
IEEE TRANSACTIONS ON CYBERNETICS 1

Emergent Inference of Hidden Markov Models in Spiking Neural
Networks Through Winner-Take-All
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Abstract—Hidden Markov models (HMMs) underpin the solution to
many problems in computational neuroscience. However, it is still unclear
how to implement inference of HMMs with a network of neurons in the
brain. The existing methods suffer from the problem of being nonspiking
and inaccurate. Here, we build a precise equivalence between the infer-
ence equation of HMMs with time-invariant hidden variables and the
dynamics of spiking winner-take-all (WTA) neural networks. We show
that the membrane potential of each spiking neuron in the WTA circuit
encodes the logarithm of the posterior probability of the hidden vari-
able in each state, and the firing rate of each neuron is proportional to
the posterior probability of the HMMs. We prove that the time course
of the neural firing rate can implement posterior inference of HMMs.
Theoretical analysis and experimental results show that the proposed
WTA circuit can get accurate inference results of HMMs.

Index Terms—Hidden Markov models (HMMs), neural imple-
mentation, posterior inference, spiking neural network, winner-
take-all (WTA) circuits.

I. INTRODUCTION

Hidden Markov models (HMMs) are a kind of dynamic prob-
abilistic graphical model [1], which have been widely used in
computational neuroscience [2]–[7]; computational biology [8], [9];
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statistical physics [10], [11]; and machine learning [12]–[15]. In com-
putational neuroscience, HMMs are used to detect hidden regularities
with sequential sensory inputs. In particular, they have been proved
extremely useful in modeling inference and decision making in the
cognitive process of the human brain when the state of the hid-
den variable is time-invariant [16]. Despite its accurate and powerful
computing performance with experimental data, it remains an open
question how a network of spiking neurons can implement proba-
bilistic inference of HMMs at the neural circuit level. This problem
is of great importance to brain science and artificial intelligence. On
the one hand, it can build the bridge between the process of inference
and decision making of the human brain at high level and the dynam-
ics of spiking neural networks at low level. One the other hand, one
can build the machine that is able to perform inference and make
decision like the human brain with these mechanisms.

Various schemes of neural networks have been proposed over the
last 15 years to tackle the problem above. Rao [3] built the relation-
ship between the dynamic equation of recurrent neural networks and
the inference equation of HMMs, and suggested that the dynamic
process of a recurrent neural network is a process of probabilis-
tic inference. However, since the two equations are not exactly
equivalent, a sum-of-logs is used to approximate a log-sum, which
leads to inaccurate inference results. Beck and Pouget [17] took
a further step and built a precise relationship between the infer-
ence equation of HMMs and the dynamic equation of a first-order
quadratic nonlinear recurrent network. Both methods only focus on
nonspiking neural networks while the spike in neuron is the key
for computation [18]–[20]. Recently some researchers have con-
sidered biophysically plausible spike-based networks. For example,
Deneve [21] demonstrated that each leaky integrate-and-fire neuron
can compute the probability of one hidden variable of HMMs, but it
was limited to a binary variable. In summary, most of the previous
studies suffer from the problem of being nonspiking, and the existing
spiking neural network cannot obtain accurate solution.

In this paper, by focusing on HMMs with time-invariant hidden
variables, we found that there is a precise equivalence between their
inference equations and the dynamical equations of spiking neu-
rons when the underlying circuit is organized by a winner-take-all
(WTA) fashion. Typically, there are two coupled operations during
each update of the inference process of HMMs, namely evidence
accumulation and normalization, in which the result of normalization
in each step serves as the past evidence for the next step. However,
we found a WTA spiking neural network with self-connections can
naturally decouple these two operations while keeping the precise
inference of HMMs. We proved that the inference result of the HMM
remains unchanged if the normalization of posterior probabilities is
carried out only at the last step instead of each step during evidence
accumulation. Based on this theory, we can decompose the corre-
sponding neural circuits into two parts: one for updating the posterior
with new evidence, and the other for computing the normalization of
the distribution.

Furthermore, we showed that the membrane potential of each spik-
ing neuron in the WTA circuit encodes the logarithm of posterior
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Fig. 1. Scheme of a general HMM. xi are hidden variables and yi are
observation variables (i = 1, 2, . . . , t). Here, we consider a special case of
HMM with time-invariant hidden variables, i.e., x1 = x2 = · · · = xt .

probability of the hidden variable in each state, and the neural firing
rate is proportional to the posterior probability of HMM. In addition,
we proved that the time course of neural firing rate can implement
posterior inference of HMMs. Experimental results with simula-
tion demonstrate that the proposed WTA network can get accurate
inference results of HMMs.

The rest of this paper is organized as follows. Section II derives
the inference equation of HMMs. In Section III, we introduce WTA
neural network with self-connections and show how it can implement
inference of HMMs. We show the experimental results in Section IV
and conclude in Section V.

II. INFERENCE OF HIDDEN MARKOV MODELS

HMMs are a kind of directed graphical model [22], [23] composed
of a hidden variable sequence X = {x1, x2, . . . , xt} and an observation
variable sequence Y = {y1, y2, . . . , yt} [22] (shown in Fig. 1). The
hidden variable sequence X is a first-order Markov chain, and each
observation variable yt is only governed by the corresponding hidden
variable xt through conditional probability p(yt|xt). Thus, the joint
distribution of an HMM in Fig. 1 can be written as a product of
conditional distributions

p(x1, x2, . . . , xt, y1, y2, . . . , yt)

= p(x1)

⎡
⎣

t∏
n=2

p
(
xn|xn−1

)
⎤
⎦

t∏
n=1

p(yn|xn). (1)

In this paper, we consider the HMMs with time-invariant hidden
variables, that is, x1 = x2 = · · · = xt. This means the values for
the hidden variables will be the same no matter what time they are
observed. This model is important to many inference and decision
making problems [24]–[26] since in many cases we have the prior
knowledge where the state of the environment does not change or
changes very slowly with respect to time [16].

The inference problem is to infer the most probable state of the
hidden variable at time t with the observations from 1 to t, that is,

arg max
xt

p(xt|y1, y2, . . . , yt)

= arg max
xt

∑
x1,x2,...,xt−1

p(x1, x2, . . . , xt|y1, y2, . . . , yt). (2)

Equation (2) can be calculated by computing the posterior distribution
p(xt|y1, y2, . . . , yt) and then choosing the state of xt with maximum
probability. In order to implement inference of HMMs with spiking
neural networks, a direct idea is to rewrite (2) into a dynamic equation
and then build the relationship between this equation and the dynamic
equation of spiking neural networks. In fact, we can use a difference
equation to implement inference of (2), and we have the following
theorem.

Theorem 1: Supposing that F(x0 = xi) = ln p(x1 = xi),1 and

F
(

xt = xi
)

= ln p
(

yt|xt = xi
)

+ F
(

xt−1 = xi
)

− ln Zt (3)

1Note that the hidden variable sequence of the HMM is X = {x1, x2, . . . , xt}
while the variable sequence of the function F(.) is x0, x1, x2, . . . , xt . Here x0
can be seen as an auxiliary variable.

holds for t ≥ 1, with F(xt) denoting a function of xt, xt = xi denoting
that random variable xt is in state xi, and Zt being the normalizing
constant of exp(F(xt)) to keep

∑
i exp(F(xt = xi)) = 1, that is,

Zt = ∑
i p(yt|xt = xi) exp(F(xt−1 = xi)), then we conclude that

for t ≥ 1

F(xt) = ln p(xt|y1, y2, . . . , yt) (4)

and

arg max
xt

eF(xt) = arg max
xt

p(xt|y1, y2, . . . , yt). (5)

The proof of Theorem 1 (with all other theorems) is provided
in the supplementary material. Theorem 1 shows that we can
use a difference equation to compute the posterior distribution
ln p(xt|y1, y2, . . . , yt). To be specific, supposing that F(x0 = xi) =
ln p(x1 = xi), it follows from (3) that ln p(x1|y1) can be computed
as F(x1). Likewise, then we can compute ln p(x2|y1, y2) with (3),
and so on. Note that there exist two operations in (3): evidence
accumulation as

F
(

xt = xi
)

= ln p
(

yt|xt = xi
)

+ F
(

xt−1 = xi
)

(6)

and normalization as

F
(

xt = xi
)

= F
(

xt = xi
)

− ln Zt. (7)

The result of normalization in each step serves as the past evi-
dence for the next step. This means the computations of evidence
accumulation and normalization are coupled to each other. This cou-
pling is a challenge for graphical models as well as computational
neuroscience, since it is difficult to design a spiking neural circuit to
implement accurate inference of HMMs with the coupled equations.

Here, we show in the following theorem that the operations of
evidence accumulation and normalization can be decoupled. The dis-
tribution eF(xt), namely, p(xt|y1, y2, . . . , yt) is left unchanged if the
operation of normalization is carried out at the last step instead of
each step.

Theorem 2: Supposing that G(x0 = xi) = F(x0 = xi) =
ln p(x1 = xi) and

G(xt) = ln p(yt|xt) + G
(
xt−1

)
(8)

holds for t ≥ 1, then we conclude that the normalization of eG(xt)

equals the distribution p(xt|y1, y2, . . . , yt), that is,

eG(xt) ∝ p(xt|y1, y2, . . . , yt), (t ≥ 1). (9)

Combining (4) and (9), one can find that the normalization of
eG(xt) is the same as the normalization of eF(xt). Now we can con-
clude that even if the operation of normalization is carried out at the
last step instead of each step, the distribution of eF(xt) is unchanged.
Thus, we can use the difference equation (8) and the initial condi-
tion G(x0 = xi) = ln p(x1 = xi) to implement posterior inference,
and we have (1/Zt)eG(xt) = p(xt|y1, y2, . . . , yt), where the nor-
malization constant becomes Zt = ∑

xt
eG(xt). The benefit of this

theorem is that we can decouple the operation of evidence accumu-
lation and normalization, specifically, the result of normalization in
current step does not need to be the input of the next step. Thus,
when we design the corresponding spiking neural network to imple-
ment inference of HMMs, we can separate the neural network into
two parts: one for updating the posterior with new evidence, that
is, G(xt) = ln p(yt|xt) + G(xt−1) and the other for computing the
normalization of the posterior distribution eG(xt). The problem now
is whether there exists a plausible spiking neural circuit that can
implement these computations of HMMs.



IEEE TRANSACTIONS ON CYBERNETICS 3

III. EMERGENT INFERENCE IN SPIKING NEURAL NETWORK

THROUGH WINNER-TAKE-ALL

In this section, we show that a spiking neural network of WTA
circuit with self-connections can naturally implement the inference of
HMMs. The membrane potential of spiking neurons in WTA circuits
with self-connections can accumulate evidence, namely, update the
posterior with new evidence. The competitive mechanism of WTA
circuits can normalize the firing rate of each neuron.

We first introduce spiking neural networks and WTA circuits, and
then derive the dynamic equations of a spiking neural network of
WTA circuit with self-connections. At last, we demonstrate that infer-
ence of HMMs can be easily implemented by this spiking neural
network.

A. Spiking Neural Network

Spiking neural networks are thought as the third generation of arti-
ficial neural network models, which is closer to biological neurons in
the brain [18], [27]–[30]. In a spiking neural network, each neuron
can receive current from other neurons and the membrane potential of
which will change. When the membrane potential exceeds a thresh-
old value, an output signal, which is called a spike (or an action
potential), will be generated and delivered to other neurons. Together
with neuronal and synaptic state, spike timing is also considered in
spiking neural networks model.

Here, we consider a network of K spiking neurons z1, . . . , zK and
denote the output spike train of neuron zk by zk(t) defined as a sum
of Dirac delta pulses positioned at the spike times t(1)

k , t(2)
k , . . . , i.e.,

zk(t) = ∑
f δ(t − t(f )k ), where f = 1, 2, . . . It means zk(t) = 1 if

neuron zk spikes at time t = t(f )k and zk(t) = 0 otherwise. Neurons
z1, . . . , zK are modeled by a standard stochastic variant of the spike
response model [31], which is a generalization of leaky integrate-
and-fire neuron. In this model, the membrane potential of a neuron
zk at time t is given by

uk(t) =
∑

f

η
(

t − t(f )k

)
+

∫ ∞
0

κ(s)Ik(t − s)ds + urest
k (10)

where Ik(t) denotes the time-dependent current of neuron k at time t,
and urest

k is the rest potential of neuron zk. η(t−t(f )k ) is the kernel that
describes the reset of the membrane potential of neuron zk after the
spike at t(f )k . κ(s) represents the voltage response to a short current

pulse. In this paper, we use standard exponential kernels η(t − t(f )k )

and κ(s)

η
(

t − t(f )k

)
= −η0 exp

⎛
⎝− t − t(f )k

τ

⎞
⎠ (11)

κ(s) = ε0 exp
(
− s

τ

)
(12)

with the reset potential η0 = 5 mV, the membrane time constant
τ = 20 ms, and the voltage response amplitude as ε0 = 5 mV. The
parameters set here are similar to that of [32]. Here, we consider
the escape noise model of spiking neurons, which replaces the strict
firing threshold by a noisy threshold [31]. This means that a neuron
can fire stochastically. To be specific, the instantaneous firing rate
(firing intensity) of neuron zk is supposed to be stochastic, which is
often modeled by an exponential function [33]

ρk(t) = ρ exp(uk(t) − θ) (13)

with θ representing the firing threshold and ρ scales the firing rate
of the neuron. It has been shown by the experiments that this model
is in good agreement with real neurons [34]. One can find that the

Fig. 2. Scheme of a WTA spiking neuronal circuit with self-connections.
There are K output excitatory neurons (blue) and one inhibitory neuron (pick).
The temporal sequences of observation variables of HMM are fed by efferent
neurons (green). In the end, the hidden state variable of HMM will be repre-
sented by one of output neurons due to the competition mechanism of WTA
when evidence is cumulated over time.

instantaneous firing rate (firing intensity) increases as the distance
between the membrane potential and the firing threshold decreases.

B. Winner-Take-All Circuit

WTA circuit has been suggested as a ubiquitous motif of cortical
microcircuits [35], which is widely used to implement normaliza-
tion [36], visual attention [37], and classification [38]. We consider a
WTA circuit of K output spiking neurons (blue triangles) z1, . . . , zK
and an inhibitory neuron (pink circle) as in Fig. 2. The output spiking
neurons z1, . . . , zK mutually inhibit each other through the inhibitory
neuron. Thus, all the neurons in the output layer are in competition
against each other so that they cannot fire simultaneously.

In this paper, we consider the WTA model used in [2] and [39],
where all the neurons are allowed to fire with nonzero probability.
Considering all the neurons in WTA circuit are subject to the same
lateral inhibition2 [2], the instantaneous firing rate (firing intensity)
of neuron zk in WTA circuit at time t is determined by [2]

ρk(t) = ρ

Q(t)
exp(uk(t) − θ) (14)

where ρ scales the firing rate of neurons. Q(t) represents the lat-
eral inhibition between the neurons in the WTA circuit, which is
defined as

Q(t) =
∑

k

exp(uk(t) − θ). (15)

Substituting (15) into (14) obtains

ρk(t) = ρ∑
k exp(uk(t) − θ)

exp(uk(t) − θ)

= ρ
exp(uk(t))∑
k exp(uk(t))

. (16)

This WTA circuit works like a soft-max function. At each time, all
the neurons can fire with nonzero probability, but the neuron with
the highest membrane potential has the highest firing probability.

C. Implement Inference With Spiking Neural Network

In this section, we demonstrate that the dynamics of spiking neural
network of WTA circuits with self-connections can naturally imple-
ment the inference of HMMs. We show how the spiking neurons in
WTA circuits with self-connections can update the posterior proba-
bilities with new evidence in Theorem 3 and how the competitive

2Lateral inhibition is the capacity of an excited neuron to reduce the activity
of its neighborhood neurons.
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mechanism of WTA circuit can normalize the posterior distribution
in Theorem 4.

In the WTA circuit with self-connections in Fig. 2, the time-
dependent current to the network includes two parts: 1) external
afferent current Iext

k (t) to the network and 2) internal current Iint
k (t) =∑

f δ(t − t(f )k ) from itself by the self-connections. Thus, (10) can be
rewritten as

uk(t) = urest
k +

∑
f

η
(

t − t(f )k

)

+
∫ ∞

0
κ(s)

(
Iext
k (t − s) + Iint

k (t − s)
)

ds.

= urest
k +

∑
f

η
(

t − t(f )k

)

+
∫ ∞

0
κ(s)

⎛
⎝Iext

k (t − s) +
∑

f

δ
(

t − s − t(f )k

)⎞
⎠ds. (17)

Then, (17) can be reduced to

uk(t) = urest
k +

∑
f

η
(

t − t(f )k

)

+
∫ ∞

0
κ(s)

⎛
⎝Iext

k (t − s) +
∑

f

δ
(

t − s − t(f )k

)⎞
⎠ds

= urest
k +

∫ ∞
0

η(s)
∑

f

δ
(

t − s − t(f )k

)
ds

+
∫ ∞

0
κ(s)

⎛
⎝Iext

k (t − s) +
∑

f

δ
(

t − s − t(f )k

)⎞
⎠ds

=
∫ ∞

0
κ(s)Iext

k (t − s)ds + urest
k

=
∫ t

−∞
κ(t − s)Iext

k (s)ds + urest
k . (18)

The second equality holds as
∑

f η(t − tfk) = ∫ ∞
0 η(s)

∑
f δ(t − s −

t(f )k )ds. The third equality holds due to the definition η(s) = −κ(s) in
Section III-A. Note that an ideal model of spiking neurons is assumed
here where the internal currents from self-connections do not lag
behind the spike response. We show in the following theorem that
the membrane potential of spiking neurons in WTA circuit with self-
connections can accumulate afferent current. In other words, if the
afferent current encode some variable, then the membrane potential
of spiking neurons can compute the sums of a sequence.

Theorem 3: Considering the spiking neural network shown in
Fig. 2, the rest potential urest

k ≤ 0, and the external current Iext
k (t) =∑

j [(Ij
k)/(ε0τ)]	(t−Tj) (j = 1, 2, 3, . . .), where Ij

k represents the jth

constant current to neuron zk and Ij
k ≤ 0, Tj represents the arriving

time of jth current Ij
k, 	(·) denotes the Heaviside step function, i.e.,

	(x) = 1 for x ≥ 0 and 0 otherwise. The voltage response amplitude
ε0 and the membrane time constant τ are defined similar to (12).
Then for arbitrary m ≥ 1, if Tm+1 − Tm ≥ 3τ holds, we conclude
that ∣∣∣∣∣∣

uk
(
Tm+1

) −
(

urest
k + ∑m

j=1 Ij
k

)

urest
k + ∑m

j=1 Ij
k

∣∣∣∣∣∣
< 0.05 (19)

holds for all k, and

lim
Tm+1−Tm→+∞ uk

(
Tm+1

) = urest
k +

m∑
j=1

Ij
k. (20)

Theorem 3 shows that if the time interval Tm+1 − Tm is large
enough, uk(Tm+1) can approximate the sums of a sequence, that is,
uk(Tm+1) = urest

k + ∑m
j=1 Ij

k. In fact, if Tm+1 − Tm ≥ 3τ holds for
m = 0, 1, 2, . . . , this result can also be rewritten as

uk(T0) = urest
k

uk
(
Tm+1

) = uk(Tm) + Im
k (m = 0, 1, 2, . . .). (21)

One can find that (21) is similar to inference equation (8). Thus if
WTA circuit receives appropriate external current, the spiking neu-
rons in WTA circuit with self-connections can accumulate evidence.
The problem now is to determine the appropriate input current and
demonstrate that this spiking neural network can also implement
normalization of the distribution. We have the following theorem.

Theorem 4: Consider the spiking neural network shown in Fig. 2,
the rest potential urest

k ≤ 0, and the external current Iext
k (t) =∑

j [(Ij
k)/(ε0τ)]	(t − Tj) (j = 1, 2, 3, . . .), where Ij

k = ln p(yj|xj =
xk), Tj represents the arriving time of jth current Ij

k, 	(·) denotes the
Heaviside step function, i.e., 	(x) = 1 for x ≥ 0 and 0 otherwise.
Then for arbitrary t ≥ 1, if urest

k = ln p(x1 = xk), Tt+1 − Tt ≥ 3τ

holds, we can conclude that

uk
(
Tt+1

) = bt ln p
(

xt = xk|y1, y2, . . . , yt

)
(22)

with bt denoting a constant (bt �= 0), and

ρk
(
Tt+1

) = ρ p
(

xt = xk|y1, y2, . . . , yt

)
. (23)

Corollary 1: Consider the spiking neural network shown in
Fig. 2, the rest potential urest

k ≤ 0, and the external current

Iext
k (t) = ∑

j [(Ij
k)/(ε0τ)]	(t − Tj) (j = 1, 2, 3, . . .), where Ij

k =
ln p(yj|xj = xk), Tj represents the arriving time of jth current Ij

k,
	(·) denotes the Heaviside step function, i.e., 	(x) = 1 for x ≥ 0
and 0 otherwise. T is defined as the minimum time interval, namely
T = mint{Tt+1 − Tt}. Then for all t ≥ 1, if urest

k = ln p(x1 = xk),
T ≥ 3τ holds, we can conclude that

uk
(
Tt+1

) = bt ln p
(

xt = xk| y1, y2, . . . , yt

)
(24)

with bt denoting a constant (bt �= 0), and

ρk
(
Tt+1

) = ρ p
(

xt = xk|y1, y2, . . . , yt

)
. (25)

It is easy to prove Corollary 1 with Theorem 4.
Theorem 4 and Corollary 1 build the relationship between the

dynamics of WTA circuit and the inference equations of HMMs.
When the new observation yt of the HMM comes, an external cur-
rent of Ik = [1/(ε0τ)] ln p(yt|xt = xk) is added to the input current
of neuron zk in WTA circuit at time Tt. The membrane potential of
each spiking neuron in WTA circuit encodes the logarithm of poste-
rior probability of the hidden variable being in each state [see (22)],
and the firing rate of each neuron is proportional to the posterior
probability of hidden variable in each state [see (23)]. Moreover, the
time course of neural firing rate can implement posterior inference
of HMMs. One can read out the inference result by counting spikes
from each neuron within a behaviorally relevant time window of a
few hundred milliseconds, which is similar to the experimental results
of monkey cortex [40], [41].

It is worthwhile to note that for arbitrary t, (22) and (23) hold only
on the condition that Tt+1 − Tt is large enough, which has nothing
to do with T1, T2, . . . , Tt. Thus, if we want to conduct inference of
HMM at time t, i.e., to calculate p(xt|y1, y2, . . . , yt), we only need
to start from Tt, then wait some time to make Tt+1 − Tt ≥ 3τ and
read out the inference result.
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(a)

(b)

(c) (d)

(f) (g)

(e)

Fig. 3. (a) External input currents of the five neurons in WTA circuit change
with respect to time. Every 150 ms, a new current is added to the input current
of each neuron due to the coming of the new evidence of HMM. (b) Top:
Firing activities of five neurons during inference. Bottom: Total firing rates of
different neurons in the windows of 100 ms (shaded area). (c)–(g) Comparison
of the normalized firing rate of each spiking neuron (averaged over 500 trials)
and accurate inference of HMM with BP.

IV. EXPERIMENTS

In this section, we conduct a series of experiments to validate the
proposed spiking neural network. First, we generate data to compare
the performance of our spiking neural network with that of belief
propagation (BP, optimal solution). Then we move on to demonstrate
the convergence of our method by extending the time interval between
two evidences. The robustness and applicability of the method to
different settings of parameters are provided in the supplementary
material. At last, we scale up the spiking neural network to solve a
biologically more realistic task.

A. Testing on the Accuracy of Our Method

We use the data generated from a five-state HMM. The initial
distribution p(x1) is created by randomly generating five numbers
from a uniform distribution on [0, 1] and then normalizing them.
As the hidden state does not change with respect to time, the tran-
sition matrix A is set to the identity matrix. With initial distribution
p(x1) and transition matrix A, it is convenient to generate the hidden
variables x1, x2, . . . , xm. The observation data yi(i = 1, 2, . . . , m) is
chosen from a Gaussian distribution with mean value being xi and
variance being 1. We set m = 8 in the following experiments.

A spiking neural network of WTA circuit with self-connections is
used to implement inference of the HMM that is generated with the
method above. Here, we test the accuracy of our method. Fig. 3(a)

shows how the external current changes with respect to time. The
input current for all neurons remains zero before the first evidence
y1 of the HMM comes. Every 150 ms an external current of Ik =
[1/(ε0τ)] ln p(yi|xi = xk) (i = 1, 2, . . . , 8, k = 1, 2, . . . , 5) is added
to the input current of neuron k to indicate the new evidence yi. Note
that here we use different colors to denote the currents to different
neurons.

The input current will change the membrane potential and the firing
activities of the five neurons [shown at the top of Fig. 3(b)]. At the
beginning all the neurons can fire. After 700 ms, only neurons 2
and 3 can fire, which indicates that through recurrent accumulation
of evidence over time, the state of the hidden variable is most likely
to be 2 or 3. At the bottom of Fig. 3(b), we show the total firing rates
of each neuron in the windows of 100 ms [shaded area of Fig. 3(b)]
before each new input current. Note that here we only show four
examples. One can find that the firing rate of neuron 3 increases
with respect to time and is always larger than that of the other four
neurons, which also implies that the state of the hidden variable is
most likely to be 3.

In Fig. 3(c)–(g), we compare the normalized firing rates of spik-
ing neurons (averaged over 500 trials) during inference with the
posterior probabilities computed by BP [42], a commonly used algo-
rithm in machine learning that can get accurate inference results for
HMMs [1]. One can find that the spiking neural network can get
comparable results as that of BP, which indicates the accuracy of our
methods.

B. Testing on the Convergence of Our Method

In Theorems 3 and 4, we proved that our method can con-
verge to the accurate solution as the interval time between two
evidences increases to infinity. In this experiment we verify
this conclusion. The interval time between every two evidences
is set as a constant T , ranging from 10 ms to 220 ms. At
the beginning of each new external current, we computed the
Kullback–Leibler (KL) divergence between the distribution of fir-
ing probabilities of all neurons in WTA circuit and the distri-
bution of accurate posterior probability computed by BP, that is,
KL([(exp(uk(Ti+1)))/(

∑
k exp(uk(Ti+1)))], p(xi|y1, y2, . . . , yi))(i =

1, 2, . . . , 8). The results are shown in Fig. 4. We found that the
KL divergence decreases as the interval time T increases and con-
verges exponentially to zero when the interval time tends to infinity.
These results demonstrate that if the interval time is large enough,
our method can implement optimal inference. Also, we can see that
the KL divergences are less than 10−10 if the interval time is larger
than 200 ms. This means T = 200 ms is long enough for accurate
inference.

C. Cue Combination in Spiking Neural Network

Here, we investigate whether the spiking neural network can scale
up to biologically more realistic task. To do this, we applied the
spiking neural network to the task of cue combination. Cue combina-
tion is fundamental to our perception [25], which integrates the cues
received from multiple sensory modalities in an optimal way. It has
been shown by numerous experiments that the process of cue com-
bination is the process of Bayesian inference [43]–[45]. We explore
whether such process of cue combination can be obtained through
our spiking neural network. We consider the simple spiking neural
network of WTA circuit with self-connections and currents received
from different cues, where the task is to integrate the cues from
different sensory modalities.

We first considered the two-cue integration problem, which could
be a combination of visual cue and haptic cue. The problem can
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. KL divergence between the distribution of firing probabilities of all neurons in WTA circuit and the distribution of accurate posterior probability
with respect to the interval time. (a) i = 1 represents the inference problem of MM with only one evidence, that is, p(x1 | y1). (b)–(h) Same as (a), but with
more evidences.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. (a) Bayesian model of two-cue integration. (b)–(d) Performance of spiking neural network with respect to the interval time T . (e) Bayesian model
of four-cue integration. (f)–(h) Performance of spiking neural network with respect to the interval time T .

be modeled by a Bayesian network shown in Fig 5(a), in which S
represents the location of the stimulus, SV and SH denote the visual
cue and haptic cue, respectively. This Bayesian network can also be
seen as an HMM with time-invariant hidden variable S, to which the
evidences SV and SH are given in sequence. Similar to [16] and [24],
the prior distribution p(S) is supposed to be a uniform distribution,
p(SV |S) and p(SH |S) are Gaussian distributions with means being S
and variances being σ 2

SV
and σ 2

SH
, respectively. The network receives

visual cue and haptic cue in sequence and the problem is to infer
the posterior distribution p(S|SH, SV ). The spiking network to solve
this problem is similar to that in Fig. 2. Here, the input currents
are set to Iext

k (t) = [(I1
k )/(ε0τ)]	(t − T1) + [(I2

k )/(ε0τ)]	(t − T2)

with I1
k = ln p(SV |S) and I2

k = ln p(SH |S). The parameters are set as
follows: SV = 55, SH = 65, σ 2

SV
= 16, and σ 2

SH
= 4. The interval

time between every two evidence is supposed to be a constant, which
is represented by T . Note that variable S is discretized from 40 to 80

by step 0.5. Thus, we need 81 neurons to represent hidden variable S.
The results are shown in Fig. 5(b)–(d). The red curve represents the
posterior distribution p(S|SH, SV ), which is the combination of visual
cue (green curve) and haptic cue (fuchsia). The blue plus signs are
the experimental results of the spiking neural network. One can find
that as the interval time T becomes larger, the result of spiking neural
network (blue plus signs) tends to be closer to the accurate curve (red
curve). When T = 100, the experimental curve is almost the same as
the accurate curve, which demonstrates the accuracy of our method.

Next we go a further step and discuss the multicue integration.
The problem now is to integrate four cues. Similar to two-cue inte-
gration problem, we can use a Bayesian network to model it [shown
in Fig 5(e)]. Here, we use S1, S2, S3, and S4 to represent four dif-
ferent cues. Supposing that the prior distribution p(S) is supposed
to be a uniform distribution, p(S1|S), p(S2|S), p(S3|S), and p(S4|S)

are Gaussian distributions with means being S and variances being
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σ 2
S1

, σ 2
S2

, σ 2
S3

, and σ 2
S4

, respectively. Then we can use spiking neural
network to infer the posterior distribution of S given S1, S2, S3, and
S4, that is, p(S|S1, S2, S3, S4). The results are shown in Fig. 5(f)–(h),
here S1 = 55, S2 = 65, S3 = 53, S4 = 60, σ 2

S1
= 16, σ 2

S2
= 4,

σ 2
S3

= 64, and σ 2
S4

= 36. The red curve is the theoretical result and
the blue plus signs are the experimental results by spiking neural
network. Again, we find that as the interval time T becomes larger,
the blue plus signs tend to be closer to the accurate curve (red curve).
When T = 100, the experimental curve is almost the same as the
accurate curve, which shows the accuracy of our method.

V. CONCLUSION

In this paper, we show that the dynamics of WTA circuit with self-
connections can implement inference of HMM with time-invariant
hidden variables. We prove that the membrane potential of each
spiking neuron in WTA circuit encodes the logarithm of poste-
rior probability, and the firing intensity of each spiking neuron
encodes posterior probability. Theoretical analysis and experimen-
tal results demonstrate that our method can get accurate inference
result of HMM.

Future work is needed to extend our approach to a more general
case of HMM. A possible way is to implement Viterbi algorithm
with spiking neural networks. Note that the WTA model used in this
paper is a soft WTA model [2], [39], it is interesting to see if other
WTA models also work [46], [47]. In addition, one also need to find a
biologically plausible way to learn the parameters of HMM. Besides,
our present results have suggested to take WTA circuit as the basic
unit of computation, which is consistent with the previous studies
that propose to represent probability distribution with a population of
neurons [48]–[50]. However, how to implement large-scale Bayesian
inference by composition of the basic units of neural circuit is another
important yet elusive problem.
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