between images is the function

of the dissimilarity of all regions as follow:

DSR =
∑
i

widi, (3.8)

where wi is the proportion of i-th region in the image, di measures dissimilarity between the

i-th region of the reference image and the corresponding region of the distorted image . Higher

DSR means more severe degeneration in the view of the region content.

3.5. Integrated Model

Considering either the contour or the region content is not enough because the quality of

images depends on both. Formally, the dissimilarity between contours (3.6) and the dissimilarity

between region content (3.8) are integrated to get the image quality score:

Q = DSCγ ·DSR(1−γ), (3.9)

where 0 < γ < 1, is a parameter to adjust the relative importance of both components. Lower

Q corresponds to better quality.

4. Computational Algorithm

The primary algorithms are summarized in Algorithm 4.1 and 4.2. In Algorithm 4.1, it

works well in the case that there are enough non-zero points in the block, however it doesn’t

work when the block of either the reference or the distorted image contains too few even no

non-zero points. In this case, we calculate SC with the nonlinear function:

SC =

{
1

1+exp [−a(|n1−n2|−b)] |n1 − n2| ≥ c,

0 |n1 − n2| < c,
(4.1)

where a, b are parameters and n1, n2 count the number of non-zero points in two blocks. If n1

is closed to n2, we get small SC.
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Algorithm 4.1. Compute dissimilarity between contours

Input: (1) reference image x. (2) distorted image y. (3) threshold. (4) block size.

(5) sample number.

Output: DSC

Detect the contour of x, y by Ren’s method [19] and get the binary map x′, y′ according

to the threshold.

Cut x′, y′ into blocks {x′
i}, {y′i} without overlap respectively.

for each block pair x′
i, y

′
i

if the number of non-zero points in x′
i or y

′
i is too small

Handle exception.

else

Sample non-zero points of x′
i, y

′
i to get point sets s(x′

i), s(y
′
i) respectively.

Compute the orientation of each point in point sets s(x′
i), s(y

′
i).

for all point pairs p ∈ s(x′
i), q ∈ s(y′i)

Compute the matching cost by (3.3)

end for

Solve the weighted bipartite graph matching problem by Hungarian method [34] to

get the minimum of the total cost SC by (3.4).

end if

end for

Compute DSC by (3.6)

Algorithm 4.2. Compute dissimilarity between regions

Input: (1) reference image x. (2) distorted image y. (3) image set I. (4) number of visual

words.

Output: DSR

for each image Ii ∈ I do

Extract dense SIFT on Ii
end for

Run K-means on all dense SIFT to construct the visual dictionary D.

Segment x into regions R by gPb-ucm [18].

for each region Ri ∈ R

Compute weight wi of Ri.

Compute the histogram g, h of dense SIFT in Ri for x, y.

Compute the the dissimilarity di between regions by (3.7).

end for

Compute DSR by (3.8).

In Algorithm 4.2, the visual dictionary D is constructed on all images including reference

images and distorted images. Note that segmenting the reference image and the distorted image

separately may lead to different segmentations. Under the assumption that the distortion gives

rise to little shift on images, we just use the segmentation of the reference image as the one of

the distorted image. To control the number of the segments, the adaptive threshold is used to

segment an image to obtain about 20-60 regions.
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5. Experiments

5.1. Benchmark Dataset

We evaluate our algorithm on two large-scale image datasets, LIVE2 and TID2013. In

LIVE2, 29 reference images are distorted at different levels to generate 779 distorted images.

The distortion types include JPEG2000 (JP2K), JPEG, White noise in the RGB components

(WN), Gaussian blur in the RGB components (GB), and bit errors in JPEG2000 bitstream when

transmitted over a simulated fast-fading Rayleigh channel (FF). For each distorted image, more

than 20 subjects judgment the quality to obtain the convincing scores. The TID2013 database

consists of 24 types of distortion, up to 3000 distorted images as the largest database in IQA

community. The information about the datasets is summarized in Table 5.1.

To evaluate the performance of various models, four common metrics are employed on

the datasets including Spearman Rank-Order Correlation Coefficient (SROCC), Kendall Rank-

Order Correlation Coefficient (KROCC), Pearson Linear Correlation Coefficient (PLCC) [35]

, and Root Mean Squared Error (RMSE). SROCC and KROCC measure the monotonicity of

prediction, which focus on the rank rather than the error of the prediction. The other two

metrics are computed after applying non-linear regression between the objective scores and

the subjective Mean Opinion Scores (MOS). PLCC measures the linear correlation and RMSE

measures the error of the prediction. Specially, we choose the 5-parameter logistic function as

suggested by [12] for regression:

Quality(o) = β1

(
1

2
− 1

1 + eβ2(o−β3)

)
+ β4o+ β5, (5.1)

where o is the objective score, βi, i = 1, 2, · · · , 5 are parameters.

Table 5.1: Benchmark datasets.

Dataset Reference Images No. Distorted Images No. Distortion Types No. Observers No.

LIVE2 29 779 5 161

TID2013 25 3000 24 971

5.2. Parameter Setting

We fix the parameters for each experiment as follow: In Algorithm 4.1, we set threshold as

0.1, block size as 60×60, sample number as 100, and a, b, c in (4.1) as 0.05, 30, 10; In Algorithm

4.2, the number of visual words is 1200 in LIVE2 and 2000 in TID2013; γ is set as 0.7 in the

integrated model.

In the following experiments, our model is compared with multiple state-of-the-art models

such as MS-SSIM [6], IFC [7], VIF [8], VSNR [4], MAD [36], IW-SSIM [9], RFSIM [37], FSIMc

[10], VSI [11].

5.3. Experiment on LIVE2

The SROCC for each type of distortion on LIVE2 is demonstrated in the upper part of

Table 5.2. The highest value for each distortion type is highlighted in boldface. From Table

5.2, we could make the conclusion that our model performs well on most distortion types on

LIVE2. There is a slight gap between our model and the best result on types such as JP2K,
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JPEG, FF. And VIF almost performs best on individual type on LIVE2. Similar conclusion is

easy to be drawn with the other three metrics.

The performance comparison with the other models on the mixture of all distortion types on

LIVE2 is listed in Table 5.3. As opposed to the case of individual distortion, our model performs

rather worse than VIF in the mixture case. Further researches are conducted to demonstrate

the comprehensive comparison between our model and VIF, and the details are shown in Table

5.4 and Figure 5.1. The better results are underlined. Figure 5.1 plots the scatter diagram

for each distortion type. Our model performs consistently on individual distortion type, but

data points of WN are not well aligned with other four types in mixture case. Furthermore,

we calculate SROCC on the mixture of the other four types, and it rises greatly to 0.948 from

0.907.

The sensitivity to noise in contour detection is the leading cause. It is worth mentioning that

Ren’s method is trained on natural images without distortion, so it’s sensitive to noise. Figure

5.2 demonstrates an example comparing the distorted image of WN with the distorted image

of JP2K. The detailed information of two distorted images is listed in Table 5.5. It can be seen

that Figure 5.2 (f) keeps less structure than (h) in the stage of contour detection. Some blocks

in (f) even contain no contour and this is inconsistent with our perception. Among distorted

images with the approximate DMOS, images of WN prefer to suffer more severe degradation

on the contour in our model because the method of contour detection is sensitive to noise.

Table 5.2: SROCC for each distortion type.

Dataset Type MS-SSIM IFC VIF VSNR MAD IW-SSIM RFSIM FSIMc VSI Ours

LIVE2

JP2K 0.963 0.911 0.970 0.955 0.968 0.965 0.932 0.972 0.960 0.961

JPEG 0.982 0.947 0.985 0.966 0.976 0.981 0.958 0.984 0.976 0.975

WN 0.973 0.938 0.986 0.979 0.984 0.967 0.980 0.972 0.984 0.953

GB 0.954 0.958 0.973 0.941 0.947 0.972 0.907 0.971 0.953 0.948

FF 0.947 0.963 0.965 0.903 0.957 0.944 0.924 0.952 0.943 0.964

TID2013

AGN 0.865 0.661 0.899 0.827 0.884 0.844 0.888 0.910 0.946 0.754

ANC 0.773 0.535 0.830 0.731 0.802 0.752 0.848 0.854 0.871 0.730

SCN 0.854 0.660 0.884 0.801 0.891 0.817 0.883 0.890 0.937 0.749

MN 0.807 0.693 0.845 0.707 0.738 0.802 0.837 0.809 0.770 0.791

HFN 0.860 0.741 0.897 0.846 0.888 0.855 0.915 0.904 0.920 0.826

IN 0.763 0.641 0.854 0.736 0.277 0.728 0.906 0.825 0.874 0.841

QN 0.871 0.628 0.785 0.836 0.851 0.867 0.897 0.881 0.875 0.762

GB 0.967 0.891 0.965 0.947 0.932 0.970 0.970 0.955 0.961 0.950

DEN 0.927 0.778 0.891 0.908 0.925 0.915 0.936 0.933 0.948 0.877

JPEG 0.927 0.836 0.919 0.901 0.922 0.919 0.940 0.934 0.954 0.921

JP2K 0.950 0.908 0.952 0.927 0.951 0.951 0.952 0.959 0.971 0.941

JGTE 0.848 0.743 0.841 0.791 0.828 0.839 0.831 0.861 0.922 0.884

J2TE 0.889 0.777 0.876 0.841 0.879 0.866 0.906 0.892 0.923 0.848

NEPN 0.797 0.574 0.772 0.665 0.832 0.801 0.771 0.794 0.806 0.815

Block 0.480 0.241 0.531 0.177 0.281 0.372 0.034 0.553 0.171 0.495

MS 0.791 0.552 0.628 0.487 0.645 0.783 0.555 0.749 0.770 0.698

CTC 0.463 0.180 0.839 0.332 0.197 0.459 0.399 0.468 0.475 0.256

CCS 0.410 0.403 0.310 0.368 0.058 0.420 0.020 0.836 0.810 0.486

MGN 0.779 0.614 0.847 0.764 0.841 0.773 0.846 0.857 0.912 0.718

CN 0.853 0.816 0.895 0.868 0.906 0.876 0.892 0.914 0.924 0.890

LCNI 0.907 0.818 0.920 0.882 0.944 0.904 0.901 0.947 0.956 0.890

ICQD 0.856 0.601 0.841 0.867 0.875 0.840 0.896 0.882 0.884 0.828

CHA 0.878 0.821 0.885 0.865 0.831 0.868 0.899 0.892 0.891 0.897

SSR 0.948 0.889 0.935 0.934 0.957 0.947 0.933 0.958 0.963 0.928
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Table 5.3: Comparision of different models on LIVE2.

MS-SSIM IFC VIF VSNR MAD IW-SSIM RFSIM FSIMc VSI Ours

SROCC 0.951 0.926 0.964 0.927 0.967 0.957 0.940 0.965 0.952 0.907

KROCC 0.805 0.758 0.828 0.762 0.842 0.818 0.782 0.836 0.806 0.737

PLCC 0.949 0.927 0.960 0.923 0.968 0.952 0.935 0.961 0.948 0.853

RMSE 8.619 10.264 7.614 10.506 6.907 8.347 9.664 7.530 8.682 14.240

Table 5.4: Comparison between our model and VIF on LIVE2.

VIF/Ours JP2K JPEG WN GB FF All Types

SROCC 0.970/0.961 0.985/0.975 0.986/0.953 0.973/0.948 0.965/0.964 0.964/0.907

KROCC 0.847/0.825 0.894/0.864 0.898/0.809 0.859/0.802 0.840/0.835 0.828/0.737

PLCC 0.948/0.961 0.987/0.968 0.988/0.969 0.975/0.954 0.970/0.964 0.960/0.853

RMSE 8.060/6.950 5.066/8.012 4.274/6.933 4.146/5.514 6.974/7.516 7.614/14.240

Table 5.5: Comparison of WN and JP2K.

Distortion Type Image Ref Image DSC DSR Q DMOS

WN img74 rapids 0.78 0.39 0.64 54.63

JP2K img138 sailing2 0.43 0.14 0.31 56.33
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Fig. 5.1. Scatter plot of DMOS against objective scores predicted by models on LIVE2. (a) our model.

(b) VIF. The x-axis indicates the object scores by models, and the y-axis indicates the Difference Mean

Opinion Score (DMOS) [12]. Each color represents one distortion type. Lower DMOS value corresponds

to higher quality. Note that lower VIF index corresponds to higher quality and object score predicted

by our model does conversely.

5.4. Experiment on TID2013

Our next experiment evaluates our model on TID2013 database. The TID2013 database

consists more complex distortion types and some types such as ANC, CCS, ICQD are color-

dependent distortion. The SROCC for each type is summarized in Table 5.2. Our model

performs consistently on parts of all types, even only slightly worse than the best results in GB,

NEPN, Block, and CHA.
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Table 5.6: SROCC for all components on TID2013.

Dataset Type contour region content integrated model

LIVE2

JP2K 0.901 0.940 0.961

JPEG 0.921 0.968 0.975

WN 0.936 0.870 0.953

GB 0.903 0.945 0.948

FF 0.911 0.954 0.964

TID2013

AGN 0.633 0.599 0.754

ANC 0.567 0.678 0.730

SCN 0.692 0.563 0.749

MN 0.566 0.770 0.791

HFN 0.801 0.713 0.826

IN 0.867 0.686 0.841

QN 0.640 0.732 0.762

GB 932 0.923 0.950

DEN 0.867 0.820 0.877

JPEG 0.875 0.907 0.921

JP2K 0.883 0.916 0.941

JGTE 0.844 0.858 0.884

J2TE 0.761 0.776 0.848

NEPN 0.776 0.783 0.815

Block 0.331 0.628 0.495

MS 725 0.614 0.698

CTC 0.234 0.202 0.256

CCS 0.610 0.250 0.486

MGN 0.532 0.515 0.718

CN 0.734 0.858 0.890

LCNI 0.793 0.828 0.890

ICQD 0.747 0.695 0.828

CHA 0.815 0.876 0.897

SSR 0.865 0.906 0.928

To analyse the contribution of the contour and region content, we separate these two com-

ponents and compare them with the integrated model. The result is shown in Table 5.6. The

integrated model almost outperforms the single feature in all types except IN, MS, CCS. It’s

confirmed to obtain performance gains by combining contour and region content.
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Fig. 5.2. WN vs JP2K. (a) reference image, “rapids”. (b) distorted image, “img74”. (c) reference

image, “sailing2”. (d) distorted image, “img138”. (e,g) the binary map of (a,c). (f,h) the binary

map of (b,d). (b) obtains approximate DMOS to (d) but (f) keeps less contour than (h) after being

distorted.
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6. Conclusion and Discussion

In this paper, we propose a novel framework combining the contour and region content

to assess image quality. Comparing to weighting pixels by information content (e.g. [23]) in

low level, we consider the contour as a whole and try to quantify the degeneration of contour

between the reference and the distorted image. Then clustering technology applied in regions

offers rich representation to measure the degeneration after distortion. In our experiments

we have demonstrated contour information and region content complement with each other to

boost performance. The framework opens up possibility for IQA in middle level.

There are still many problems remained to be explored in our framework, and our future

work focuses on the following aspects:

• Contour detection. Most approaches of contour detection are trained on natural images

without distortion, so they fail to extract contour in line with human perception in some

distortion type (e.g. WN). More work should be done to push contour detection closer to

human perception.

• Region assignment. Distortion may lead to different segmentations from the reference.

In this paper, we approximate the segmentation of the distorted image with the one

of the reference image and get satisfactory result in some cases. However whether the

approximation works on images of worse quality requires a further research.

• Local descriptors. In our experiment, we extract dense SIFT on gray-scale images. One

can replace dense SIFT with other sophisticated descriptors which contain color informa-

tion.

• Multiscale analysis. Image quality greatly depends on the scale so it’s worth exploring

the framework in multiscale.

• Weight. In Algorithm 4.2, we weight each region by its area. This pooling strategy

is convenient for computing but too simple for visual perception. Next, we intend to

introduce visual saliency in the pooling stage.

• Integrated model. The relation between two components and image quality is complicated.

The weighted geometric mean may be too simple to model their relation. The learning

approaches such as SVM are going to be tested.

• Axiomatic characterization. Axiomatic approaches as in [38-40] can be integrated into

the current framework. The results in [39] can be used to improve the integrated model.

The approaches in [40] can be adapted to evaluate image sharpness in addition to the

current two evaluations. Nevertheless, it will be a challenging problem to establish an

axiomatic IQA theory.
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