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ABSTRACT

Most existing image coding and communication systems aim
to minimize the mean square error (MSE) of the pixels re-
constructed at receivers. However, the quality metric MSE
has long been criticized for not being consistent with the per-
ception of human vision systems. This paper considers a
gradient-based image SoftCast (G-Cast) scheme, based on the
recent advancements in image quality assessment which in-
dicate that gradient similarity is highly correlated with per-
ceptual image quality. To reconstruct the image from the re-
ceived noisy gradient data, we exploit the statistical charac-
teristics of image gradients. Instead of using the very simple
Laplacian distribution for image gradient as in the total vari-
ation (TV) model, we further exploit the non-local similarity
of image patches. A non-local gradient sparsity regularization
(NLGSR) method is developed and solved using augmented
Lagrangian method. Experimental results show that the pro-
posed scheme provides promising perceptual image quality,
and the NLGSR reconstruction scheme outperforms the ex-
isting schemes remarkably.

Index Terms— SoftCast, G-Cast, gradient sparsity, total
variation, non-local similarity

1. INTRODUCTION

Most existing image transmission schemes, including Soft-
Cast [1, 2], use mean square error (MSE) as the fidelity mea-
sure. However, it has been widely recognized that MSE does
not reflect the visual quality perceived by human vision sys-
tem (HVS) in many cases [3]. Inspired by observations in
recent literatures [4, 5] that image gradients convey important
visual information, we proposed a gradient-based image Soft-
Cast (G-Cast) scheme [6] for wireless visual communication.
G-Cast transmits image gradients instead of image pixels in
order to convey the visual information. This paper mainly fo-
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cuses on how to reconstruct the image from the received noisy
gradient data and a very small set of low-frequency data.

Similar with other restoration problems that attempt to re-
cover the original image from its degraded observation, prior
image model is very important for the reconstruction process
in G-Cast. Intuitively, the total variation (TV) model [7, 8, 9]
can be adopted to describe the characteristic of gradient data.
Due to the local smoothness of natural images, the gradient
value, representing the variation at some position of an image,
will be zero or close to zero in most cases. This can also be
seen as sparsity in gradient domain. This observation justifies
the underlying assumption of the TV model that the gradient
data of an image conform to an i.i.d. zero-mean Laplacian
distribution.

The above hypothesis about the distribution of image gra-
dients is reasonable to some extent. Nevertheless, it may not
be sufficiently accurate, in that the statistics of a natural image
might not be stationary. On the contrary, the distributions of
gradient data often vary from one region to another. Gradient
data at different locations do not have to share the same dis-
tribution, i.e. they may differs from each other in mean and
variance, if Laplacian distribution is still assumed. Specifi-
cally, the zero-mean assumption does not hold, especially for
regions rich in textures and edges.

In the usage of TV regularization, we allow each pixel
to have a separate gradient distribution. This raised another
problem: how to decide the parameters for the distribution
of gradient at each pixel? In the proposed model, we esti-
mate the statistics and derive a sparse distribution adaptively
by exploiting in gradient domain a set of non-locally searched
patches which are similar to the patch centered at current lo-
cation. Non-local similarity of a natural image [10] is well-
known by now, it makes sense that the non-local constraint
also stands in gradient domain.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces the gradient based SoftCast scheme
as well as the basic solution to its restoration problem. Sec-
tion 3 discusses our proposed restoration method in detail,
showing how the parameters of gradient distribution are esti-
mated and how the optimization problem is numerically tack-



led. Experimental results are reported in Section 4 and Sec-
tion 5 concludes the paper.

2. REVIEW OF G-CAST

2.1. Gradient Based Image SoftCast (G-Cast)

G-Cast [6] transmits an image via a base layer and an en-
hancement layer. The base layer sends the low frequency
components in order to provide a coarse description of the im-
age. For this purpose, the input image is transformed into fre-
quency domain and then a small number of its low frequency
coefficients are coded and transmitted using conventional dig-
ital communication techniques. The enhancement layer deliv-
ers the gradient information of the image so that visual details
can be observed. For this purpose, the image gradient is first
extracted from the input image via a gradient transform, then
processed by Walsh-Hadamard transform to reduce its peak-
to-mean ratio, and finally modulated to a dense constellation
for raw OFDM transmission, in the same way as done in Soft-
Cast [1, 2]. The transmission for the enhancement layer is
lossy in nature, with its noise level commensurate with the
channel signal-to-noise (CSNR) condition. When both the
gradient information and the low frequency coefficients are
available, the decoder recover the image via a gradient-based
reconstruction procedure.

2.2. TV Based Reconstruction for G-Cast

The original image can be seen as a vector u. Denote the
vertical and horizontal finite difference operators by Dv and
Dh. Suppose the transmitted Dvu and Dhu are polluted by
i.i.d. Gaussian noise, which can be formulated as:

dv = Dvu+ nv, dh = Dhu+ nh, (1)

where nv and nh are additive Gaussian white noise. Write
D = [Dv;Dh], d = [dv;dh] and n = [nv;nh] for simplicity.
Employing traditional TV as the image prior knowledge to
regularize the solution leads to the minimization problem:

min
u

µ

2
‖Du− d‖22 +

∑
i

‖Diu‖ s.t. E ◦ F(u) = m, (2)

where ‖Du− d‖22 is l2 data-fidelity term, Diu ∈ R2 is
the gradient of u at pixel i , µ is a regularization parameter
controlling the trade-off between two competing terms, m
is the low-frequency coefficients of u, F stands for two-
dimensional discrete Fourier transform, E represents the
matrix to extract the M ×M block at the top left corner and
”◦” denotes component-wise multiplication.

Typical algorithms like SALSA [11] and Split Bregman
[12] would transform the problem like (2) into

min
u

µ

2
‖w−d‖22+

∑
i

‖wi‖ s.t. E ◦F(u)=u, wi=Diu (3)

by introducing the auxiliary variable w, which is the lexi-
cographically stacked version of wi. The similar scheme is
adopted in NLGSR as will be explained in section 3, so the
detailed procedure is omitted here to avoid repetition.

3. NON-LOCAL GRADIENT SPARSITY
REGULARIZATION

This section will introduce a more advanced image prior mod-
el based on traditional TV to solve the reconstruction problem
in G-Cast receiver. Considering the fact that the gradient val-
ues are mostly close to zero in flat area while can be quite
large in regions rich in textures, the characteristics of image
content may vary from location to location, so the underlying
assumption of TV that all gradient data in an image conform
to the same i.i.d. zero-mean Laplacian distribution is not ac-
curate. Therefore, we replace the traditional TV expression
TV(u) =

∑
i

(∣∣Dvu|+ |Dhu
∣∣) with an extended term

J (u)=
∑
i

( √
2

σh
∆i

∣∣Dh
iu−mh

∆i

∣∣+√2
σv

∆i

∣∣Dv
iu−mv

∆i

∣∣) , (4)

implying that each gradient has a separate Laplacian distribu-
tion. σh

∆i
and σv

∆i
are the standard deviations of the horizon-

tal and the vertical gradients at pixel i, while mh
∆i

and mv
∆i

denotes corresponding expectations. Since basic TV can be
seen as a kind of sparsity regularization in gradient domain
and the proposed extension exploits the non-local similarity
for parameter estimation, the extended scheme is named non-
local gradient sparsity regularization (NLGSR).

3.1. Adaptive Parameter Estimation

One of the key issues in NLGSR is to decide the distribu-
tion parameters σ∆i and m∆i for each gradient. This paper
follows the wisdom of non-local estimation, which has been
widely recognized since the application of non-local mean-
s [10]. It is reasonable to infer that such non-local property
should also exist in gradient domain. Specifically speaking,
in order to find out the gradient distribution at pixel i, a set
of blocks most similar to the block centered at location i are
searched out within the gradient picture, then the center data
of these blocks can be regarded as samples of the distribution
we struggle to learn. The similarity of two blocks are mea-
sured by the l2-distance d(i, j) = ‖bi − bj‖ /L, where bi is
the gradient block centered at i and L is the block size. NL-
GSR retrieves K blocks that have smallest distances with bi
and record their center locations in set Si. Then the estimation
of parameters mh

∆i
and σh

∆i
are calculated as

mh
∆i

=
1

|Si|
∑
j∈Si

Dh
ju, (5)

σh
∆i

=

√
1

|Si|
∑
j∈Si

(
Dh
ju−mh

∆i

)2
, (6)



mv
∆i

and σv
∆i

are calculated in the same way.
Theoretically, both block matching and calculation of (5)

and (6) call for the noise-free gradient data. Unfortunately,
such clean data is not available at the G-Cast receiver, so we
use an alternative ubasic, generated by existing methods like
traditional TV, to get the relatively clean gradient data.

3.2. Algorithm

Suppose the variation of Gaussian white noise in (1) is σ2
n.

Based on NLGSR, the MAP estimate of u can be deduced as:

min
u

1

2σ2
n

(
‖Dhu− dh‖22 + ‖Dvu− dv‖22

)
+
∑
i

( √
2

σh
∆i

∣∣Dh
iu−mh

∆i

∣∣+ √2
σv

∆i

∣∣Dv
iu−mv

∆i

∣∣)
s.t. E ◦ F(u) = m. (7)

This model is hard to solve directly because of the non-
linearity and non-differentiability of the NLGSR term. Mak-
ing use of variable splitting technique [11, 13], the problem
becomes a constrained optimization:

min
u

1

2σ2
n

(
‖wh − dh‖22 + ‖wv − dv‖22

)
+
∑
i

( √
2

σh
∆i

∣∣wh
i −mh

∆i

∣∣+ √2
σv

∆i

∣∣wv
i −mv

∆i

∣∣)
s.t. E ◦ F(u) = m, wh

i = Dh
iu, w

v
i = Dv

iu. (8)

The corresponding augmented Lagrange function is

LA(u,wh,wv) =
1

2σ2
n

(
‖wh − dh‖22 + ‖wv − dv‖22

)
+
∑
i

( √
2

σh
∆i

∣∣wh
i −mh

∆i

∣∣+ √2
σv

∆i

∣∣wv
i −mv

∆i

∣∣)

+
β

2

(
‖wh −Dhu‖22 + ‖wv −Dvu‖22

)
− (wh −Dhu)Tλh − (wv −Dvu)Tλv

+
γ

2
‖E ◦ F(u)−m‖22 − (E ◦ F(u)−m)Tρ. (9)

where β and γ are regularization parameters, λh, λv and ρ are
Lagrange multipliers. The problem can be solved by solving
(10) and (11) iteratively:(
u(k+1),w

h
(k+1),w

v
(k+1)

)
=min
u,wh,wv

LA
(
u(k),w

h
(k),w

v
(k)

)
(10)

λh
(k+1) = λh

(k) − β(k)(w
h −Dhu),

λv
(k+1) = λv

(k) − β(k)(w
v −Dvu),

ρ(k+1) = ρ(k) − γ(k)(E ◦ F(u)−m), (11)

where k is the iteration number.
We can use alternating direction techniques [14, 15] to

decompose (9) into three sub-problems, each of which can be
solved efficiently. When u and wv are fixed, the optimization
problem (9) is reduced to

LA(wh) =
1

2σ2
n

‖wh − dh‖22 +
∑
i

√
2

σh
∆i

∣∣wh
i −mh

∆i

∣∣
+
β

2
‖wh −Dhu− λh

β
‖22. (12)

Let θ = 1/σ2
n, and set

w̃h =
β(Dhu+ λh

β ) + θdh

β + θ
, (13)

w̃v =
β(Dvu+ λv

β ) + θdv

β + θ
, (14)

then (12) can be written as

LA(wh)=
∑
i

√
2

σh
∆i

∣∣wh
i−mh

∆i

∣∣+ β + θ

2
‖wh−w̃h‖22. (15)

The solution is a simple component-wise shrinkage operation:

wh = mh
∆ + shrink(w̃h −mh

∆,

√
2

(β + θ)σh
∆

). (16)

Here shrink(x, b) = max(|x| − b, 0) · sgn(x). Similarly, the
wv sub-problem can be solve by

wv = mv
∆ + shrink(w̃v −mv

∆,

√
2

(β + θ)σv
∆

). (17)

When wh and wv are fixed, the u sub-problem can be
rewritten as (18), which is a quadratic function. Since Dh

and Dv are both convolution operators, the least square prob-
lem can be efficiently solved in the frequency domain. The
solution is formulated in (19), where ”∗” denotes complex
conjugacy and both the multiplication and the division are
component-wise calculations.

Now we may conclude this section by summarizing the
main procedure in Algorithm 1.

4. EXPERIMENTAL RESULTS

This section examines the performance of G-Cast utilizing
NLGSR. TV based G-Cast and SoftCast are used for com-
parison. TV based restoration also serves as the first step of
NLGSR to generate ubasic. The transmission in SoftCast is
performed twice and averaged at the receiver side so that they
send the same amount of data as G-Cast does.

Since error can hardly be completely circumvented in the
process of parameter estimation, plus the fact that gradient



LA(u) =
γ

2
‖E ◦ F(u)− (m+

ρ

γ
)‖22 +

β

2

(
‖Dhu− (wh +

λh

β
)‖22 + ‖Dvu− (wv +

λv

β
)‖22
)

(18)

ũ = F (−1)

(
F∗(Dh) ◦ F(wh + λh

β ) + F
∗(Dv) ◦ F(wv + λv

β ) +
γ
β (m+ ρ

γ )

F∗(Dh) ◦ F(Dh) + F∗(Dv) ◦ F(Dv) + γ
β · E

)
(19)

Algorithm 1: A Summary of NLGSR

Data: The received noisy horizontal gradient image dh, noisy
vertical gradient image dv; m, β, γ;

Result: Recovered image ufinal.
initialization: Generate ubasic from dh and dv using TV based
restoration; gh = Dhubasic, gv = Dvubasic, wh = dh,
wv = dv, λh = λv = ρ = 0;
Use block matching within gh and gv, calculate mh

∆, σh
∆ and

mv
∆, σv

∆ according to Eq. (5) and (6);
while Outer stopping criteria unsatisfied do

while Inner stopping criteria unsatisfied do
solve wh-problem by computing Eq. (16);
solve wv-problem by computing Eq. (17);
solve u-problem by computing Eq. (19);

end
Update multipliers λh, λv and ρ by Eq. (11);
Choose β(k+1) ≥ β(k), γ(k+1) ≥ γ(k);

end

data may not strictly conform to Laplacian distribution, the
estimated σh

∆ and σv
∆ are adjusted by a factor δh

∆, which is
empirically chosen according to σn. The number of similar
blocks K is set to 50 their block size L is set to 7 × 7. The
dimension of low-frequency data is 8× 8.

15 natural images are tested with CSNR ranging from 0d-
B to 15dB. As can be seen from Fig. 1 and Fig. 2, NLGSR
has evident gain over TV measured by both SSIM and gradi-
ent signal-to-noise ratio (GSNR), while the TV based G-Cast
outperforms SoftCast. Other tested images show similar re-
sults. The average GSNR of all the tested pictures shows that
the gain of NLGSR over traditional TV ranges from 0.77dB to
0.34dB as CSNR varies from 0dB to 15dB, while the gain of
TV based G-Cast over SoftCast falls in the interval of 1.95dB
to 1.4dB. Despite that our proposed method is not optimized
w.r.t. MSE, it shows competitive PSNR values compared with
SoftCast, except for some specific cases like Barbara. The av-
erage PSNR shows a gain of up to 0.59dB.

Our ultimate goal is to improve perceptual quality. The
reconstructed images of the three tested methods are shown in
Fig. 4. The superiority of NLGSR based G-Cast is obvious.

5. CONCLUSION

Inspired by the observation that gradient structures are highly
relevant to image quality assessment, gradient based SoftCast

(G-Cast) has been designed for wireless image communica-
tion. This paper introduces a kind of perception oriented im-
age reconstruction method, i.e., non-local gradient sparsity
regularization (NLGSR), for the receiver of G-Cast. NLGSR
utilizes the property of self-similarity in gradient domain, es-
timating the statistics of image gradient at any pixel from a
group of non-locally searched gradient blocks most similar
to the gradient block centered at the current location. These
groups of blocks are used as the samples of the gradient distri-
bution to be learnt. Augmented Lagrangian method is applied
to solve the optimization problem. Experimental results show
that G-Cast outperforms SoftCast in terms of visual quality,
and NLGSR based G-Cast can substantially improve the re-
construction quality over traditional TV restoration.
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Fig. 4. Visual comparison of reconstructed images (CSNR=0dB). From left to right: SoftCast, G-Cast(TV), G-Cast(NLGSR).
Please enlarge the figure for better comparison.
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